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Preface

The theory of inverse problems for differential equations is being ex-
tensively developed within the framework of mathematical physics. In the
study of the so-called direct problems the solution of a given differential
equation or system of equations is realised by means of supplementary con-
ditions, while in inverse problems the equation itself is also unknown. The
determination of both the governing equation and its solution necessitates
imposing more additional conditions than in related direct problems.

The sources of the theory of inverse problems may be found late in the
19th century or early 20th century. They include the problem of equilibrium
figures for the rotating fluid, the kinematic problems in seismology, the
inverse Sturm-Liuville problem and more. Newton’s problem of discovering
forces making planets move in accordance with Kepler’s laws was one of the
first inverse problems in dynamics of mechanical systems solved in the past.
Inverse problems in potential theory in which it is required to determine
the body’s position, shape and density from available values of its potential
have a geophysical origin. Inverse problems of electromagnetic exploration
were caused by the necessity to elaborate the theory and methodology of
electromagnetic fields in investigations of the internal structure of Earth’s
crust.

The influence of inverse problems of recovering mathematical physics
equations, in which supplementary conditions help assign either the values
of solutions for fixed values of some or other arguments or the values of cer-
tain functionals of a solution, began to spread to more and more branches
as they gradually took on an important place in applied problems arising
in "real-life" situations. From a classical point of view, the problems under
consideration are, in general, ill-posed. A unified treatment and advanced
theory of ill-posed and conditionally well-posed problems are connected
with applications of various regularization methods to such problems in
mathematical physics. In many cases they include the subsidiary infor-
mation on the structure of the governing differential equation, the type of
its coefficients and other parameters. Quite often the unique solvability
of an inverse problem is ensured by the surplus information of this sort.
A definite structure of the differential equation coefficients leads to an in-
verse problem being well-posed from a common point of view. This book
treats the subject of such problems containing a sufficiently complete and
systematic theory of inverse problems and reflecting a rapid growth and
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iv Preface

development over recent years. It is based on the original works of the
authors and involves an experience of solving inverse problems in many
branches of mathematical physics: heat and mass transfer, elasticity the-
ory, potential theory, nuclear physics, hydrodynamics, etc. Despite a great
generality of the presented research, it is of a constructive nature and gives
the reader an understanding of relevant special cases as well as providing
one with insight into what is going on in general.

In mastering the challenges involved, the monograph incorporates the
well-known classical results for direct problems of mathematical physics
and the theory of differential equations in Banach spaces serving as a basis
for advanced classical theory of well-posed solvability of inverse problems
for the equations concerned. It is worth noting here that plenty of inverse
problems are intimately connected or equivalent to nonlocal direct problems
for differential equations of some combined type, the new problems arising
in momentum theory and the theory of approximation, the new .types of

¯ linear and nonlinear integral and integro-differential equations of the first
and second kinds. In such cases the well-posed solvability of inverse prob-
lem entails the new theorems on unique solvability for nonclassical direct
problems we have mentioned above. Also, the inverse problems under con-
sideration can be treated as problems from the theory of control of systems
with distributed or lumped parameters.

It may happen that the well-developed methods for solving inverse
problems permit, one to establish, under certain constraints on the input
data, the property of having fixed sign for source functions, coefficients and
solutions themselves. If so, the inverse problems from control theory are
in principal difference with classical problems of this theory. These special
inverse problems from control theory could be more appropriately referred
to as problems of the "forecast-monitoring" type. The property of having
fixed sign for a solution of "forecast-monitoring" problems will be of crucial
importance in applications to practical problems of heat and mass transfer,
the theory of stochastic diffusion equations, mathematical economics, var-
ious problems of ecology, automata control and computerized tomography.
In many cases the well-posed solvability of inverse problems is established
with the aid of the contraction mapping principle, the Birkhoff-Tarsky
principle, the NewtonvKantorovich method and other effective operator
methods, making it possible to solve both linear and nonlinear problems
following constructive iterative procedures.

The monograph covers the basic types of equations: elliptic, parabolic
and hyperbolic. Special emphasis is given to the Navier-Stokes equations as
well as to the well-known kinetic equations: Bolzman equation and neutron
transport equation.

Being concerned with equations of parabolic type, one of the wide-
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spread inverse problems for such equations amounts to the problem of de-
termining an unknown function connected structurally with coefficients of
the governing equation. The traditional way of covering this is to absorb
some additional information on the behavior of a solution at a fixed point
u(x0, t) = ~(t). In this regard, a reasonable interpretation of problems 
the overdetermination at a fixed point is approved. The main idea behind
this approach is connected with the control over physical processes for a
proper choice of parameters, making it possible to provide at this point a
required temperature regime. On the other hand, the integral overdeter-
mination

f u(x,t) w(x) = ~(t ),

where w and ~ are the known functions and u is a solution of a given par-
abolic equation, may also be of help in achieving the final aim and comes
first in the body of the book. We have established the new results on
uniqueness and solvability. The overwhelming majority of the Russian and
foreign researchers dealt with such problems merely for linear and semi-
linear equations. In this book the solvability of the preceding problem is
revealed for a more general class of quasilinear equations. The approximate
methods for constructing solutions of inverse problems find a wide range
of applications and are galmng increasing popularity.

One more important inverse problem for parabolic equations is the
problem with the final overdetermination in which the subsidiary informa-
tion is the value of a solution at a fixed moment of time: u(x, T) = ~(x).
Recent years have seen the publication of many works devoted to this
canonical problem. Plenty of interesting and profound results from the
explicit formulae for solutions in the simplest cases to various sufficient
conditions of the unique solvability have been derived for this inverse prob-
lem and gradually enriched the theory parallel with these achievements.
We offer and develop a new approach in this area based on properties of
Fredholm’s solvability of inverse problems, whose use permits us to estab-
lish the well-known conditions for unique solvability as well.

It is worth noting here that for the first time problems with the in-
tegral overdetermination for both parabolic and hyperbolic equations have
been completely posed and analysed within the Russian scientific school
headed by Prof. Aleksey Prilepko from the Moscow State University. Later
the relevant problems were extensively investigated by other researchers in-
cluding foreign ones. Additional information in such problems is provided
in the integral form and admits a physical interpretation as a result of mea-
suring a physical parameter by a perfect sensor. The essense of the matter
is that any sensor, due to its finite size, always performs some averaging of
a measured parameter over the domain of action.
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Similar problems for equations of hyperbolic type emerged in theory
and practice. They include symmetric hyperbolic systems of the first order,
the wave equation with variable coefficients and ~he system of equations
in elasticity theory. Some conditions for the existence and uniqueness of a
solution of problems with the overdetermination at a fixed point and the
integral overdetermination have been established.

Let us stress that under the conditions imposed above, problems with
the final overdetermination are of rather complicated forms than those in
the parabolic case. Simple examples help motivate in the general case the
absence of even Fredholm’s solvability of inverse problems of hyperbolic
type. Nevertheless, the authors have proved Fredholm’s solvability and
established various sufficient conditions for the existence and uniqueness of
a solution for a sufficiently broad class of equations.

Among inverse problems for elliptic equations we are much interested
in inverse problems of potential theory relating to the shape and density
of an attracting body either from available values of the body’s external or
internal potentials or from available values of certain functionals of these
potentials. In this direction we have proved the theorems on global unique-
ness and stability for solutions of the aforementioned problems. Moreover,
inverse problems of the simple layer potential and the total potential which
do arise in geophysics, cardiology and other areas are discussed. Inverse
problems for the Helmholz equation in acoustics and dispersion theory are
completely posed and investigated. For more general elliptic equations,
problems of finding their sources and coefficients are analysed in the situa-
tion when, in addition, some or other accompanying functionals of solutions
are specified as compared with related direct problems.

In spite of the fact that the time-dependent system of the Navier-
Stokes equations of the dynamics of viscous fluid falls within the category
of equations similar to parabolic ones, separate investigations are caused
by some specificity of its character. The well-founded choice of the inverse
problem statement owes a debt to the surplus information about a solu-
tion as supplementary to the initial and boundary conditions. Additional
information of this sort is capable ofdescribing, as a rule, the .indirect
manifestation of the liquid motion characteristics in question and admits
plenty of representations. The first careful analysis of an inverse prob-
lem for the Navier-Stokes equations was carried out by the authors and
provides proper guidelines for deeper study of inverse problems with the
overdetermination at a fixed point and the same of the final observation
conditions. This book covers fully the problem with a perfect sensor in-
volved, in which the subsidiary information is prescribed in the integral
form. Common settings of inverse problems for the Navier-Stokes system
are similar to parabolic and hyperbolic equations we have considered so
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far and may also be treated as control problems relating to viscous liquid
motion.

The linearized Bolzman equation and neutron transport equation are
viewed in the book as particular cases of kinetic equations. The linearized
Bolzman equation describes the evolution of a deviation of the distribution
function of a one-particle-rarefied gas from an equilibrium. The statements
of inverse problems remain unchanged including the Cauchy problem and
the boundary value problem in a bounded domain. The solution existence
and solvability are proved. The constraints imposed at the very beginning
are satisfied for solid sphere models and power potentials of the particle
interaction with angular cut off.

For a boundary value problem the conditions for the boundary data
reflect the following situations: the first is connected with the boundary
absorption, the second with the thermodynamic equilibrium of the bound-
ary with dissipative particles dispersion on the border. It is worth noting
that the characteristics of the boundary being an equilibria in thermody-
namics lead to supplementary problems for investigating inverse problems
with the final overdetermination, since in this case the linearized collision
operator has a nontrivial kernel. Because of this, we restrict ourselves to
the stiff interactions only.

Observe that in studying inverse problems for the Bolzman equa-
tion we employ the method of differential equations in a Banach space.
The same method is adopted for similar problems relating to the neutron
transport. Inverse problems for the transport equation are described by
inverse problems for a first order abstract differential equation in a Ba-
nach space. For this equation the theorems on existence and uniqueness
of the inverse problem solution are proved. Conditions for applications
of these theorems are easily formulated in terms of the input data of the
initial transport equation. The book provides a common setting of in-
verse problems which will be effectively used in the nuclear reactor the-
ory.

Differential equations in a Banach space with unbounded operator
coefficients are given as one possible way of treating partial differential
equations. Inverse problems for equations in a Banach space correspond to
abstract forms of inverse problems for partial differential equations. The
method of differential equations in a Banach space for investigating various
inverse problems is quite applicable. Abstract inverse problems are consid-
ered for equations of first and second orders, capable of describing inverse
problems for partial differential equations.

It should be noted that we restrict ourselves here to abstract inverse
problems of two classes: inverse problems in which, in order to solve the
differential equation for u(t), it is necessary to know the value of some
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operator or functional B u(t) = ~o(t) as a function of the argument t, and
problems with pointwise overdetermination: u(T) = r.

For the inverse problems from the first class (problems with evolution
overdetermination) we raise the questions of existence and uniqueness of 
solution and receive definite answers. Special attention is being paid to the
problems in which the operator B possesses some smoothness properties.
In context of partial differential equations, abstract inverse problems are
suitable to problems with the integral overdetermination, that is, for the
problems in which the physical value measurement is carried out by a per-
fect sensor of finite size. For these problems the questions of existence and
uniqueness of strong and weak solutions are examined, and the conditions
of differentiability of solutions are established. Under such an approach the
emerging equations with constant and variable coefficients are studied.

It is worth emphasizing here that the type of equation plays a key
role in the case of equations with variable coefficients and, therefore, its
description is carried out separately for parabolic and hyperbolic cases.
Linear and semilinear equations arise in the hyperbolic case, while parabolic
equations include quasilinear ones as well. Semigroup theory is the basic
tool adopted in this book for the first order equations. Since the second
order equations may be reduced to the first order equations, we need the
relevant elements of the theory of cosine functions.

A systematic study of these problems is a new original trend initiated
and well-developed by the authors.

The inverse problems from the second class, from the point of pos-
sible applications, lead to problems with the final overdetermination. So
far they have been studied mainly for the simplest cases. The authors be-
gan their research in a young and growing field and continue with their
pupils and colleagues. The equations of first and second orders will be of
great interest, but we restrict ourselves here to the linear case only. For
second order equations the elliptic and hyperbolic cases are extensively in-
vestigated. Among the results obtained we point out sufficient conditions
of existence and uniqueness of a solution, necessary and sufficient condi-
tions for the existence of a solution and its uniqueness for equations with a
self-adjoint main part and Fredholm’s-type solvability conditions. For dif-
ferential equations in a Hilbert structure inverse problems are studied and
conditions of their solvability are established. All the results apply equally
well to inverse problems for mathematical physics equations, in particu-
lar, for parabolic equations, second order elliptic and hyperbolic equations,
the systems of Navier-Stokes and Maxwell equations, symmetric hyper-
bolic systems, the system of equations from elasticity theory, the Bolzman
equation and the neutron transport equation.

The overview of the results obtained and their relative comparison
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are given in concluding remarks. The book reviews the latest discoveries
of the new theory and opens the way to the wealth of applications that it
is likely to embrace.

In order to make the book accessible not only to specialists, but also
to students and engineers, we give a complete account of definitions and
notions and present a number of relevant topics from other branches of
mathematics.

It is to be hoped that the publication of this monograph will stimulate
further research in many countries as we face the challenge of the next
decade.

Aleksey I. Prilepko
Dmitry G. Orlovsky
Igor A. Vasin
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Chapter 1

Inverse Problems for Equations

of Parabolic Type

1.1 Preliminaries

In this section we give the basic notations and notions and present also
a number of relevant topics from functional analysis and the general the-
ory of partial differential equations of parabolic type. For more detail we
recommend the well-known monograph by Ladyzhenskaya et al. (1968).

The symbol ~ is used for a bounded domain in the Euclidean space
R’~, x = (xl,...,x,~) denotes an arbitrary point in it. Let us denote 
Q:~ a cylinder ftx (0, T) consisting of all points (x, t) ’~+1 with x Ef~
and t ~ (0,T).

Let us agree to assume that the symbol 0f~ is used for the boundary
of the domain ~ and ST denotes the lateral area of QT. More specifically,

ST is the set 0~ x [0, T] ~ R’~+1 consisting of all points (x, t) with z ~ 
and t G [0, T].

In a limited number of cases the boundary of the domain f~ is supposed
to have certain smoothness properties. As a rule, we confine our attention
to domains ~2 possessing piecewise-smooth boundaries with nonzero interior
angles whose closure (~ can be represented in the form (~ = tA~n=l~ for
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fti r3 flj = e, i ¢ j, and every ~ can homeomorphically be mapped onto
a unit ball (a unit cube) with the aid of functions ¢~(x)’, i = 1,2,...
k = 1,2,... ,m, with the Lipschitz property and the 3acobians of the

transformations

are bounded from below by a positive constant.
We say that the boundary Oft is of class C~, I _> 1, if t.here exists a

number p > 0 such that the intersection of Oft and the ball Be of radius p
with center at an arbitrary point z° E Oft is a connected surface area which
can be expressed in a local frame of reference ((1,(~,. ¯ ¯ ,(n) with origin 
the point z° by the equation (,~ = ¢o(~,... ,(,~-1), where w(~l,...
is a function of class C~ in the region /) constituting the projection of 
onto the plane ~,~ = 0. We will speak below about the class C~(/)).

We expound certain exploratory devices for investigating inverse prob-
lems by using several well-known inequalities. In this branch of mathemat-
ics common practice involves, for example, the Cauchy inequality

E aij ~i
i,j=l

_ aij
) 1/2

which is valid for an arbitrary nonnegative quadratic form aij ~i vii with
aij = aji and arbitrary real numbers ~,... ,~n and ql,... ,qn. This is
especially true of Young’s inequality

(1.1.1)

ab <_ 1 6Va~+ 1 6_~b~,
1 1

- - - + -=1,
P q P q

which is more general than the preceding and is valid for any positive a, b,
$ andp, q> 1.

In dealing with measurable functions u~(x) defined in f~ we will use
also HSlder’s inequality

(1.1.2) _<ft.,..,. I u,~(x)l)’~ dx ,
k=l gt

In the particular case where s = 2 and A~ = As = 2 inequality (1.1.2) 
known as the Cauehy-$ehwartz inequality.
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Throughout this section, we operate in certain functional spaces, the
elements of which are defined in fl and QT. We list below some of them. In
what follows all the functions and quantities will be real unless the contrary
is explicitly stated.

The spaces Lp(fl), 1 _< p < oo, being the most familiar ones, come
first. They are introduced as the Banach spaces consisting of all measurable
functions in fl that.are p-integrable over that set. The norm of the space
Lp(fl) is defined by

It is worth noting here that in this chapter the notions of measurability
and integrability are understood in the sense of Lebesgue. The elements of
Lp(f~) are the classes of equivalent functions on 

When p = cx~ the space L~(f~) comprises all measurable functions 
f~ that are essentially bounded having

II ~ IIo~,a = esssup I u(z) 

We obtain for p = 2 the Hilbert space L2(f~) if the scalar product
in that space is defined by

(u,v) =i u(x)v(x) 

The Sobolev spaces W~(f~), where 1 is a positive integer, 1 _< p 
consists of all functions from Lv(f~) having all generalized derivatives of the
first l orders that are p-integrable over fL The norm of the space
is defined by

Ilu ~,a = ~ ~ IID~ull2,a ,
~=o l ~

where a = (al,... ,an) is a multiindex, [~[ = al + ~2 + "" + 

D~u = Oz<~’ Oz7~ ... Oz~,

and ~-~1~1=~ denotes summation over all possible c~th derivatives of u.

Generalized derivatives are understood in the sense of Sobolev (see
the definitions in Sobolev (1988)). For ~ = 1 and ~ = 2 we will write, 
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usual, u~ and u~, respectively, instead of Dr u and D~ u. This should not
cause any confusion.

0
It is fairly common to define the space W~l(f~) as a subspace of W~ (f~)

in which the set of all functions in f~ that are infinite differentiable and
have compact support is dense. The function u(x) has compact support in
a bounded domain f~ if u(x) is nonzero only in a bounded subdomain ~
of the domain ~ lying at a positive distance from the boundary of ~.

When working in HSlder’s spaces ch(~) and cl+h(~), we will as-
sume that the boundary of ~ is smooth. A function u(x) is said to satisfy
HSlder’s condition with exponent h, 0 < h < 1, and HSlder’s constant
H~(u) in ~ if

sup l u(x)--u(x’)l ~ H~(u) < 

By definition, ch(~) is a Banach space, the elements of which are contin-
uous on ~ functions u having bounded

[u[~) : sup [u [+ H~(u).

In turn, c~+h(~), where l is a positive integer, can be treated as a Banach
space consisting of all differentiable functions with continuous derivatives
of the first l orders and a bounded norm of the form

I(~+~)l u ~ = ~ ~ sup [D~ul+ ~ H~(D~u).
~=o ~=~ ~ ~=~

The functions depending on both the space and time variables with dis-
similar differential properties on x and t are much involved in solving non-
stationary problems of mathematical physics.

Furthermore, Lp, q(Qr), 1 ~ p, q < ~, is a Banach space consisting 
all measurable functions u having bounded

][ u llp, q, Q~ = l u F d~ dt
0 ~

The Sobolev space W~’ ~ (Qr), p ~ 1, with positive integers I i ~ O,
i : 1, 2, is defined as a Banach space of all functions u belonging to the
sp~ce Lp(QT) along with their weak x-derivatives of the first l~ orders and
t-derivatives of the first l: orders. The norm on that space is defined by

P,QT :
k=O [~[=k k=l
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The symbol W~:~(Qr) is used for a subspace of W~"(Qr) in which
the set of all smooth functions in QT that vanish on ST is dense.

The space C2+~’1+~/2(QT), 0 < a < 1, is a Banach space of all
functions u in QT that are continuous on (~T and that possess smooth x-
derivatives up to and including the second order and t-derivatives of the
first order. In so doing, the functions themselves and their derivatives
depend continuously on x and t with exponents a and a/2, respectively.
The norm on that space is defined by

2

lu Q~ = ~ sup IDeal+sup ID,~I

sup ID~u(x,t)-D~u(x’,t)l/lm-x’[~

sup I Dtu(x, t) - Dtu(x, t’) I/It - t’ 
(x,t),(x,t~)EQw

+ ~’. sup ID~u(x,t)-D~u(z,t’)l/It-t’l~/~

÷ sup I Dtu(x, t) - Dtu(x’, t)I/I ~ - ~’ I~.
(x,t),(~,t’)eQT

In specific cases the function u depending on x and t will be treated as
an element of the space V~’°(Qr) comprising all the elements of W~’°(Qr)
that are continuous with respect to t in the L~(fl)-norm having finite

T u T~r= sup II~(,~)ll~,a+ll~ll~,~,
[o, T]

where u. = (u~,,..., u.~) and ~ =~u~ [~. The meaning ofthecontinuity
of the function u(-,t) with respect to t in the L~(fl)-norm is 

°l 0For later use, the symbol V~’ (@) will appear once we agree to con-
sider only those elements of V~’°(@) that vanish on ST.

In a number of problems a function depending on x and t can be
viewed as a function of the argument.t with values from a Banach space

over ~. For example, Le(O,T; W~(~)) is a set of all functions u(. ,t) 

(0, T) with wlues in Wtp(a) and norm

T

0
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Obviously, the spaces Lq(O, T; Lp(~)) and Lp, q(Qw) can be identified in a
natural way. In a similar line, the space

C([O, T]; W’p(fl))

comprises all continuous functions on [0, T] with values in W~(~). 

obtain the Banach space C([O,T]; W~p(~)) if the norm on it is defined 

, p,~ ¯
[0, 7]

We quote below some results concerning Sobolev’s embedding theory
and relevant inequalities which will be used in ~he sequel.

Recall tha~ the Polncare-~iedrichs inequality

ff u~(x) dx ~ c~(~)~ ~u~[~(x) dx

o
holds-true for all the functions u from W~(~), where ~ is a bounded domain
in the space R’~. The constant c1(~) depending only on the domain ~ 
bounded by the value 4 (diamg)~.

Theorem 1.1.1 Let ~ be a bounded domain in the space Rn with the
pieccwise smooth boundary 0~ and let Sr be an intersection of ~ with any
r-dimensional hypersurface, r <_ n (in particular, if r = n then Sr =- ~,"
if r = n - 1 we agree to consider O~ as St). Then for any function

u 6 W~p(~), where l > 1 is a positive integer and p > 1, the following
assertions are valid:

(a) for n > pl and r > n-pl there exists a trace of u on ST belonging
to the space Lq(Sr) with any finite q < pr/(n-pl) and the estimate
is true."

(~)(1.1.4) IlUllq,Sr <_cllu ~,~.

For q < pr/(n-pl) the operator embedding Wtp(~) into Lq(Sr) is
completely continuous;

(b) for n = pl the assertion of item (a) holds with any q < c~;
(c) for n < pl the function u is Hb’Ider’s continuous and belongs to the

class ck+h((~), where k : l - 1 - In/p] and h : 1 + [n/p] - 
if niP is not integer and Vh < 1 if nip is integer. In that case the
estimate

(1.1.5) ]u (~+h) O)

b/P] d not , of
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Notice that the constants c arising from (1.1.4)-(1.1.5) depend 
on n, p, l, r, q, Sr and ~ and do not depend on the function u. The proof
of Theorem 1.1.1 can be found in Sobolev (1988).

In establishing some subsequent results we will rely on Rellich’s the-
orem, whose precise formulation is due to Courant and Hilber-t (1962).

o

Theorem 1.1.2 If ~ is a bounded domain, then W~(~) is compactly em-
bedded into the space L~(~), that is, a set of elements {us) of the space
o
W~(Q) with uniformly bounded norms is compact in the space L2(~).

Much progress in solving inverse boundary value problems has been
achieved by serious developments in the general theory of elliptic and par-
abolic partial differential equations. The reader can find deep and diverse
results of this theory in Ladyzhenskaya (1973), Ladyzhenskaya and Uralt-
seva (1968), Friedman (1964), Gilbarg and Trudinger (1983), Berezanskij
(1968). Several facts are known earlier and quoted here without proofs,
the others are accompanied by explanations or proofs. Some of them were
discovered and proven in recent years in connection with the investigation
of the series of questions that we now answer. Being of independent value
although, they are used in the present book only as part of the auxiliary
mathematical apparatus. The theorems concerned will be formulated here
in a common setting capable of describing inverse problems of interest that
make it possible to draw fairly accurate outlines of advanced theory.

Let ~ be a bounded domain in the space R~ with boundary c~ of class
C2. In the domain ~ of such a kind we consider the Dirichlet boundary
value (direct) problem for the elliptic equation of the second order

(1.1.6) (Lu)(x)

(1.1.7)
where L is an elliptic differential operator of the type

(1.1.8) Lu + E + =
i,j=l xj i=1

which is assumed to be uniformly elliptic for every z ~ ~ in the sense of
the following conditions:

(1.1.9) 0
i=1 i,j=l j=l

with certain positive constants # and u and arbitrary real numbers ~,...,
~,~. The left inequality (1.1.9) reflects the ellipticity property and the right
one means that the coefficients aij are bounded.
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In trying to solve the direct problem posed above we look for the
function u by regarding the coefficients of the operator L, the source term

f and the domain f~ to be known in advance.

Theorem 1.1.3 Let the operator L satisfy (1.1.8)-(1.1.9), aij ¯ C(~),
~ ¯ C(~), i ¯L~andc < 0 al most ever ywhere (a.e .) in ~ . I
Oxi

--

f ¯ np(a), 1 < 
a solution u ~ W~(~), this solution is unique in the indicated class 
functions and obeys the eslimate

(~) < (1.1.10)

where ~he constant c* is independent of u.

A similar result concerning the unique solvability can be obtained re-
gardless of the sign of the coefficient c. However, in this case the coefficients
of the operator L should satisfy some additional restrictions such as, for
example, the inequality

(1.1.11)

where b = ~i=~ b~(z) and c~(a) is the same constant as in (1.1.g).

For further motivations we cite here the weak principle of m~imum
for elliptic equations following ~he monograph of Gilbarg and Trudinger
(198~), p. 170-17g. To facilitate understanding, it will be convenient
introduce some terminology which will be needed in subsequent reasonings.
A function ~ ~ W~(~) is said to satisfy the inequality ~ ~ 0 on 0~ if its

positive part u+ = max{u,0} belongs to W~(~). This definition permits
us go involve inequalities of other types on 0~. Namely, u ~ 0 on 0~ if
-u ~ 0 on 0~; functions u and v from W~(~) satisfy the inequality u ~ 
on 0~ if

supu=inf{k¯R: u_<konOf~}.
O~

We say that a function u satisfies the inequality Lu >_ 0 in ~ in the weak
or generalized sense if

i,j=l i=1

for all nonnegative functions v E Cl(f~) such that v(x) = 0 for 
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Theorem 1.1.4 /the weak principle of maximum) Let the conditions
of Theorem 1.1.3 hold for the operator L and let a function u
satisfy the inequality Lu > 0 in f2 in a weak sense. Then

sup u _< sup u+.

Corollary 1.1.1 Let the operator L be in line with the premises of Theorem
o

1.1.3 and let a function ~o ~ W~(Q) [1 W~(Q) comply with the conditions

~(x) > O a.e. in Q and ~(x) ~ const .

Then there exists a measurable set Q’ C f~ with

mes,~Q’ > 0

such that L~ < 0 in

Proof On the contrary, let L~ > 0 in ~2. If so, the theorem yields either
~ < 0 in Q or ~o = const in fL But this contradicts the hypotheses of
Corollary 1.1.1 and proves the current corollary. ¯

Corollary 1.1.2 Let the operator L meet the requirements of Theorem
o

1.1.3 and let a function ~ 6 W~(QT) f] W~(Q) follow the conditions

~(x) > 0 a.e. in a and L~o(:~) const in a.

Then there exists a measurable set Q’ C Q with

mes~Q’ > 0

such that LW < 0 in

Proof Since LT ~ O, we have T ~ O, giving either T -- const > 0 or
T ~ const. If ~_-- const > O, then

=-

and the above assertion is simple to follow. For ~ ~ const applying Corol-
lary 1.1.1 leads to the desired assertion. ¯
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For the purposes of the present chapter we refer to the parabolic
equation

(1.1.12) ut(x,t ) - (Lu)(x,t) = F(x,t), (x,t) QT= Qx (O,T),

supplied by the initial and boundary conditions

(1.1.13) u(x,O) = a(x), x ¯ ~,

(1.1.14) u(x,t) = (z,t) ¯ ST --= 0Q × [0, T],

where the operator L is supposed to be uniformly elliptic. The meaning of
this property is that we should have

(i.1.15)

In what follows we impose for the coefficients of the operator L the following
constraints:

0
(1.1.16) Aij ¯ C((~), ~ Aq ¯ C((~), Bi ¯ L~o(a), C ¯ 

The direct problem for equation (1.1.12) consists of finding a solution
u of the governing equation subject to the initial condition (1.1.13) and the
boundary condition (1.1.14) when operating with the functions F and 
the coefficients of the operator L and the domain ~ × (0, T).

Definition 1.1.1 A function u is said to be a solution of the direct problem
2 1(1.1.12)-(1.1.14) from the class w2’l(I~2 ,,~., ~ if u ¯ W2:o(Qr) and relations

(1.1.12)-(1.1.14) sati sfied almost everywhere in the corresponding do-
mains.

Theorem 1.1.5 Let the coefficients ofthe operator L satisfy (1.1.15)-
o

(1.1.16) and let F ¯ L2(QT) and a ¯ W~(f~). Then the direct problem
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2,1(1.1.12)-(1.1.14) has a solution u ¯ W~,o(Qr), this solution is unique 
the indicated class of functions and the following estimate is valid:

(1.1.17) Ilull~)~, <c* Ilfll~,o~÷lla u,~ ,

where the constant c* does not depend on u.

In subsequent studies of inverse problems some propositions on solv-
ability of the direct problem (1.1.12)-(1.1.14) in the "energy" space

~l’°(Qr) will serve as a necessary background for important conclusions.

Definition 1.1.2 A function u is said to be a weak solution of the direct
°10problem (1.1.12)-(1.1.14) from the c]ass ~’°(QT) ifu ¯ V~’ (QT) the

system (1.1.12)-(1.1.14) satisfied in thesense of t he foll owing integral
identity:

t

0 ~ i,j=l

where (I) is an arbitrary
(x, ~) 

The following result

+ f u(x, t) ~(x, t) 

- / a(x) (I)(x, dx

t

0 ~

element of W~’l(Qr) such that O(x,t) = 0 for

is an excellent start in this direction.

Theorem 1.1.6 Let the coefficients of the operator L satisfy (1.1.15)-
(1.1.16) and let F ¯ L2,1(QT) and a ¯ L2(~). Then the direct problem

~l’°t~) ~ this solution is unique(1.1.11)-(1.1.14) has a weak solution u ¯ ~ ~’~TZ,
in the indicated class of functions and the energy balance equation is valid:

t, ¯ , )ll2,~ ~ A,~ ~(1.1.19) ~ II~( t 
0 ~ i,j=l



12 1. Inverse Problems for Equations of Parabolic Type

-£Biu~u-Cu 2) dzdv
i--1

t

=3 Ilall~,~ ÷ Fu dxdT,
0 ~

0<t<T.

Differential properties of a solution u ensured by Theorem 1.1.6 are
revealed in the following proposition.

Lemma 1.1.1 If all the conditions of Theorem 1.1.6 are put together with
F G L2(QT), then

o

u ¯ w2’lo(a x (¢,T)) C([¢,T], W~(f~))2,

for any e E (0, T).

For the further development we initiate the derivation of some esti-
mates. If you wish to explore this more deeply, you might find it helpful

01first to establish the estimates for solutions u ¯ V2’°(Qr) of the system
(1.1.12). These are aimed to carry out careful analysis in the sequel.

Suppose that the conditions of Theorem 1.1.6 and Lemma 1.1.1 are
satisfied. With this in mind, we are going to show that any solution of

o1(1.1.12)-(1.1.14) from V2’°(QT) admits for 0 < t < T the estimate

(1.1.20) tlu(. ,t)112,~ -< exp {-oct)H a I1~, 

t

+ / exp {-oc (t - ~-)) ~(’, ’-1112, ~ d~-,
o

where oc=
(~) "’+~ 

/.z, = max{esssupa IC(¢)1, esssup [a i=1 ~ Bf(*)]I/=}

and c~(Q) is the constant from the Poincare-Friedrichs inequality (1.1.3).
Observe that we imposed no restriction on the sign of the constant a.
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At the next stage, holding a number ¢ from the interval (0, T) fixed
and taking t = ¢, we appeal to identity (1.1.18). After subtracting the
resulting expression from (1.1.18) we get

(l.1.21)

t

where ̄  is an arbitrary element of W~’I(QT) that vanish on ST. Due to
the differential properties of the function u established in Lemma 1.1.1 we

can rewrite (1.1.21) for 0 < e < t < T 

t t

F~ dzdr.

It is important for us that the preceding relation occurs for any
¢ E W12’~(a x (¢,T)) vanishing on 0a x [¢,T].

o

Let r/(t) be an arbitrary function fi’om the space C°°([¢,T]). Obvi-
ously, the function q~ = u(x,t)r~(t) belongs to the class of all admissible
functions subject to relation (1.1.22). Upon substituting (I) u(z,t)rl(t)

into (1.1.22) we arrive 

(1.1.23)

dr, 0<¢<t<T.



14 1. Inverse Problems for Equations of Parabolic Type

o
It is worth noting here that C~([¢, T]) is dense in the space L2([¢, T]). By
minor manipulations with relation (1.1.23) we are led 

, )112, (1.1.24) -~ ~ Ilu(" t 
i,j:l u~ u~,

= Bi(X) ux, u ÷ C(x) ~ dx

+/ F(x,t) udx, O<¢<t<T.

By successively applying (1.1.2) and (1.1.15) to (1.1.24) we are 

1 d
(1.1.25)

where

+#l[)u(’ t , )ll~,~+lIF(’,t)tI~,~’llu(’,t)ll~,~,

0<e<t<T,

#1 =max esssup Ic(x)l, esssup a~(x 

The estimation of the first term on the right-hand side of (1.1.~5) can 

done relying on Young’s inequality with p : q = 2 and ~ = u/#l, whose
use permits us to establish the relation

1 d ~ u

Applying the Poincare-~riedrichs inequality to the second term on the
right-hand side of (1.1.26) yields

d
(1.1.27)

0<e<¢<T,
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where

and c~(~) is the same constant as in (1.1.3).
Let us multiply both sides of (1.1.27) by exp {at} and integrate then

the resulting expression from e to t. Further passage to the limit as e --+ 0-4-
leads to the desired estimate (1.1.20).

T~l,0The second estimate for u E v2 (QT) in question follows directly

from (1.1.20):

(1.1.28)
sUP[o,t] ][u("r) ll2’a < c2(t) (]]a]]~,

O<t<T,

t

where

c~(t) = exp {I a It}.

In the derivation of an alternative estimate we have to integrate rela-
tion (1.1.26) from e to t with respect to t and afterwards pass to the limit
as e -+ 0+. The outcome of this is

(1.1.29)

t

~ II~’,/,~-)ll~,a dr_< ~ II~’(,O)ll~,a
0

sup II u(., ~-)112,~
[o, t]

-4- (#1 -4- ~t sup I1’~( ~-) ~

2v] [o,tI
",

-4- sup II *4, ~)I1=,~
[o, t]

t

x /II F(.,t)ll=,~ dr,
0

O<t<T.

Substituting estimate (1.1.28) into (1.1.29) yields that any weak solution
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u e ~’°(QT) of the direct problem (1.1.12)-(1.1.14)satisfies the estimate

(1.1.30)

where

t t

0<t<T,

c3(t)=ul c2(t) [ l + 2tc2(t)(#l + ~-~ "

The next goal of our studies is to obtain the estimate of II u~(., t) 112, 
for the solutions asserted by Theorem 1.1.6 in the case when t E (0, T].
Before giving further motivations, one thing is worth noting. As stated
in Lemma 1.1.1, under some additional restrictions on the input data any

solution u of the direct problem (1.1.12)-(1.1.14) from I}~’°(QT) belongs 

the space W~:~(a x (¢, T)) for any ~ ¢ (0, T). This, in p~rticu[ar, 
that the derivative ~,(. ,t) belongs to the space L~(~) for any t ~ (¢,T)
and is really continuous with respect to t in the L2(Q)-norm on the segment

Let t be an arbitrary number from the half-open interval (0, T]. Hold-
ing a number e from the interval (0, t) fixed we deduce that there exists 
moment r* ~ [e, t], at which the following relation occurs:

t

(1.1.31) / < =

r* ¢ [<t], 0<e<t ~T.

In this line, it is necessary to recall identity (1.1.22). Since the set 
admissible functions ¯ is dense in the space L~(QT), this identity should
be valid for any ̄  ~ L~(QT). Because of this fact, the equation

(1.1.32) ut(x,t) - (Lu)(x,t) = F(x,t)

is certainly true almost everywhere in Q ~ ~ x (~, t) and implies that

t t

r* ~2 r* ~2

0<c<t_<T,



1.1. Preliminaries

if v* and t were suitably chosen in conformity with (1.1.31).
readily see that (1.1.33) yields the inequality

i,j=l
Aij(x) u~(x,t) u~,(x,t) 

t

r ° f~

i,j=l
Aij(x) %~(x, v*)%,(x, 7") dx

-t-2

t

t

17

One can

With the aid of Young’s inequality (1.1.1) the second term on the right-
hand side of (1.1.34) can be estimated as follows:

(1.1.35)

t

t

1 12 ~ 12)] dx
2(51u, 12+ 7 (lu~ d~-,

where

#1 --~ max ess sup I c(x) I,

and (5 is an arbitrary positive number.

By merely setting (5 = 1/(4#1) we derive from (1.1.34)-(1.1.35) 
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useful inequality

(1.1.36) Ilux( ,t) ll~,~_< ~ Ilu~(.,~*)H =

t

i i+ - l ux dz dr

t

+ - dx dr,
/2

whose development is based on the Poincare-Friedrichs inequality (1.1.3)
and conditions (1.1.15). Having substituted (1.1.31) into (1.1.36) we 
that

where

t t

II ii][ux(’,t) ii~,r ~ _< c4(t) [uxi2dxdr+ 1 F2dxdr
/2

0 ft 0 ~1

O<¢<t<_T,

# 4#~ (1 + c1(~))c,(t) = /2(t-O +
/2

and ~ is an arbitrary positive number from the interval (0, t).
The first term on the right-hand side of the preceding inequality can

be estimated on the basis of (1.1.30) as follows:

(1.1.37)

where

and

II ~( ,t)117,~ -< c~(t)II a I1~,~ + co(t)

t e (0, T],

~(t) = ~c~(t)c,(t)

c6(t ) = /2 -1 -[- 8t 2 C3(t ) C4(t) 

In this context, it is necessary to say that estimates (1.1.20), (1.1.28),
o1(1.1.30) and (1.1.30) hold for any solution u ~ V~’°(Qr) of the direct 

lem (1.1.12)-(1.1.14) provided that the conditions of Theorem 1.1.6 
Lemma 1.1.1 hold.

Differential properties of a solution u ensured by Theorem 1.1.5 are
established in the following assertion.
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Lemma 1.1.2 If, in addition to the premises of Theorem 1.1.5, Ft ~
L2(QT) and a E W~(12), then the solution u(x,t) belongs to C([O,T];
W~(~)), its derivative ut(x, t) belongs to

o
C([0, T], L2(~)) N C([e, T], W~(~)), 0 < ¢ < T.

o1Moreover, ut gives in the space Vz’°(Qr) a solution of the direct problem

(1.1.38)

wt(x,t ) - (Lw)(x,t) = Ft(x,t) 

w(x, O) = (La)(x) + F(x, 

w(z, t) = 

(x, t) E QT 

XEST.

Roughly speaking, Lemma 1.1.2 describes the conditions under which
one can "differentiate" the system (1.1.12)-(1.1.14) with respect to 

Let us consider the system (1.1.38) arguing as in the derivation 
(1.1.20), (1.1.28), (1.1.30) and (1.1.37). All this enables us to deduce 
in the context of Lemma 1.1.2 a solution u of the system (1.1.12)-(1.1.14)
has the estimates

(1.1.39)

(1.1.40)

(1.1.41)

t

, ~)I1~,~ dr ~ c~(t) [11La + r(. ,0)lt~,a

t 2

o

0<t<T,
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(1.1.42)

t

÷ c6(t) II
0

O<t<_T,

where c~, c2(t), c3(t), cs(t) and c6(t) are involved in estimates (1.1.20),
(1.1.28), (1.1.30) and (1.1.37), respectively.

In subsequent chapters we shall need., among other things, some spe-
cial properties of the parabolic equation solutions with nonhomogeneous
boundary conditions. Let a function u E V~’°(QT) be a generalized so-
lution of the direct problem

(1.1.43) ut(x,t ) - (Lu)(x,t) = F(x,t), (x,t) ~ QT 

(1.1.44) u(z,O) = a(x), z ~ [2,

(1.1.45) u(x, t) = b(x, (x, t) ~ s~,

where the operator L is specified by (1.1.15)-(1.1.16), it being understood
that the function u satisfies the integral identity

(1.1.46)

t

0 fl i,j=l

+ / u(x,t)~b(~:,t) dz- / a(x)~(x,O)dx

t

O<t<T,

where ̄  is an arbitrary element of W~’ a(Q~) such that

~(~:, t) = 

for all (z, t) ~ ST.
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Note that we preassumed here that the function b(x,t) can be ex-
tended and defined almost everYwhere in the cylinder 0T. The boundary
condition (1.1.45) means that the boundary value of the function

u(x, t) - b(~, 

is equal to zero on ST. Some differential properties of the boundary traces
of functions from the space W~’~"~(QT) are revealed in Ladyzhenskaya et
al. (1968).

Lemma 1.1.3 If u E W~’~"~(QT) and 2r+ s < 2m- 2/q, then

D7 Df u(.,0) E m- 2r - s - 2/ q(~).

Moreover, if 2r + s < 2m - l/q, then

Wq~,~ - 2r - s - i/q, -~ - r - s/2 - 1/(2q)(sT)"
D[ D~ U]on

In wh~t follows we will show that certain conditions provide the solv-
ability of the direct problem (1.1.43)-(1.1.45) in the space V~’°(QT) 
more detail see Ladyzhenskaya et al. (19~8)).

Theorem 1.1.’~ There e~ists a solution ~, ~ V~ (¢) o~ ~ro~lem (1.1.43)-
(1.1.4~) ~or any ~ ~ ~(~), b ~ W~’~(¢) and ~ ~ ~,~(~), t~is solution
is unique in the indicated class of functions and the stability estimate is
true:

sup 11 u( ̄  ,t) [[~,a + 11 ~ [[~,~T
[0, ~]

To decide for yourself whether solutions to parabolic equations are
positive, a first step is to check the following statement.

Theorem 1.1.8 (Ladyzhenskay~ et M. (1968) or Duvant and Lions (1972))
tel r E ~(~), a ~ ~(a), b ~ W~’I(~) and 

the coefficient C(x) < 0 for x ~ ~ ;

a(x) >0 for x ~ ~;

b(~, t) >_ for (~, t) ~ ;
F(~, t) >_ for (~, t) E ~:r.

1 0Then any solution u ~ V~’ (Qr) of problem (1.1.43)-(1.1.45) satisfies the
inequality u(x, t) >_ 0 almost everywhere in Q,T.
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Our next step is to formulate two assertions revealing this property
in more detail. In preparation for this, we introduce additional notations.
The symbol K(z0, p) is used for a cube of the space ’~ centered at a point
Xo with p on edge. By subrectangles of a rectangle

R = K(Xo, p) × (to - ~p2, 

we shall mean the following sets:

R- = ,r~’(~o, p’) × (to " q p2, to - ~-o p~),
R* = K(zo,p") × (to - vp2,to v2p~),

whereO<p’<p"andO<r0 <rl < r2< ra <r.
Recall that a function u 6 V~’°(Qr) is called a weak supersolution

to the equation ut - Lu = 0 in QT if this function satisfies the inequality

t

i,j=l
o ~

+ f u(~, t) ~(~, t) 

- f u(., 0)~(.:, 0) > 0, O<t<T,

for all bounded functions ¢ from the space 6 W~’~(Qr) such that

¢(~, t) _> o and ¢(~, t) : 0

for all (x, t) ~ ST.

Lemma 1.1.4 (Trudinger (1968)) Let u(x,t) be a weak super’solution to
the equation

u~ - Lu : 0

in R C Q and O < u < M in R. Then

min u( x , t)

where the constant 7 is independent of the function u.
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Lemma 1.1.5 Let all the conditions of Theorem 1.1.8 hold. Then the
l, ~1’°(t3 ~ possesses the following properties:function u E 2 ~’~T J

(1) ~fa(x) ~ 0 in ft, ~h~n u(x,t) > 0 in ft for any t E (0, 
(2) ira(x) =_ 0 in ft and F(x,t) ~ 0 in QT, then u(x,t) > 0 in QT and

u(x, T) > 0 in ft.

1 oProof Let a function v ~ V~’ (Qr) be a generalized solution of the direct
problem

(1.1.47) vt(z,t ) - (Lv)(x,t) = F(z,t),

(1.1.48) v(z, O) = a(z),

(1.1.49) v(x,t) = 

It is clear that the difference

(x, t) ~ QT,

(x,t) ~ sT.

ul(~,t) = ~(~,t)- ,(~,t)

belongs to the space ¢~,0: (Qr) and by Theorem 1.1.8 we obtain for all
(x, t) ~ QT the governing inequality

~,, (x, t) _> 
or, what amounts to the same in

~(~,t) >_ ~(x,t).

The lemma will be proved if we succeed in justifying assertions (1)-(2) 
the function v(x, t) and the system (1.1.47)-(1.1.49) only.

We first choose monotonically nondecre~ing sequences of nonnegative
functions

{F(~)~ ~ F(~) ~ C~(~T)

and
° 2 -{a(~)}~:~, (~) eC (U),

such that F(~) ~ F ~s k ~ ~ almost everywhere in QT and a(~) ~ a 
k ~ ~ ~lmost everywhere in ~. They ~re associated with u sequence of
direct problems

(1.1.50) v[~)(x,t)- (Lv(~))(x,t) = F(~)(x,t), (x,t) e QT,

(1.1.51) v(~)(x, O) = a(~)(x), x ~ ft,

(1.1.52) v(~)(x,t) (x,t) ~ ST.
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Using the results obtained in Ladyzhenskaya et al. (1968), Chapter 4, 
conclude that there exists a unique solution v(k) 6 W2’ I(QT), q > n + 2, 

q

problem (1.1.50)-(1.1.52). Therefore, the function (k) and its derivatives
v(k) satisfy H61der’s condition with respect to x and t in QT. This provides

support for the view, in particular, that v(~) is continuous and bounded
in QT and so the initial and boundary conditions can be understood in a
classical sense. The stability estimate (1.1.20) iml~lies that

(1.1.53) II(v- v(~))(.,t)ll2, < c*(Il a-a(~)II2,a + I IF- F(~)II~,QT) ,

O<t<T.

We proceed to prove item (1). When a(x) ~ in~, we mayassume
without loss of generality that in ~

a(k) ~ 0

for any k 6 N. We have mentioned above that the function v(~) is contin-
uous and bounded in QT. Under these conditions Theorem 1.1.8 yields in

v(~)(x,t) >_ 
From Harnack’s inequality it follows that

v(~)(x,t) 

for any t ~ (0,T], x ~ ft and k ~ N. We begin by placing problem
(1.1.50)-(1.1.52) with regard 

w(x, t) : t) - v(k)(x, 
It is interesting to learn whether w(x,t) > 0 in (~T and, therefore, the

sequence {v(~)}~=1 is monotonically nondecreasing. It is straightforward
to verify this as before. On the other hand, estimate (1.1.53) implies that

for any t ~ (0,T] there exists a subsequence {v(~p)}~=~ such that

as p --~ oo for almost all x 6 ft. Since {v(~)} ~° is monotonically nonde-
p:l

creasing, v(x, t) > 0 for almost all x 6 ~ and any t 6 (0, T].

We proceed to prove item (2). When a(x) ~ in ~ andF(x, t) ~ 0
in QT, we may assume that F(k) ~ 0 in QT for any k 6 N. Arguing as in
item (1) we find that (k) >0 inQT andby Harnack’s ineq uality dedu ce
that v(~)(x, T) > 0 for all x 6 ~. What is more, we establish with the 
of (1.1.53) that v(x, T) > 0 almost everywhere in ft and thereby complete
the proof of Lemma 1.1.5. ¯
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Other ideas in solving nonlinear operator equations of the second kind
are connected with the Birkhoff-Tarsky fixed point principle. This
principle applies equally well to any operator equation in a partially ordered
space. Moreover, in what follows we will disregard metric and topological
characteristics of such spaces.

Let E be a partially ordered space in which any bounded from above
(below) subset D C E has a least upper bound sup D (greatest lower bound
inf D). Every such set D falls in the category of conditionally complete
lattices.

The set of all elements f E E such that a _< f _< b, where a and b
are certain fixed points of E, is called an order segment and is denoted
by [a,b]. An operator A: E H Eissaid to be isotonic if fl _< f2 with

fl, f2 ~ E implies that
AI~ <_ AI2.

The reader may refer to Birkhoff (1967), Lyusternik and Sobolev
(19S2).

Theorem 1.1.9 (Birkhoff-Tarsky) Let E be a conditionally complete lat-
tice. One assumes, in addition, that A is an isotonic operator carrying an
order segment [a, b] C E into itself. Then the operator A can have at least
one fixed point on the segment [a, b].

1.2 The linear inverse problem: recovering a source term

In this section we consider inverse problems of finding a source function
of the parabolic equation (1.1.12). We may attempt the function F in the
form

(1.2.1) F = f(x) h(x, t) + g(x, 

where the functions h and g are given, while the unknown function f is
sought.

Being concerned with the operators L, /3, l, the functions h, g, a, b
and X, and the domain QT we now study in the cylinder QT =-- ~ x (0, T)
the inverse problem of finding a pair of the functions {u, f}, satisfying the
equation

(1.2.2) ut(x,t )- (Lu)(x,t)

= f(x) h(x,t)+g(x,t), (x,t) 
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the initial condition

(1.2.3) .(=, 0) 

the boundary condition

(1.2.4) (Bu)(x,t) = b(z,t),

and the overdetermination condition

(x, t) ¯ sT = oa × [0, T],

(1.2.5) (lu)(x) = X(x), x ¯ f2.

Here the symbol L is used for a linear uniformly elliptic operator, whose
coefficients are independent of t for any x ¯ ~:

(1.2.6)
0

i,j=l

i=1

+ c(x) u(x,t),

- - i u, #_= const > 0.
i=1 i,j=l

The meaning of an operator B built into the boundary condition (1.2.4) 
that

(1.2.7)
either (Bu)(x, -- u(x, t)

Ou(x,t)or (Bu)(x,t) =- aN + ~r(x) u(x,t),

where
Ou _ ~ Aou.j(x,t) cos(n, Ox~)
ON - i,j=l

and n is the external normal to 0f2. Throughout the entire subsection,
we will assume that the function ~ is continuous on the boundary Of 2 and
~r>O.
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The expression for lu from (1.2.5) reduces 

either (lu)(z) =_ u(x,tl), 0 < tl <_ T, 

(1.2.8) T

or (tu)(x) = f ~(x, r)~(r) dr, fl ,
0

if tl is held fixed and w is known in advance.
Although the complete theory could be recast in this case, we confine

ourselves to the homogeneous conditions (1.2.3)-(1.2.4) and the function 
equal to zero in (1.2.2). Indeed, consider the direct problem of recovering
a function v from the relations

vt (x,t)- (Lv) (x,t) = g(x,t), (x,t) E QT,

(1.2.9) v(z,0) a(x), x E ~,

(~v) (~, t) = ~(x, (~, t) 

if the subsidiary information is available on the operators L and B and the
functions g, a and b. While solving problem (1.2.9) one can find a unique
solution v in the corresponding class of functions. Therefore, (1.2.2)-(1.2.5)
and (1.2.9) imply that a pair of the functions {u-v, f) satisfies the equation

(1.2.10) (u- v)t - L(u- v) = f(x)h(x,t), (x,t) 

the initial condition

(1.2.11) (u - v) (x, 0) 

the boundary condition

(1.2.12) [~(~-v)](~,t)=0, (~, t) 

and the overdetermination condition

(1.2.13) [l(u- v)](x) xEf~,

where Xl(x) = X(X) (l v)(x) and v is theunknown function to b e deter-
mined as a solution of the direct problem (1.2.9). This approach leads 
the inverse problem of a suitable type.
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More a detailed exposition is based on the inverse problem with
Dirichlet boundary data corresponding to the first relation (1.2.7). The
overdetermination here will be taken in the integral form associated with
the second relation (1.2.8).

To get an improvement of such an analysis, we set up the inverse prob-
lem of finding a pair of the functions {u, f} satisfying the set of relations

(1.2.14) u,(x,t)- (Lu)(x,t) = f(x) (X,t) 6 QT,

(1.2.15) u(x,o) = x
(1.2.16) u(x,t) = O, (x,t) E ST,

T

(1.2.17) f u(x,v)w(r) dT ~(x), x e ~,
0

where the operator L, the functions h, w, ~p and the domain ~ are given.
A rigorous definition for a solution of the above inverse problem is

presented for later use in

Definition 1.2.1 A pair of the functions {u, f} is said to be a generalized
solution of the inverse problem (1.2.14)-(1.2.17) 

2,1
u 6 W~,o(QT), f 6 L~(~)

and all of the relations (1.2.14)-(1.2.17) occur.

Let us briefly outline our further reasoning. We first derive an oper-
ator equation for the function f in the space L2(fl). Second, we will show
that the equation thus obtained is equivalent, in a certain sense, to the
inverse problem at hand. Just for this reason the main attention will be
paid to the resulting equation. Under such an approach the unique solv-
ability of this equation under certain restrictions on the input data will
be proved and special investigations will justify the validity of Fredholm’s
alternative for it. Because of this, we can be pretty sure that the inverse
problem concerned is of Fredholm’s character, that is, the uniqueness of
the solution implies its existence.

Following the above scheme we are able to derive an operator equation
of the second kind for the function f assuming that the coefficients of the
operator L satisfy conditions (1.1.15)-(1.1.16) 

h, h~ ~ L~o(QT),

(1.2.18)

for

ITf h(x,t)w(t) dt 7_5>0
0

e (5 -- const), n2(0, T).
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By regarding an arbitrary function f from the space L2(fl) to be fixed and
substituting it into equation (1.2.14) we are now in a position on account

W2,1 (g)of Theorem 1.1.5 to find u ¯ ~,0~T) as a unique solution of the direct

problem (1.2.14)-(1.2.16). If this happens, Lemma 1.1.2 guarantees 
the function u in question possesses the extra smoothness:

u(.,t) ¯ C([0, 

and
ut(.,t ) ¯ C([0,T]; L2(~)).

In the light of these properties the intention is to use the linear operator

acting in accordance with the rule

T
1 / ut(z,t)w(t) dt z 

(1.2.19) (A, f)(x) h,(x) ’ ’
0

where
T

h,(x) = h(x,t)w(t) dt
o

Of special interest is a linear operator equation of the second kind for
the function f over the space L2(~):

(1.2.20) f = A1 f + ¢,

where a known function ¢ belongs to the space L2(~).
In the sequel we will assume that the Dirichlet (direct) problem for

the elliptic operator

(1.2.21) (Lv)(x) = O, 

has only a trivial solution unless the contrary is explicitly stated. Possible
examples of the results of this sort were cited in Theorem 1.1.3.

The following proposition provides proper guidelines for establishing
interconnections between the solvability of the inverse problem (1.2.14)-
(1.2.17) and the existence of a solution to equation (1.2.20) and vice versa.
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Theorem 1.2.1 One assumes that the operator L satisfies conditions
(1.1.15)-(1.1.16), h, ht ¯ L~o(QT) and

T

0

for x ¯ ~ (5 =_ const), w ̄  L2(O,T) and

o
¯ w (a) 

Let the Dirichlet problem (1.2.21) have a trivial solution only. If we agree
to consider

T

(1.2.22) ¢(z) ha(x) (L ~)(x), hi (x) -~ h(x , v)w (7") d’r

0

then the following assertions are valid:

(a) if the linear equation (1.2.20) is solvable, then so is the inverse
problem (1.2.14)-(1.2.17);

(b) if there exists a solution {u, f} of the inverse problem (1.2.14)-
(1.2.17), then the function f involved gives a solution to equation
(1.2.20)

Proof We proceed to prove item (a) accepting (1.2.22) to be true 
equation (1.2.20) to have a solution, say f. If we substitute the function 
into (1.2.14), then (1.2.14)-(1.2.16) can be solved as a direct problem. 
account of Theorem 1.1.5 there exists a unique solution u ¯ W~:~(Qr) and
Lemma 1.1.1 gives

u(.,t) C([0, T] ; W~(~)

and
ut(.,t) ¯ C([O,T]; L2(f~))

The assertion will be proved if we succeed in showing that the function
u so constructed satisfies the supplementary overdetermination condition
(1.2.17). By merely setting

T

(1.2.23) / u(x,r)w(r) dv = ~1(~), x 

0
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it makes sense to bear in mind the above properties of the function u, by
means of which we find out that

o

Let us multiply both sides of (1.2.14) by the function ~o(t) and integrate
then the resulting expression with respect to t from 0 to T. After obvious
rearranging we are able to write down

(1.2.24)

T

0

dt - (L~l)(x) = f(x)hl (z), x e 

On the other hand, we must take into account that f is a solution of
(1.2.20), meaning

(1.2.25) hi(x) (A1 f)(x) -- (L~)(x) -- f(x) h, (x), 

From (1.2.24)-(1.2.25) it follows that the function ~ - ~ is just a solution
of the direct stationary boundary value problem for the Laplace operator

(1.2.26) [L(~-~,)](x)--0, xea, (~-~)(x)--0, xEO~,

having only a trivial solution by the assumption imposed at the very begin-
ning. Therefore, ~al = ~, almost everywhere in f~ and the inverse problem
(1.2.14)-(1.2.17) is solvable. Thus, item (a) is completely proved.

Let us examine item (b) assuming that there exists a pair of the
functions {u, f} solving the inverse problem (1.2.14)-(1.2.17). Relation
(1.2.14) implies that

T T

(1.2.27)f f
0 0

= f(x)h,(x),

where h~(x) = f? h(x,r)~(r) 
With the aid of the overdetermination condition (1.2.17) and relation

(1.2.22) one can rewrite (1.2.27) 

(1.2.28)

T

f t)
0

dt + ~p(x) l(x) =f( x) hi (x)

Recalling the definition of the operator A1. (see (1.2.19)) we conclude 
(1.2.28) implies that the function f is a solution to equation (1.2.20),
thereby completing the proof of the theorem. ̄
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The following result states under what sufficient conditions one can
find a unique solution of the inverse problem at hand.

Theorem 1.2.2 Let the operator L comply with (1.1.15)-(1.1.16),
h, ht E L~(QT) and let

T

j h(x,t)~(t)
o

dt >5>0 (5 _= const ),

0

w e L~([0, T]), ~ ~ W~(g~)fl W~(a). One assumes, in addition, that
the Dirichlet problem (1.2.21) has a trivial solution only and the inequality
holds."

(1.2.29) ml < 1,

m2(t) = exp {-at} esssup I h(x,

t

+ / exp {-a(t- r)} esssup~h,(.,v) l 
J
o

~
[i~1 ]1/2)

,~ = m~x ~s~u~ [c(~)~, ~s~u~ ~:(~)

and c~(~) is the constant from the Poincare-Friedrichs inequality (1.1.3).

~’~(~), f e L~(~) of th~ ~n~r~ Then there exists a solution u ~ ~, o
lem (1.2.14)-(1.2.17), this solution is unique in the indicated class of func-
tions and the following estimates are valid with constant c* from (1.1.17):

(1.2.30) II f II~, a <_1 - ml

c* 5-1
(1.2.31) 11 u ]l~)~ _~

1 - T/-/1

T

× o ess~up I h(x, t)12 dr) 
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Proof We begin our proof by considering equation (1.2.20). A case 
point is one useful remark that if (1.2.20) has a solution, then Theorem
1.2.1 will ensure the solvability of the inverse problem concerned.

We are going to show that for the linear operator A1 the estimate

(1.2.32)

is valid with constant ml of the form (1.2.29). Really, (1.2.19) is followed
by

(1.2.33)
0

On the other hand, as f E L2(fl), the system (1.2.14)-(1.2.16) 
out to be of the same type as the system (1.1.12)-(1.1.14), making it 
sible to apply Lemma 1.1.2 and estimate (1.1.39) in the form

where

t [0,

m2(t) = exp {-at} esssup I h(x, 0) 

t

exp {-a (t - r)} ess sup I h,(’, r) dr,

’

and the constant cl(f~) is involved in the Poincare-Friedrichs inequality
(1.1.3). Now the desired estimate (1.2.32) follows directly from the combi-
nation of (1.2.33) and the last inequality.

As ml < 1, the linear equation (1.2.20) has a unique solution with any
function ¢ from the space L=(f~) and, in particular, we might agree with
~ = -L~o/hl, what means that (1.2.22) holds. If so, estimate (1.2.30) 
certainly true. Therefore, Theorem 1.2.1 (see item (a)) implies the existence
of a solution of the inverse problem (1.2.14)-(1.2.17).
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In conclusion it remains to prove the uniqueness for the inverse prob-
lem (1.2.14)-(1.2.17) solution found above. Assume to the contrary 
there were two distinct sets {ul, fl} and {u2, f2}, each of them being a so-
lution of the inverse problem at hand. When this is the case, the function
fl cannot coincide with f2, since their equality would immediately imply
(due to the uniqueness theorem for the direct problem (1.1.12)-(1.1.14))
the equality between ul and u2.

Item (b) of Theorem 1.2.1 yields that either of the functions fl and
f2 gives a solution to equation (1.2.20). However, this disagrees with the
uniqueness of the equation (1.2.20) solution stated before. Just for this
reason the above assumption concerning the nonuniqueness of the inverse
problem (1.2.14)-(1.2.17) solution fails to be true. Now estimate (1.2.31)
is a direct implication of (1.1.17) and (1.2.30), so that we finish the proof
of the theorem. ¯

We now turn our attention to the inverse problem with the final
overdetermination for the parabolic equation

(1.2.34) u~(x,t) - (Lu)(~:,t) = f(x)h(~:,t), (~,t) C QT,
(1.2.35) u(~, O) = x e a,
(1.2.36) u(x,t) = O, (x,t) ST,
(1.2.37) u(x,T) = ~(x), x e a.

In such a setting we have at our disposal the operator L, the functions h
and ~o and the domain QT = f~ x (0, T).

To facilitate understanding, we give a rigorous definition for a solution
of the inverse problem (1.2.34)-(1.2.37).

Definition 1.2.2 A pair of the functions {u, f} is said to be a gener-
alized solution of the inverse problem (1.2.34)-(1.2.37)if u E W~:0~(Q~-),

f ~ L2(~).and all of the relations (1.2.34)-(1.2.37) occur.

We outline briefly further treatment of the inverse problem under
consideration. More a detailed exposition of final overdetermination will
appear in Chapter 4 for the system of Navier-Stokes equations.

Assume that the coefficients of the operator L meet conditions
(1.1.15)-(1.1.16) 

(1.2.38) h, ht~L~(QT), [h(x,T)[>_5>O forx~(~ (5=const).

Under this agreement, the collection of relations (1.2.34)-(1.2.36) can 
treated as a direct problem by taking an arbitrary function f from the space
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Le(f~) and substituting it into equation (1.2.34). According to Theorem
W~’ltr) ~ of the direct problem1.1.5 there exists a unique solution u ¯

(1.2.34)-(1.2.36) with the extra smoothness property:

u(. ,t) ¯ C([0,T];

and
ut(.,t ) ¯ C([0, T]; L;(f~)) 

For further analysis we refer to the linear operator

A2: L~(f~) ~ L2(fl)

acting in accordance with the rule

1
(1.2.39) (A2f)(z) h(x,T) ut (x’T)’

and the linear operator equation of the second kind for the function f over
the space L2(ft):

(1.2.40) f = A~ f + ¢,

where a known function ¢ belongs to the space L~(f~).

Theorem 1.2.3 Let the operator L satisfy conditions (1.1.15)-(1.1.16) and
lath, ht ¯ Loo(QT), [h(x,T)[ >_ 6 > O forx ¯ ~ (6 const), ¢ ¯

o
W~(fl) I3 W~(ft). Assuming that the Dirichlet problem (1.2.21) can have a
trivial solution only, set

1
(1.2.41) ¢(~)- h(x,T) (L~)(~:).

Then the following assertions are valid:

(a) /f the linear equation (1.2.40) is solvable, then so is the inverse
problem (1.2.34)-(1.2.37);

(b) if there exists a solution {u, f} of the inverse problem (1.2.34)-
(1.2.37), then the function f involved gives a solution to the linear
equation (1.2.40).

Theorem 1.2.3 can be proved in the same manner as we carry out the
proof of Theorem 1.2.1 of the present chapter or that of Theorem 4.2.1
from Chapter 4.
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So, the question of the inverse problem solvability is closely connected
with careful analysis of equation (1.2.40) of the second kind. By exactly
the same reasoning as in the case of inequality (1.2.32) we deduce that the
operator A2 admits the estimate

(1.2.42) NA~fN2,~ ~ m3Nf[I2,~, f E L2(f~),

where

rn3= ~I,{exp {-c~ T} essnsup ] h(x, 0)I

T

+ S exp {-°<(:r- ~’)) esssup Itd" ’t) I dr} 
0

~= 2c,(a) ~’ +~’ ’

=max esssup Ic(~)l, esssup[£
~ ~ i=1

and c, (f~) is the constant from the Poincare-Friedrichs inequality (1.1.3).
After that, applying estimate (1.2.42) and the fixed point principle 

the linear operator A~ with the subsequent reference to Theorem 1.2.3 we
obtain an important result.

Theorem 1.2.4 Let the operator L satisfy conditions (1.1.15)-(1.1.16) and
let h, ht ~ Loo(QT), Ih(x,T) l >_ 5 > 0 for x ~ ~ (~ const) and

0

~ ̄  w~(a) r~ w~,(a).

One assumes, in addition, that the Dirichle~ problem (1.2.21) has a trivial
solution only. If the inequality

(1.2.43) m3 < 1

is valid with constant m3 arising from (1.2.42), then there exists a solu-
tion u ~ W~,’01(QT), f ~ L~(~) of the inverse problem (1.2.34)-(1.2.37),
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this solution is unique in the indicated class of functions and the following
estimates

(1.2.44) Ilfll~,~ ~ l_m~--~ll5~ll~,~,

C*~-I

(1.2.45) Ilull~)T _< l_rn---~[[L~[[2, 

T 1/2

are valid with constant c* from (1.1.17).

Theorem 1.2.4 can be proved in a similar way as we did in the proof
of Theorem 1.2.2.

We now present some remarks and examples illustrating the results
obtained.

Remark 1.2.1 In dealing with the Laplace operator

(Lu)(x, -- zX~(x, t) =_

we assume that the function h depending only on t satisfies the conditions

h, h’ e C[0,T] ~(t), ~’(t) _> 0, ~(T) 

Plain calculations give

1
c~- 2c,(~2) and rna = 1-rha,

where
T

0

exp {-c~ (T - t)} dr.

Since rna > 0, the inequality gna < 1 holds true. On the other hand, rha > 0
for an arbitrary function h(t) > 0 with h(T) ¢ 0. Therefore, 0 < rna < 1
for any T > 0 and, in that case, Theorem 1.2.4 turns out to be of global
character and asserts the unique solvability for any T, 0 < T < oo.
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Example 1.2.1 Let us show how one can adapt the Fourier method
of separation of variables in solving inverse problems with the final
overdetermination. With this aim, we now turn to the inverse problem of
recovering the functions u(x) and f(z) from the set of relations

(1.2.46) ut(x,t) = uzx(x,t) + f(x) 0 < x < 7r ,

(1.2.47) u(x,O) = 0 < x < 7r,

(1.2.48) u(O,t) = uOr, ) =O, 0 < t < T,

(1.2.49) u(x, T) = ~(x), 0 < x < 7r,

O<t<T,

keeping ~ E W~(0, 1) with the boundary values

9(0) = = 

It is worth noting here that in complete agreement with Remark 1.2.1 the
inverse problem at hand has a unique solution for any T, 0 < T < cx~.
Following the standard scheme of separating variables with respect to the
system (1.2.46)-(1.2.48) we arrive 

(1.2.50)

t

u(x,t) = E / fk exp {-k2(t - ~-)} dr sin/ca

k=l 0

= E f~ k-~ [1 - exp {-k~t)] sinkx,
k=l

where

2 ] f(x) sinkx dx.

0

: k )k=l areThe system {X~(x) si n kx }~°=l and th e sequence {~k   2 ¢¢
found as the eigenfunctions and the eigenvalues of the Sturm-Liouville
operator associated with the spectral problem

(1.2.51) X~(x) + )~ X(x) = O, 0 < x < ~r, Xa(O) = X~(~r) 

Being a basis for the space L2(0, 7r), the system {sin kx}~=l is orthogonal
and complete in it. In this view, it is reasonable to look for the Fourier
coefficients f~ of the unknown function f with respect to the system
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{sin kz}~=l. Subsequent calculations will be done formally by reasonings
substantiated. Substituting (1.2.50) into (1.2.49) yields

(1.2.52) ~(x) = E fk k-~ (1 - exp {-k ~ T}) sin
k=l

The expansion in the Fourier series of the function ~ with respect to the
basis {sin/cx)~=l is as follows:

Equating the corresponding coefficients we thus have

(1.2.5a) h = k2 (1 - exp {-k2 T}) -1 ~,

thereby justifying that the function f in question can be expressed explic-
itly:

(1.2.54) f(x) = ~ ~ ( 1 - exp {- ~T))-I ~ s in kx.
k=l

On account of (1.2.50) and (1.2.53) we conclude that this procedure works
with another unknown function u. The outcome of this is

(1.2.55) u(x, t) -- (1- e xp{-k2T))-I (1 - e xp 2 t)) ~ sinkx.

The expansion (1.2.54) needs investigation. As far as the underlying or-
thogonal system is complete, ParsevaFs equation takes the form

~ ~ = _fll~,~ ~ : ~(l_¢x~{_~T))-~ 
k=l

Therefore, for the existence of a solution f in the space L2(0, ~) it is nec-
essary to have at your disposal a function ~ such that the series on the
right-hand side of the preceding equality would be convergent. With the
relation

~ ~ (~ ~xp{-~T})-~ < - (~_~p{_T}) -~ ~
k=l k=l
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in view, the convergence of the series in (1.2.54) in the space L2(O, ~r)
depends on how well the Fourier coefficients of the function ~ behave when
k -~ +oc. A similar remark concerns the character of convergence in
(1.2.55). Special investigations of (1.2.54) and (1.2.55) can be conducted
in the framework of the general theory of Fourier series. If, in particular,
W(x) = sinx, then (1.2.54)-(1.2.55) obviously imply 

u(x, t) : (1 - exp {-T})-1 (1 exp {- -t}) -1 sin x,

f(x) = (1 - exp {-T))-I sin 

We would like to give a simple, from a mathematical point of view, ex-
ample illustrating one interesting property of the inverse problem with the
final overdetermination. Theorem 1.2.4, generally speaking, does not guar-
antee any global result for inverse problems of the type (1.2.34)-(1.2.37).
Because the original assumptions include inequality (1.2.43) this theorem
allows us to establish a local result only. However, the forthcoming exam-
ple will demonstrate that the locality here happens to be of the so-cMled
"inverse" character in comparison with that of direct problems. That is
to say, the final observation moment T cannot be made as small (close to
zero) as we like and vice versa the moment T can be taken at any level
exceeding a certain fixed value T* expressed in terms of inpu.t data.

Example 1.2.2 Being concerned with the functions h and ~, we are inter-
ested in the one-dimensional inverse problem for the heat conduction
equation

ut(x,t)=2u~(x,t)+f(x)h(x,t), xe(O, 1), te(O,T),

(1.2.56)
o) = o,

u(O,t) = u(1,t) = 

u(m,T) = W(~), x ~ (0, 1).

Let h(z,t) = t + z and ~ be an arbitrary function with the necessary
smoothness and compatibility. It is required to indicate special cases in
which Theorem 1.2.4 will quarantee the unique solvability of (1.2.56). Di-
rect calculations of rna from (1.2.42) show that

m3 =T-1.

The inverse problem (1.2.56) will meet condition (1.2.43) 

(1.2.57) T > 1.
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So, according to Theorem 1.2.4 the inverse problem (1.2.56) has a unique
solution if the final moment of observation T satisfies (1.2.57). Just this
inequality is aimed to substantiate why the final measurement of the func-
tion u should be taken at any moment T exceeding the fixed value T* = 1.
In the physical language, this is a way of saying that for the unique re-
covery of the coefficient f(x) in solving the inverse problem (1.2.56) in 
framework of Theorem 1.2.4 it should be recommended to avoid the final
measuring "immediately after" the initial (starting) moment of observation
(monitoring).

In the above example we obtain a natural, from our standpoint, result
concerning the character of locality in the inverse problem with the final

overdetermination. Indeed, assume that there exists a certain moment
at which we are able to solve the inverse problem (1.2.56) and thereby
recover uniquely the coefficient f(z) with the use of the final value u(z, ~).
Because the source term f(z)h(z, t) is known, other ideas are connected
with the transition to the related direct problem with the value u(z, ~)
as an initial condition and the determination of the function u(z, t) at any
subsequent moment t > ~. Summarizing, in context of the theory of inverse
problems the principal interest here lies in a possibility to take the moment
~ as small as we like rather than as large as we like.

In subsequent investigations we will establish other sufficient condi-
tions for the unique solvability of the inverse problem with the final overde-
termination. In contrast to Theorem 1.2.4 the results stated below will
guarantee the global existence and uniqueness of the solution.

Among other things, we will be sure that the inverse problem (1.2.56)
has, in fact, a unique solution {u, f} for any T E (0, + o~) (see Theorem
1.3.5 below). However, the success of obtaining this result will depend on
how well we motivate specific properties of the parabolic equation solutions
established in Theorem 1.1.8 and Lemmas 1.1.4-1.1.5.

1.3 The linear inverse problem: the Fredholm solvability

This section places special emphasis on one interesting property of the
inverse problem (1.2.2)-(1.2.5) that is related to its Fredholm character.
A case in point is that the events may happen in which the uniqueness
theorem implies the theorem of the solution existence. We outline further
general scheme by considering the inverse problem (1.2.34)-(1.2.37) 
the final overdetermination. In Theorem 1.2.3 we have proved that the
solvability of this inverse problem follows fi’om that of the operator equation
(1.2.40) of the second kind and vice versa, so there is some reason to 
concerned about this. In subsequent studies the linear operator specified
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by (1.2.39) comes first. This type of situation is covered by the following
assertion.

Theorem 1.3.1 Let the operator L satisfy conditions (1.1.15)-(1.1.16) and
let h, h~ ¯ L~o(QT), [h(x,T)[ >_ 6 > 0 forx ¯ (~ (6 const). Then the
operator A2 is completely continuous on L2(ft).

Proof First of all we describe one feature of the operator A2 emerging from
Lemmas 1.1.1 and 1.1.2. As usual, this amounts to considering an arbitrary
function f from the space L2(12) to be fixed and substituting it into (1.2.34).
Such a trick permits us to demonstrate that the system (1.2.34)-(1.2.36)
is of the same type as the system (1.1.12)-(1.1.14). When solving problem
(1.2.34)-(1.2.36) in the framework of Theorem 1.1.5 one finds in passing 

2~1unique function u ¯ W2,0(Qr) corresponding to the function having been
fixed above. Lemma 1.1.2 implies that

o
u, ¯ C([O,T];L2(~))NC([~,T];W~(f~)), 0<~<T.

Therefore, the operator A2 specified by (1.2.39) acts, in fact, from L~(f~)
o

into W~(~).

In the estimation of A~(f) in the W~(f~)-norm we make use of in-
equality (1.1.42) taking in terms of the system (1.2.34)-(1.2.36) the 

(1.3.1) II ut~(.,T) I}~,n _~ cs(T) [[[/h(.,0)[[~,n

T

0

where c5 and c~ are the same as in (1.1.42) and do not depend on 
Combination of relations (1.2.39) and (1.3.1) gives the estimate

(1.3.2)

where

C7 ~

T

Note that estimate (1.3.2) is valid for any function f from the space L2(~)
and the constant c~ is independent of f.
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As can readily be observed, estimate (1.3.2) may be of help in es-
tablishing that the linear operator A2 is completely continuous on L2(f~).
Indeed, let ~3 be a bounded set of the space L2(~). By virtue of the prolJ-
erties of the operator A2 and estimate (1.3.2) the set A2(:D) belongs 

o o

W~(~) and is bounded in W~(f~). In that case Rellich’s theorem (Theo-
rem 1.1.2) implies that the set A2(~D) is compact in the space L~(~t). 
doing any bounded set of the space L~(~) is mapped onto a set which 
compact in L~(fl). By definition, the operator A~ is completely continuous
on L2(~) and the theorem is proved. 

Corollary 1.3.1 Under the conditions of Theorem 1.3.1 the following Fred-
holm alternative is valid for equation (1.2.40): either a solution to equation
(1.2.40) exists and is unique for any function ¢ from the space L2(~) 
the homogeneous equation

(1.3.3) f = A2 f

can have a nontrivial solution.

The result cited above states, in particular, that if the homogeneous
equation (1.3.3) has a trivial solution only, then equation (1.2.40) is 
quely solvable for any ~b E L2(~). In other words, Corollary 1.3.1 asserts
that for (1.2.40) the uniqueness theorem implies the existence one. With
regard to the inverse problem (1.2.34)-(1.2.37) we establish the following
theorem.

Theorem 1.3.2 Let the operator L satisfy conditions (1.1.15)-(1.1.16) and
let h, ht ~ L~(QT), [ h(x, T)[ >_ 5 > 0 for x ~ ~ (5 --- const ),

o

r3

If the Dirichlet problem (1.2.21) has a trivial solution only, then the follow-
ing assertions are valid:

(a) if the linear homogeneous equation (1.3.3) has a trivial solution
only, then there exists a solution of the inverse problem (1.2.34)-
(1.2.37) and this solution is unique in the indicated class of rune-
lions;

(b) if the uniqueness theorem holds for the inverse problem (1.2.34)-
(1.2.37), then there exists a solution of the inverse problem (1.2.34)-
(1.2.37) and this solution is unique in the indicated class off unc-
tions.
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Proof We proceed to prove item (a). Let (1.3.3) have a trivial solution
only. By Corollary 1.3.1 there exists a solution to the nonhomogeneous
equation (1.2.40) for any ¢ L2(Q) (and, in particular, for ¢ of the f orm
(1.2.41)) and this solution is unique. The existence of the inverse problem
(1.2.34)-(1.2.37) solution follows now from Theorem 1.2.3 and it remains
to show only its uniqueness. Assume to the contrary that there were two
distinct solutions {ul, fl} and {u2, f2) of the inverse problem (1.2.34)-
(1.2.37). It is clear that fl cannot be equal to f2, since their coincidence
would immediately imply the equality between ul and u~ by the uniqueness
theorem for the direct problem of the type (1.2.34)-(1.2.36). According 
item (b) of Theorem 1.2.3 the function fl - f2 is just a nontrivial solution
to the homogeneous equation (1.3.3). But this disagrees with the initial
assumption. Thus, item (a) is completely proved.

We proceed to examine item (b). Let the uniqueness theorem hold
for the the inverse problem (1.2.34)-(1.2.37). This means that the homo-
geneous inverse problem

(1.3.4) ut(x, t) - (Lu)(x, t) = f(x) (x, t) ¯ QT,

(1.3.5) u(x,O) = x

(1.3.6) u(x,t) = 0, (x,t) ¯ ST,

(1.3.7) u(x,T) = x ¯

might have a trivial solution only. Obviously, the homogeneous equation
(1.3.3) is associated with the inverse problem (1.3.4)-(1.3.7) in the 
work of Theorem 1.2.3.

Let us show that (1.3.3) can have a trivial solution only. On the
contrary, let f ¯ L2(~) be a nontrivial solution to (1.3.3). Substituting
f into (1.3.4) and solving the direct problem (1.3.4)-(1.3.6) by appeal 
Theorem 1.1.5, we can recover a function u ¯ W~:01(Qr) with the extra
smoothness property indicated in Lemma 1.1.2. It is straightforward to
verify that the function u satisfies also the overdetermination condition
(1.3.7) by a simple observation that equation (1.3.4) implies 

ut(x, T) - (Lu)(x, T) -= f(x) T), ( x, t ) ¯ 

On the other hand, the function f is subject to relation (1.3.3), that is,

h(x,T)(A2 f)(z) = f(x) h(x,T), 

From definition (1.2.39) of the operator A2, two preceding relations 
combination with the boundary condition (1.3.6) it follows that the function
u(x, T) solves the Dirichlet problem

L[u(x,T)] =0, x¯f~; u(x,T)=O, x¯~;
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which possesses only a trivial solution under the conditions of the theorem.
Therefore, u(x,T) = 0 for z E ~ and the pair {u, f} thus obtained is
just a nontrivial solution of the inverse problem (1.3.4)-(1.3.7). But 
contradicts one of the conditions of item (b) concerning the uniqueness
theorem. Thus, the very assumption about the existence of a nontrivial
solution to the homogeneous equation (1.3.3) fails to be true. Finally,
equation (1.3.3) can have a trivial solution only and the assertion of item
(b) follows from the assertion of item (a). Thus, we arrive at the statement
of the theorem. ¯

The result thus obtained gives a hint that the inverse problem with
the final overdetermination is of the Fredholm character. Before placing
the corresponding alternative, we are going to show that within the frame-
work of proving the Fredholm solvability it is possible to get rid of the
triviality of the Dirichlet problem (1.2.21) solution. In preparation for this,
one should "shift" the spectrum of the operator L. This is acceptable if
we assume that conditions (1.1.15)-(1.1.16) are still valid for the operator
L. Under this agreement there always exists a real number A such that the
stationary problem

(1.3.8) LX(x) AX(z) -- 0, 

has a trivial solution only. Via the transform

u(x,t) = exp {-At} v(x,t)

we establish that the inverse problem (1.2.34)-(1.2.37) is equivalent to 
following one:

(1.3.9) vt(x,t ) - (Lv)(x,t) - Av(z,t)

= f(x) exp{At}h(x,t), (x,t)~QT

(1.3.10) v(x,O) = x ~ ~,

(1.3.11) v(x,t) = (x,t) 
(1.3.12) v(x,T) = exp {AT) ~(x), x e ~.

Arguing as in specifying the operator A2 we refer to a linear operator with
the values

(1.3.13) (~2 f)(xj exp {-AT}
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and consider the related linear equation of the second kind

(1.3.14) f= .~f÷3, where ~(x)- 
h(x, T) [(L~)(x) + A~(x)] 

For the inverse problem (1.3.9)-(1.3.12) and equation (1.3.14) 
possible to obtain a similar result as in Theorem 1.2.3 without the need for
the triviality of the unique solution of the corresponding stationary direct
problem (1.3.8). The well-founded choice of the parameter A assures 
of the validity of this property. By analogy with Theorem 1.3.1 the linear
operator ~2 turns out to be compact. By exactly the same reasoning as in
Theorem 1.3.2 we introduce a preliminary lemma.

Lemma 1.3.1 Let the operator L satisfy conditions (1.1.15)-(1.1.16) and
lel h, h~ E L~(QT), I h(x,T)I >_ 5 > 0 for x ~ (~ (5 =_ const) and

o

e
Then the following assertions are valid:

(a) if Ihe linear equalion f = ~2 f has a lrivial solution only, ihere
exists a solution of Zhe inverse problem (1.3.9)-(1.3.12) and this
solution is unique in Zhe indicated class of functions;

(b) ff the uniqueness theorem holds for lhe inverse problem (1.3.9)-
(1.3.12), there exis¢s a solution of ¢he inverse problem (1.3.9)-
(1.3.12) and Zhis soluZion is unique in ihe indicated class of func-
tions.

It is worth emph~izing once again that the inverse problems (1.2.34)-
. ~

(1.2.37) and (1.3.9)-(1.3.12) are eqmvalent to each other from the 
point of existence and uniqueness. With this equivalence in view, Lemma
1.3.1 permits us to prove the assertion of Theorem 1.3.2 once we get rid
of the triviality of the inverse problem (1.2.21) solution after the appro-
priate "shift" of the spectrum of the operator L. This profound result is
formulated below as an alternative.

Theorem 1.3.3 Let the operator L satisfy conditions (1.1.15)-(1.1.16) and
let h, ht ~ L~(QT), ]h(x,T) ] >_ 5 > 0 for x ~ ~ (5 const ) and

o

w (a) 
Then the following alternative is true: either a solution of the inverse prob-
lem (1.2.34)-(1.2.37) exists and is unique or the homogeneous inverse prob-
lem (1.3.4)-(1.3.7) has a nontrivial solution.

In other words, this assertion says that under a certain smoothness
of input data (see Theorem 1.3.3) of the inverse problem with the final
overdetermination the uniqueness theorem implies the existence one.



1.3. The linear inverse problem: the Fredholm solvability 47

Remark 1.3.1 A similar alternative remains valid for the inverse problem
of recovering the source function coefficient in the general setting (1.2.2)-
(1.2.5) (see Prilepko and Kostin (19923)).

We now raise the question of the solvability of the inverse problem
(1.2.34)-(1.2.37) with the final overdetermination in HSlder’s classes.

Definition 1.3.1 A pair of the functions {u, f} is said to be a classical
solution of the inverse problem (1.2.34)-(1.2.37) if u ~ C2+~’1+~/2(QT),
f ~ C~(~) and all of the relations (1.2.34)-(1.2.37) occur.

In subsequent arguments the boundary cOf~ happens to be of class
C~+~, 0 < a < 1, and the coefficients of the uniformly elliptic operator L
.from (1.1.15) meet the smoothness requirements

(1.3.15) Aij, ~_ Aq, Bi, C ~ C’~((~).
c~xj

Also, the compatibility conditions

(1.3.16)

are imposed. By the way, the second relation is fulfilled if, for example,
~o ~ C~+~(~) and h(x, 0) = 0 for all x ~ 

The study of the inverse problem (1.2.34)-(1.2.37) in HSlder’s classes
can be carried out in just the same way as we did in the consideration of
Sobolev’s spaces. In this line, we obtain the following result.

Theorem 1.3.4 Let the operator L satisfy conditions (1.1.15) and (1.3.8)
and let h, ht ~ C~,~/~(QT), [h(x,T) [ >_ 5 > 0 for x ~ ~ (5 const),
~o ~ C2+~(~). Under the compatibility conditions (1.3.16) the following

alternative is true: either a solution in the sense of Definition 1.3.1 of the
inverse problem (1.2.34)-(1.2.37) exists and is unique or the homogeneous
inverse problem (1.3.4)-(1.3.7) has a nontrivial solution.

We should focus the reader’s attention on one principal case where
one can prove the global theorem of uniqueness (and hence of existence)
for the inverse problem with the final overdetermination. Along with the
~ssumptions of Theorem 1.3.4 we require that

(1.3.17) h(x,t), ht(z,t ) > 0 for (z,t) ~ QT, C(x) < O, o~ ~ ~.

Returning to the homogeneous inverse problem (1.3.4)-(1.3.7) we assume
that there exists a nontrivial solution

f e
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in which the function f involved cannot be identically equal to zero, since
otherwise the uniqueness theorem related to the direct problem for para-
bolic equations would immediately imply the same property for the function
~t.

It is customary to introduce the well-established representation for
the function f

(1.3.18) f(~) = f+ (~) - f- 

where

and

f+(x) = max {0, f(x))

f- (x) = max (0,-f(x)}.

Let us substitute into the system (1.3.4) in place of f, first, the func-
tion f+ and, second, the function f-. When solving the direct problem
(1.3.4)-(1:3.6) in either of these cases, we denote by ul and u2 the solutions
of (1.3.4)-(1.3.6) with the right-hand sides f+(x)h(x,t) and f-(x)h(x,t),
respectively. Via the transform f = f+ - f- we deduce by the linearity of
the operator L and the uniqueness of the solution of (1.3.4)-(1.3.6) 

(1.3.19) u(x,t) = ul(x,t) - u2(x,t), (~,t) 

In addition to (1.3.4)-(1.3.6), the function u also satisfies (1.3.7).
With this relation in view, we deduce from (1.3.7) and (1.3.19) 

(1.3.20) ~(~,t) = u2(~,t) _-- ~(~), 

where the function # is introduced as a common notation for the final values
of the functions ul and u=. This provides reason enough for decision-making
that several relations take place for i = 1, 2:

(1.3.21) (ui)t(x,t) - (Lui)(x,t) = f±(z) h(x,t), 
(1.3.22) ~i(~,O)=O,
(1.3.23) ui(z,t) = O, (x,t)

In addition to the conditions imposed above, the solutions of (1.3.21)-
(1.3.23) must satisfy (1.3.20).

It is clear that the functions f+ and f- cannot be identically equal
to zero simultaneously. In this context, it is of interest three possible cases.
Special investigations will be done separately.
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Case 1. Let f+(x) ~ and f- (x) =_0. Inthat cas e u2(x,t) =_ O i
QT and (1.3.20) implies that

(1.3.24) u~(x,T) = O 

On the other hand, since f+(z)h(x,t) > 0 and f+h ~ 0 in QT, on account
of Lemma 1.1.5 for z E gt we would have u~(x,T) > 0, violating (1.3.24).
For this reason case 1 must be excluded from further consideration.

Case 2. Let f- (z) ¢ 0 and f+ (x) --- 0. By the linearity of the homo-
geneous inverse problem (1.3.4)-(1.3.7) that case reduces to the preceding.

Case 3. Suppose that f+ and f- both are not identically equal to
zero. Observe that the functions vi = (ui)t, i = 1, 2, give solutions of the
direct problems

(1.3.25) (vi)t(x,t)- (Lvi)(x,t) = f~:(x) ht(x,t), 

(1.3.26) vi(x,O)= f+(x)h(x,O), xGf~,

(1.3.27) vi(x,t)=0, (x,t)~ST,

and in so doing the relations

(1.3.28) vi(x,T)=(L#)(x)+f=l:(x)h(z,T), i=1,2,

occur. Let h and ht belong to the space Ca, aI2(QT). Then by the
Newton-Leibniz formula we can write

T

fit: (x) h(x, T) = f~ (x) h(z, O) + / t (z, t ) d
0

With this relation established, one can verify that the right-hand side of
equation (1.3.25) and the right-hand side of the initial condition (1.3.26)
are not identically equal to zero simultaneously. Indeed, let

f+(x) h(x,O) = 0

and
=- o

simultaneously. Then the Newton-Leibniz formula implies that

f=l: (x) h(x, T) 
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in f~. However, neither f+ nor f- is identically equal to zero. Then
h(x, T) = 0 in f~, violating one of the conditions of the theorem [ h(x, T) I 
5>0.

After this remark we can apply Lemma 1.1.5 to the system (1.3.25)-
(1.3.27) to derive the inequality

vi(z,T ) > 0, x E gt, i = 1,2.

Let x0 E ~ be a maximum point of the function #. Then (L#)(xo) <_ and,
in view of (1.3.28), the inequality f±(xo) > should bevalid. Therefore,

f+(xo) f-(xo) 

which is not consistent with the fact that f+(x)f-(x) = 0 for x ~ f~.
The contradiction obtained shows that the assumptibn about the existence
of a nontrivial solution of the inverse problem (1.3.4)-(1.3.7) fails to 
true and, therefore, the homogeneous inverse problem (1.3.4)-(1.3.7) 
a trivial solution only. By virtue of the alternative from Theorem 1.3.4
another conclusion can be drawn concerning the solvability of the inverse
problem under consideration.

Theorem 1.3.5 Let the operator L satisfy conditions (1.1.15) and (1.3.15)
and let the coefficient C(x) ~_ 0 for x ~ fL One assumes, in addition,
that h, ht ~ Ca, c~/2(QT), h(x,t) >_ 0 and ht(x,t ) >_ 0 for (x,t)
h(x,T) >_ 5 > O for x E (~ -- const ), ~ C2+~(~). Under the compat-
ibility conditions (1.3.16) the inverse problem (1.2.34)-(1.2.37) possesses a
solution

u ~ C~+~’I+~/~(QT), f ~ C~(~)

and this solution is unique in the indicated class of functions.

Recall how we pursued a detailed exploration of the initial inverse
problem (1.2.2)-(1.2.5) in Sobolev’s spaces (see Definition 1.2.2) by relating
the values r and p as

r=2 for p = cx~,

2p
(1.3.29) r - for p ~ (2,

p-2 ’

r=o~ for p=2.

As we have mentioned above, the question of the uniqueness of the inverse
problem (1.2.2)-(1.2.4) solution is equivalent to decision-making whether
the corresponding homogeneous inverse problem with g = b = 0 in QT and
a = ~, = 0 in ~t possesses a trivial solution only. In the case of the Dirichlet
boundary data and the final overdetermination the answer to the latter is
provided by the following proposition.
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Theorem 1.3.6 Let the operator L satisfy conditions (1.1.15)-(1.1.16) and
let the coefficient C(x) <_ 0 for x 6 f~. One assumes, in addition, that 
ht ~ L~,~(QT), h(x,T) > 0 for x ~ ~2; h(x,t) >_ 0 and ) >_ 0 f or

2,1(x,t) QT. Suppose that a pair of thefunctions u ~ W2,o(QT) and f ~
Lp(f~) with r and p related by (1.2.39) gives a solution of the homogeneous
inverse problem (1.3.4)-(1.3.7). Then u = 0 and f = 0 almost everywhere
in QT and f~, respectively.

Proof On the contrary, let f ~f 0 and u ~f 0. As before, it is customary to
introduce the new functions

f+(x) = max{O, f(x)}

and
f-(x) = max{0,-f(x)}.

Then, obviously, f+ 6 Lv(f~ ) and hf ~, h, f± ~ L~(QT). When solving
the direct problems (1.3.21)-(1.3.23) with the right-hand sides h f+ 
h f-, respectively, as in Theorem 1.3.5, the functions ul and u2 emerge
as their unique solutions. Via the transform f = f+ - f- we deduce by
the linearity of the operator L and the uniqueness of the direct problem
solution (compare (1.3.4)-(1.3.6) and (1.3.21)-(1.3.23)) that u 
Since the function u satisfies the condition of the final overdetermination
(1.3.7), the values of the functions u~ and u2 coincide at the final moment
t=T:

u~(x,T) : u~(x,T) = #(x),

where # is a known function. Due to the differential properties of the
direct problem solution (see Lemma 1.1.2) the function # belongs to the

o

class W~(f~)~W~(f~). From such reasoning it seems clear that the functions
f+ and f- cannot be identically equal to zero in f~ simultaneously. In this
context, it is necessary to analyze three possible cases separately.

Case 1. Let f+(x) ~ and f- (x) =_ in f~. T hen u2(x,t) = 0 almost
everywhere in QT and f(x) = f+(x), u(x,t) = ul(x,t). Consequently,
u~(x,T) = almost everywhere inf~. On the other hand, it f oll ows from
Lemma 1.1.5 that u~(x,T) > 0 in f~ if we deal in QT with f+h >_ 0 and
f-h 7~ O. The obtained contradiction shows that case 1 must be excluded
from further consideration.

Case 2. Let f+(x) = 0 and f-(x) 7~ in f~. By t he line arity and
homogeneity of the inverse problem (1.3.4)-(1.3.7) that case reduces to 
preceding.

Case 3. Assume that f+(x) 7~ and f- (x) ¢ 0 in QT.Applying
Lemma 1.1.5 to the system (1.3.25)-(1.3.27) yields

(1.3.30) ui(~:,T) = #(x) > 0, ¢ e f~, i = 1,2.
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along with

u, e C([0,T];

(ui)t C([0,T];

52

In complete agreement with Lemma 1.1.2 the functions

vi(x,t ) -- (ui)t(x,t), i = 1, 2,

belong to ~/~’°(QT) and the following relations

(1.3.31) (vi)t(x,t) - (Lvi)(x,t) = f±(x)ht(x,t), 

(1.3.32) vi(x, O)

(1.3.33) vi(x,t ) = O, (x,t) 

are valid in the sense of the corresponding integral identity.
Before we undertake the proof with the aid of Lemma 1.1.5, let us

observe that the functions f±h(x, 0) and f±ht(x,t) can never be identi-
cally equal to zero once at a time. Indeed, assume to the contrary that
f±h(x,O) -- 0 and f±ht(x,t ) =_ 0 simultaneously. Then the Newton-
Leibniz formula gives

T

f+ (x) h(x, T) = f± (x) h(x, O) ÷ f t (x, t ) d

o

yielding
f± (x) h(x, = 0

over f~. However, by requirement,

f+

and
f-S0.

This provides support for the view that h(x, T) _-- 0, x ¯ ~, which disagrees
with h(x, T) > 

In accordance with what has been said, Lemma 1.1.5 is needed to
derive the inequality

(1.3.34) (ui)t(x,T) =_ vi(x,T ) > O, x ¯ ~, i = 1, 2.

On the other hand, Lemma 1.1.2 implies that
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Having stipulated these conditions, equation (1.3.21) leads to the relations

(1.3.35) (ui)t(x,T) - (L#)(x) f+ (x) h(x,T), x Ef t, i = 1, 2.

Here we used Mso that the values of ul and u2 coincide at the moment
t = T and were denoted by #.

When L# ~ 0 in ft, it follows from (1.3.30) and Corollary 1.1.2 that
there exists a measurable set ~’ C f~ such that

mesn ~’ > 0

and

(1.3.36) (n#)(m) < O, x e 

By assumption, h(x,T) > 0. In view of this, relations (1.3.35)-(1.3.36)
imply that f+(x) > 0 and f-(x) > 0 in fY. But this contradicts 
ft the identity f+ . f- = 0, valid for the functions f+ and f- of such
constructions.

For the case L# -= 0 relation (1.3.35) can be rewritten 

(1.3.37) (ui)t(x,T) f+ (x) h( x,T), x ~f t, i 1, 2.

Therefore, relations (1.3.34) and (1.3.37) imply that again f+ > 0 
f- > 0 in ~. As stated above, this disagrees with constructions of the
functions f+ and f-. Thus, all possible cases have been exhausted and the
theorem is completely proved. ¯

Remark 1.3.2 A similar uniqueness theorem is still valid for the inverse
problem of recovering the source term coefficient in the general statement
(1.2.2)-(1.2.5) (see Prilepko and Kostin (1992a)).

Theorems 1.3.3 and 1.3.6 imply immediately the unique solvability of
the inverse problem (1.2.34)-(1.2.37). We quote this result for the inverse
problem (1.2.2)-(1.2.5) in a common setting.

Theorem 1.3.7 Let the operator L satisfy conditions (1.1.15)-(1.1.16) and
the coefficient C(m) >_ 0 for x E f~. One assumes, in addition, lhat 
ht~ Loo(QT), ~ e C(Oft), = O,a =_ O, b =_ O, w ~L2([ 0,T]), X G W~(~
and (/3X)(0e) form~ 0~.Also, let h( m,t)>_ 0 and ht( ) >_0 almost
everywhere in QT; or(x) >_ 0 for m ~ Oft; w(t) > 0 almost everywhere on
(0, T) and [l(h)](x) >_ 5 > 0 for x ~ ~ const ). Then the inverse prob-
lem has a solution e f C2(ft), this solution
is unique in the indicated class of functions and the estimate

(~)

is true, where the constant c is expressed only in terms of the input data
and does not depend on u and f.
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1.4 The nonlinear coefficient inverse problem:
recovering a coefficient depending on x

In this section we study the inverse problem of finding a coefficient at the
function u involved in the equations of parabolic type.

Let us consider the inverse problem of recovering a pair of the func-
tions (u, f} from the equation

(1.4.1) ut(x,t ) -(Lu)(x,t)

= f(x) u(x,t)+g(x,t), (x,t) 6 QT=_~x 

the initial condition

(1.4.2) u(x,O) = x ~ ~,

the boundary condition

(1.4.3) u(z,t) = b(z,t), (z,t) ~ ST,

and the condition of final overdetermination

(1.4.4) u(x, T) = ~(x), 

Here we have at our disposal the operator L, the functions g, b and ~ and
the domain ~.

The linear operator L is supposed to be uniformly elliptic subject to
conditions (1.1.15)-(1.1.16). In what follows we will use the notation

and

E =

E_ : { f(x) 6 E: f(x) <_ O, x 6 

Definition 1.4.1 A pair of the functions {u, f} is said to be a solution of
the inverse problem (1.4.1)-(1.4.4) if u ~ W~’I(Qr), f ~ E_ and all of the
relations (1.4.1)-(1.4.4) take place.

Recall that, in general, the boundary condition function b is defined on
the entire cylinder QT. The boundary condition (1.4.3) is to be understood
in the sense that the function u - b vanishes on ST.
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One can readily see that the present inverse problem of recovering the
coefficient is nonlinear. This is due to the fact that the linear differential
equation contains a product of two unknown functions. As a first step
towards the solution of this problem, it is necessary to raise the question
of the solution uniqueness. Assume that there were two distinct pairs
of functions ul, fl and us, fs, solving the inverse problem (1.4.1)-(1.4.4)
simultaneously. Note that fl cannot coincide with fs, since otherwise the
same would be valid for the functions ul and us due to the direct problem
uniqueness theorem with regard to (1.4.1)-(1.4.3). Since the functions
v = ul - u2 and f = f~ - f2 give the solutions of the inverse problem

(1.4.5) vt(x,t) - (Lv)(x,t) - f~(x)v(x,t)
=

(1.4.6) ~(~, 0) = 
(1.4.7) v(x,t) = (x,t) e ST,
(1.4.8) v(x,T) = x

the way of proving the uniqueness for the nonlinear coefficient inverse prob-
lem (1.4.1)-(1.4.4) amounts to making a decision whether the linear inverse
problem (1.4.5)-(1.4.6) has a trivial solution only.

In what follows we will assume that the coefficient C(z) of the operator
L satisfies the inequality C(m) <_ 0 in f~ and

(1.4.9)
g,g~L~(QT); g~O gt>_O in QT;

b, btEW~’~(Qr); b>_O bt>_O on ST.

With these assumptions, joint use of Theorem 1.1.8 and Lemma 1.1.5
permits us to deduce that us(x,t) >_ 0 and (u~)t(x,t) >_ inQT,and
us(x, T) >~0 in f~. This provides support for the view that the linear in-
verse problem (1.4.5)-(1.4.8) of finding a pair of the functions {v, f} is of
the same type as (1.3.4)-(1.3.7). Applying Theorem 1.3.6 yields that v 
and f = 0 almost everywhere in QT and f~, respectively. Summarizing, we
obtain the following result.

Theorem 1.4.1 Let the operator L satisfy conditions (1.1.15)-(1.1.16) and
let the coefficient C(x) <_ 0 in fL One assumes, in addition, that condition
(1.4.9) ho~ds for the functions ~ and ~. The~ the inverse problem (1.4.1)-
(1.4.4) can have at most one solution.
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In this regard, the question of the solution existence for the nonlinear
inverse problem (1.4.1)-(1.4.4) arises naturally. We begin by deriving 
operator equation of the second kind for the coefficient f keeping

(1.4.10)
g, b, gt E W2’a(QT p

~(x)_>6>0 in 

, p_>n+l; L~6E;

b(x,O):O for x

By relating a function f from E to be fixed we substitute it into equation
(1.4.1). The well-known results of Ladyzhenskaya and Uraltseva (1968)
guide the proper choice of the function u as a unique solution of the direct
problem (1.4.1)-(1.4.3). It will be convenient to refer to the nonlinear
operator

A: E~-*E

with the values

1
(1.4.11) (Af)(x) [ut(x,T)-(L~)(x)-g(x,T)],

and consider over E the operator equation of the second kind associated
with the function f:

(1.4.12) f = At.

We will prove that the solvability of equation (1.4.12) implies that of the
inverse problem (1.4.1)-(1.4.4).

Lemma 1.4.1 Let the operator L satisfy conditions (1.1.15)-(1.1.16), the
coefficient C(x) <_ 0 for x ~ f~ and condition (1.4.10) hold. Also, let the
compatibility condition

b(x, T) = ~(~)

be fulfilled for x ~ Of L One assumes, in addition, that equation (1.4.12)
admits a solution lying within E_. Then there exists a solution of the
inverse problem (1.4.1)-(1.4.4).

Proof By assumption, equation (1.4.12) has a solution lying within E_,
say f. Substitution f into (1.4.1) helps find u as a solution of the direct
problem (1.4.1)-(1.4.3) for which there is no difficulty to establish 

ut ~ Wv l(Qr) , ut(.,T) ~ and (Lu)(. T) (see Ladyzhenskaya and
Uraltseva (1968)). We will show that the function u so defined satisfies
also the overdetermination condition (1.4.4). In preparation for this, set

= x e a.
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By the construction of the function u,

(1.4.13) u~(x, T) - (Lg~l)(x) g(x, T) f(x ) ~1 (x

On the other hand, the function f being a solution to equation (1.4.12)
provides

(1.4.14) ~(x) (gf)(x) = f(x) 

After subtracting (1.4.13) from (1.4.14) we conclude that the function 
satisfies the equation

(1.4.15) [L(~-9~)](x)+ f(x)(9~-~l)=O, 

Combination of the boundary condition (1.4.3) and the compatibility con-
dition gives

(1.4.16) (9 - ~l)(x) = 0, x e cOf~.

As C(z) _~ 0 in ~ and f E E_, the stationary direct problem (1.4.15)-
(1.4.16) has only a trivial solution due to Theorem 1.1.3. Therefore, the
function u satisfies the final overdetermination condition (1.4.4) and the
inverse problem (1.4.1)-(1.4.4) is solvable, thereby completing the proof 
the lemma. ̄

As we have already mentioned, the Birkhoff-Tarsky theorem is much
applicable in solving nonlinear operator equations. A key role in developing
this approach is to check whether the operator A is isotonic.

Lemma 1.4.2 Let the operator L satisfy conditions (1.1.15)-(1.1.16), the
coeJ:ficient C(x) <_ 0 in ~, conditions (1.4.10) hold, g(x, t) >_ 0 and gt(x, >_
0 in QT. If, in addition, the compatibility conditions

b(x,T) =- ~(x) and ,0) = g( x, O)

are fulfilled for any x ~ 0~, then A is an isotonic operator on E_.

Proof First of all we stress that E_ is a conditionally complete lattice.
Let fl and f2 be arbitrary elements of E_ with fl _< f2. One trick we
have encountered is to substitute fl and f2 both into equation (1.4.1) with
further passage to the corresponding direct problems for i = 1, 2:

(1.4.17) u~(z, t) - ( Lu’) (x, 

= f~(x)ui(x,t)+g(x,t), (x,t)~QT,

(1.4.18) u’(x, O)

(1.4.19) ui(x,t) = b(x,t), (x,t)
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In this regard, the conditions of the lemma assure that the function wi -- ut
presents a solution of the direct problem

(1.4.2o) w~(x, t) - (L~o~)(x, 
= f~(x) wi(x,t)+gt(x,t), (x,t)¯QT,

(1.4.21) w~(x,O) = g(x,O), x ¯ ~,

(1.4.22) wi(x,t) = b~(x,t), (x,t) ¯ ST.

Being solutions of (1.4.17)-(1.4.19), the functions v 2 - u1 andh =

f2 - fl are subject to the set of relations:

(1.4.23) vt(x,t) - (Lv)(x,t) -f~(x)v(x,t)

= h(x)ul(~,t), (~,t) ̄  Q~,
(1.4.24) v(x,O) = O, x ̄
(1.4.25) v(x,t) = (x,t)
Just now it is necessary to keep in mind that fl < f2. On ~ccount of
Theorem 1.1.8 and Lemma 1.1.5 the systems (2.4.17)-(2.4.19) and (2.4.20)-
(2.4.22) provide that h(x) u~(x,t) > 0 and h(x) u~(x,t) >_ for (x,t) ¯ QT
Once again, appealing to Theorem 1.1.8 and Lemma 1.1.5, we deduce that
vt(x,T ) > 0 in f2. By definition (1.4.11) of the operator A, Af~ < Aft,
what means that A is isotonic on E_. This proves the assertion of the
lemma. ¯

We now turn to a common setting and proving the principal global
result concerning the unique solvability of the inverse problem at hand.

Theorem 1.4.2 Let the operator L satisfy conditions (1.1.15)-(1.1.16) and
the coefficient C(x) < 0 in f2. Let g, b, t W̄~’~(Qr), p > n+l; g(x,t) > 
and gt(x,t ) >_ 0 for (x,t) ¯ QT; L~ ̄  E; ~(x) >_ ~ > 0 in f2 -- const).
Also, we lake for granted the compatibility conditions

~(~, o) = o,
and require that

(1.4.26)

b(x,7"):99(x) and b,(x,O)=g(x,O) for 

L[~°(x, T) ~(~)] _<o, x ~̄,

where u° refers to a solution of problem (1.4.1)-(1.4.3) with f --- O. Then
~,~(Q~), f the inverse problem (1.4.1)-(1.4.4) has a solution u ¯ Wp

and this solution is unique in the indicated class of functions.
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Proof First we are going to show that on E_ there exists an order segment
which is mapped by the operator A onto itself. Indeed, it follows from the
foregoing that (1.4.26) implies the inequality

1 L[uO(x,T)_~(x) ] <0 ce~
(1.4.27) A(0) -= - ’ ’

and, consequently,
A: E_ ~-~ E_.

Let us take a constant M from the bound
1

(1.4.28) M >_ P-~ [(L~)(x) g(x, T)], x e f~.

By definition (1.4.10) of the operator 
1

(1.4.29) A(-M)=- ~(x) [ut(x’T)-(L~)(x)-g(x’T)]’ 

where u is a solution of the system (1.4.1)-(1.4.3) with constant -M stand-
ing in place of the coefficient f.

Before giving further motivations, let us recall that the coefficients of
the operator L do not depend on t. For the same reason as before, the

function ut gives a solution from ~’°(Qr) of the direct problem

wt - Lw = -Mw + gt , (x, t) QT,

w(x, 0) = 9(x, x e n,
¯ w(x,t) = b,(x,t), sT,

whence by Theorem 1.1.8 and Lemma 1.1.5 it follows that in ~

u,(¢,T) = w(x,T) >_ 

Thus, (1.4.28)-(1.4.29) imply the inequality

(1.4.30) A(-M) >_ -M.

Because of (1.4.27) and (1.4.30), the operator A being isotonic carries 
order segment

[-M, 0] ={I~E_: -M <f<0}

of the conditionally complete and partially ordered set E_ into itself. By
the Birkhoff-Tarsky theorem (Theorem 1.1.9) the operator A has at least
one fixed point in [-M, 0] C E_ and, therefore, equation (1.4.11) is solvable
on E_. In conformity with Lernma 1.4.1 the inverse problem (1.4.1)-(1.4.4)
has a solution. The uniqueness of this solution follows immediately from
Theorem 1.4.1 and thereby completes the proof of the theorem. ¯

Remark 1.4.1 A similar theorem of existence and uniqueness is valid for
the case where the boundary condition is prescribed in the general form
(1.2.4) (see Prilepko and Kostin (1992b)).
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1.5 The linear inverse problem: recovering the evolution
of a source term

This section is devoted to inverse problems of recovering the coefficients
depending on t. The main idea behind method here is to reduce the inverse
problem to a certain integral equation of the Volterra type resulting in
global theorems of existence and uniqueness. We consider the two types
of overdetermination: pointwise and integral. In the case of a pointwise
overdetermination the subsidiary information is the value of the function
u at a point zo of the domain f~ at every moment within the segment
[0, T]. In another case the function u is measured by a sensor making a
certain averaging over the domain fL From a mathematical point of view
the result of such measurements can be expressed in the form of integral
overdetermination. We begin by placing the problem statement for the
latter case.

Being concerned with the functions g, w and 9, we study in the cylin-
der (~T = f~ X (0, T) the inverse problem of finding a pair of the functions
{u, f} from the equation

(1.5.1) ut(x,t )-Au(x,t)= f(t)g(x,t), (x,t) EQT,

the initial condition

(1.5.2) u(x,O)= x E ~,

the boundary condition

(1.5.3) u(x,t) = 

and the condition of integral overdetermination

(1.5.4) J u(x,t)~(x) dx = ~(t), t ~ [O,T].

A rigorous definition for a solution of this inverse problem is presented
below.

Definition 1.5.1 A pair of the functions {u, f} is said to be a gener-
2,1alized solution of the inverse problem (1.5.1)-(1.5.4) if u ~ W2,0(Qr),

f ~ L~(0, T) and all of the relations (1.5.1)-(1.5.4) occur.
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In what follows we agree to consider

(1.5.5)

o

g e C([O,T],L2(~)) , w e W~(~)N W~(~), ~ e 

Jg(x, dx g* =_const >0 for 0<t <T.t) CO(X)

The first goal of our studies is to derive a linear second kind equation
of the Volterra type for the coefficient f over the space L2(O,T). The
well-founded choice of a function f from the space L2(0, T) may be of help
in achieving this aim. Substitution into (1.5.1) motivates that the system

2,1(1.5.1)-(1.5.3) serves as a basis for finding the function u E W2,o(Qr) as 
unique solution of ~he direct problem (1.5.1)-(1.5.3). The correspondence
between f and u may be viewed as one possible way of specifying the linear
operator

A: L~(O,T) ~-~ L2(O,T)

with the values

(1.5.6)

where

1 / u(x,t)ACO(z) (Af)(t) = g~ 

gl(t) = g(x,t)w(x) dx.

In this view, it is reasonable to refer to the linear equation of the
second kind for the function f over the space L;(0, T):

(1.5.7) f --- A f + ¢,

where ¢(t) = ~’(t) g~(t).

Theorem 1.5.1 Let the input data of the inverse problem (1.5.1)-(1.5.4)
satisfy (1.5.5). Then the following assertions are valid:

(at) if the inverse problem (1.5.1)-(1.5.4) is solvable, then so is equation
(1.5.7);

(b) if equation (1.5.7) possesses a solution and the compatibility con-
dition

(1.5.8) ~o(0) = 

holds, then there exists a solution of the inverse problem (1.5.1)-
(1.5.4).
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Proof We proceed to prove item (a) . assuming that the inverse problem
(1.5.1)-(1.5.4) is solvable. We denote its solution by {u, f}. Multiplying
both sides of (1.5.1) by the function w(x) scalarly in L2(~) we establish
the relation

d / u(x,t)w(x)dx + / u(x,t) A~(x,t)dt
(1.5.9) 

= I(t) / t) 

Because of (1.5.4) and (1.5.6), it follows from (1.5.9) that Af+ ~o’/gl.
But this means that f solves equation (1.5.7).

We proceed to prove item (b). By the original assumption equation
(1.5.7) has a solution in the space L~(O,T), say f. When inserting this
function in (1.5.1), the resulting relations (1.5.1)-(1.5.3) can be treated 
a direct problem having a unique solution u

In this line, it remains to show that the function u satisfies also the
integral overdetermination (1.5.4). Indeed, (1.5.1) yields

(1.5.10)
-~d ~ u(x,t)~(x) dx + / u(x,t)Aw(x,t) dt = f(t)gl(t).

On the other hand, being a solution to equation (1.5.7), the function u 
subject t6 the relation

(1.5.11) ~’(t) + j u(x, t) Aw(x, t) dt = f(t) 

After subtracting (1.5.11) from (1.5.10) we finally 

d / u(x,t)w(x) dx ~’(t) 
dt

Integrating the preceding differential equation and taking into account the
compatibility condition (1.5.8), we find out that the function u satisfies the
overdetermination condition (1.5.4) and the pair of the functions {u, f} 
just a solution of the inverse problem (1.5.1)-(1.5.4). This completes 
proof of the theorem. ̄

Before considering details, it will be sensible to touch upon the prop-
erties of the operator A. In what follows the symbol A~ (s = 1, 2,... ) refers
to the sth degree of the operator A.
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Lemma 1.5.1 Let condition (1.5.5) hold. Then there exists a positive
integer So for which A~° is a contracting operator in L2(0, T).

Proof Obviously, (1.5.6) yields the estimate

1
(1.5.12) II m/ll2’(°’t) 

Multiplying both sides of (1.5.1) by u scalarly in L2(~) and integrating 
resulting expressions by parts, we arrive at the identity

1 d
t

2 dt Ilu(’’t)]l~’a+llu~(’’ )ll2,a=jf(t)g(x,t)u(x,t)dx, 

and, subsequently, the inequality

d
d-~ llu(.,t) ll~,a <_llf(t)g(.,t)ll2,a , 0<t<T.

In this line,

(1.5.13)

t

sup II g(’, t)I1~, ~ / f(v) ldr,II ~(" ,t)I1~,~ -< II ~(’, O)II~,a + IO,TI
0

0<t<T.

Since u(x, 0) = 0, relations (1.5.12) and (1.5.13) are followed by the 
mate

(1.5.14) IIAfll~,(o,0_< ~ (llfll2,(o,T))~dw , 0<t<Y,
0

where

~ = g-~-IlzX~lE,~ sup llg(,~-)ll~,~.
[0, T]

It is worth noting here that # does not depend on t.
It is evident that for any positive integer s the sth degree of the

operator A can be defined in a natural way. In view of this, estimate
(1.5.14) via the mathematical induction gives

(1.5.15) IIA*fll2,(O,T) < Itfil~,(0,T), s = 1, 2,
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It follows from the foregoing that there exists a positive integer s = so such
that

(1.5.16) ~2so
s0!

< 1.

This provides support for the view that the linear operator As° is a con-
tracting mapping on L2(0, T) and completes the proof of the lemma. 

Regarding the unique solvability of the inverse problem concerned,
the following result could be useful.

Theorem 1.5.2 Let (1.5.5) and the compatibility condition (1.5.8) hold.
Then the following assertions are valid:

(a) a solution {u, f} of the inverse problem (1.5.1)-(1.5.4) exists and
is unique;

(b) with any initial iteration fo E L2(O, T) the successive approxima-
tions

(1.5.17) f~+l = ~f~, n = 0, 1, 2, ... ,

converge to f in the n2(0, T)-norm (for ~ see (1.5.18) below).

Proof We have occasion to use the nonlinear operator

,~: L2(0,T) H L2(0,T)

acting in accordance with the rule

(1.5.18) _~f = A I + -- ,

where the operator A and the function 91 arise from (1.5.6). From (1.5.18)
it follows that equation (1.5.7) can be recast 

(1.5.19) f = ~f.

To prove the solvability of (1.5.19) it is sufficient to show that ~ has
a fixed point in the space L2(0, T). With the aid of the relations

~tsfl _ ~sf~ = ASfl _ A~f2 = As (fl - f2)



1.5. The linear inverse problem: recovering evolution 65

we deduce from estimate (1.5.15) that

where So has been fixed in (1.5.16). By virtue of (1.5.16) and (1.5.20) 
turns out that .~o is a contracting mapping on L2(0, T). Therefore, 
has a unique fixed point f in L~(0, T) and the successive approximations
(1.5.17) converge to f in the L2(0, T)-norm without concern for how 
initial iteration f0 E L~(0, T) will be chosen.

’Just for this reason equation (1.5.19) and, in turn, equation (1.5.7)
have a unique solution f in L~(O,T). According to Theorem 1.5.1, this
confirms the existence of the inverse problem (1.5.1)-(1.5.4) solution. 
remains to prove the uniqueness of this solution. Assume to the contrary
that there were two distinct solutions {ul, f~ } and {u~, f~) of the inverse
problem under consideration. We claim that in that case f~ ¢ f2 almost
everywhere on [0, T]. Indeed, if fl -- f2, then applying the uniqueness
theorem to the corresponding direct problem (1.5.1)-(1.5.3) we would 
u~ = u~ almost everywhere in QT.

Since both pairs satisfy identity (1.5.9), the functions fl and f2 give
two distinct solutions to equation (1.5.19). But this contradicts the unique-
ness of the solution to equation (1.5.19) just established and proves the
theorem. ¯

Corollary 1.5.1 Under the conditions of Theorem 1.5.2 a solution to equa-
tion (1.5.7) can be expanded in a series

(1.5.21) f = ¢ + E A~¢
S----1

and the estimate

(1.5.22)

is valid with

II fll~,<O,T)~ PlI¢II~,<O,T>

~-~ ~ T~/~
tO = (8 I)112 "
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Proof The successive approximations (1.5.17) with f0 = ¢ verify that

(1.5.23) f,~ = ~f,~+l =

The passage to the limit as n --~ o~ in (1.5.23) leads to (1.5.21), since, 
Theorem 1.5.2,

Being concerned with A~ satisfying (1.5.12) we get the estimate

1[ f ll2,(0,r)

By D~Alambert ra~io test ~he series on ~he righ~-hand side conver~es,
~hereby completing ~he proof of ~he ~heorem.

As an illustration to the result obtained, we will consider the inverse
problem for the one-dimensional heat equation and find the corresponding
solution in the explicit form.

Example 1.5.1 We are exploring the inverse problem of finding a pair of
the functions {u, f} from the set of relations

(1.5.24) ut (x, t) = u~x(x, t) + F(x, (x, t) E (0, ~r) x (0, 

(1.5.25) u(x, 0)= x E [0, ~r],

(1.5.26) u(O,t) = u(r,t) t ~ (0, T],

(1.5.27) ~f u(x,t) sin x.dx -- ~(t), t ~ [0,T],
0

where

(1.5.28) F(x,t) = f(t) sinz, ~(t) = 

In trying to solve it we employ the Fourier method of separation of variables
with regard to the system (1.5.24)-(1.5.26), making it possible to derive
the formula

t

t) / k(T) exp -- T)} sin(1.5.29) U(X~

k=t 0
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where
rr

_2 I F(a~, r) sin kx dx Fk(¢) 
0

Because of (1.5.28) and (1.5.29), the function F is representable 

t

(1.5.30) u(x,t) = / f(r) exp {-(t- dr sin 32.

0

Substituting (1.5.30) into (1.5.24) and taking into account the overdetermi-
nation condition (1.5.27), we derive the second integral Volterra equation 
the type (1.5.7). In principle, our subsequent arguments do follow the gen-
eral scheme outlined above. However, in this particular case it is possible to
perform plain calculations by more simpler reasonings. Upon substituting
(1.5.30) into (1.5.27) we obtain the integral Volterra equation of the first
kind for the function f

t

(1.5.31) ~= ~ f(r) exp{-(t-r)} 

0

Here we used also that ~(t) = t in view of (1.5.28). In order to solve
equation (1.5.31) one can apply the well-known integral transform

(1.5.32) ](p) = f exp {-pt} f(t) dr,

0

where the function ](p) of one complex variable is termed the Laplace
transform of the original function f(t). The symbol ÷ is used to indicate
the identity between f(t) and ](p) in the sense of the Laplace transform.
Within this notation, (1.5.32) becomes

f(t) 

Direct calculations by formula (1.5.32) show, for example, that

1
(1.5.33) exp {-t} + -- t" ÷ n = 0, 1, 2,

p+ 1 ’ pn+l .....

With a convolution of two functions one associates

t

/ g(t + f(p)(1
0
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where f(t)+ ](p) and g(t)+[~(p). The outcome of taking the Laplace trans-
form of both sides of (1.5.31) and using (1.5.34) is the algebraic equation
for the function ](p):

1 ._ rr 1
(1.5.35)

V2 ~ ] V +----~ ,

giving

(1.5.36)

On the basis of (1.5.33) and (1.5.36) it is possible to recover the original
function f(t) as follows:

2 (1 + t)
(1.5.37) f(t) = "

Then formula (1.5.30) immediately gives the function

(1.5.38) u(x,t) = 2_ si nx.
71-

From such reasoning it seems clear that the pair of functions (1.5.37)-
(1.5.38) is just a solution of the inverse problem (1.5.24)-(1.5.27). 
this solution was found by formal evaluation. However, due to the unique-
ness theorems established above there are no solutions other than the pair

(1.5.37)-(1.5.38).
We now turn our attention to the inverse problem of recovering a

source term in the case of a pointwise overdetermination.
Assume that there exists a perfect sensor responsible for making mea-

surements of exact values of the function u at a certain interior point x0 ¯ ~
at any moment within the segment [0, T]. As a matter of fact, the pointwise
overdetermination U(Xo, t) = ~(t), [0, T], of agivenfuncti on ~ arises
in the statement of the inverse problem of finding a pair of the functions
{u, f}, satisfying the equation

(1.5.39) ut(x,t ) - Au(x,t) = f(t)g(x,t), (x,t) 

the initial condition

(1.5.40) u(x,O) = 0, x ¯ ~,
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the boundary condition

(1.5.41) u(x,t) (~, t) ST,

and the condition of pointwise overdetermination

(1.5.42) u(xo, t) = p(t), t E [0, T],

when the functions g and ~ are known in advance.
We outline here only the general approach to solving this inverse prob-

lem. Having no opportunity to touch upon this topic we address the readers
to Prilepko and Soloviev (1987a).

We are still in the framework of the Fourier method of separating
variables with respect to the system of relations (1.5.39)-(1.5.41), whose
use permits us to establish the expansion

(1.5.43)

t

k=l 0

where

g~(r)= IIx~ll~,a g(~,r)X~(~:) dT

X C<:)and {~, ~}~=1 are the eigenvalues and the eigenfunctions of the Laplace

operator emerging from the Sturm-Liouville problem (1.2.51). By inserting
(1.5.43) in (1.5.42) we get a linear integral Volterra equation of the first
kind

(1.5.44)

t

p(t) = E / f(r)g~(r)exp {-,~(t- V)} dr Xk(xo).
k=l 0

Assuming the functions ~ and g to be sufficiently smooth and accepting
Ig(~0,t) l _> g* > 0, t e [0,:r], we can differentiate both sides of (1.5.44)
with respect to t, leading to the integral Volterra equation of the sec-
ond kind

(1.5.45)

t

f(t) = / K(t,r) f(r) dr + 
0
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where

_ ~’(t)¢(t) g(xo,t) 

1 oo
K(t, r) =g(xo, t-~--~ E "~k gk(r) exp {-,~(t - r)} X~(xo) 

k=l

As can readily be observed, the solvability of the inverse problem
(1.5.39)-(1.5.42) follows from that of equation (1.5.45) if the compatibility
condition ~(0) = 0 was imposed (see a similar result in Theorem 1.5.1). 
existence and uniqueness of the solution to the Volterra equation (1.5.45),
in turn, can be established in the usual way. The above framework may be
useful in obtaining a unique global solution of the inverse problem (1.5.39)-
(1.5.42).

As an illustration of our approach we consider the following problem.

Example 1.5.2 It is required to recover a pair of the functions {u, f}
from the set of relations

(1.5.46)
(1.5.47)
(1.5.48)

(1.5.49)

ut(x,t ) = ux~(x,t) + f(t) sinx,

,~(x, O) = 
~,(o, t) = ,,(~, t) 

u g,t =t,

(~, t) e (0, ~) × (o, 

t c (O,T]

Now equation (1.5.44) becomes

(1.5.50)

t

t = / f(r) exp {-(t- r)} dr.
0

Because of its form, the same procedure works as does for equation (1.5.31).
Therefore, the functions f(t) = 1 + and u(x, t) = t sin x gi vethe desir
solution.

In concluding this chapter we note that the approach and results of
this section carry out to the differential operators L of rather complicated
and general form (1.1.8).



Chapter 2

Inverse Problems for Equations

of Hyperbolic Type

2.1 Inverse problems for x-hyperbolic systems

Quite often, mathematical models for applied problems arising in natural
sciences lead to hyperbolic systems of partial differential equations of the
first order. This is especially true of hydrodynamics and aerodynamics.
One more important case of such hyperbolic systems is connected with the
system of Maxwell equations capable of describing electromagnetic fields.
Until now the most profound research was devoted to systems of equations
with two independent variables associated with one-dimensional models
which do not cover fully the diversity of problems arising time and again
in theory and practice. The situation becomes much more complicated in
the case of multidimensional problems for which careful analysis requires
a somewhat different technique. Moreover, the scientists were confronted
with rather difficult ways of setting up and treating them on the same
footing. Because of these and some other reasons choosing the most com-
plete posing of several ones that are at the disposal of the scientists is
regarded as one of the basic problems in this field. On the other hand,
a one-dimensionM problem can serve, as a rule, as a powerful tool for

71
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establishing the basic pattern and features of the behavior of solutions of
hyperbolic systems. Some of them are of general character and remain valid
for solutions of multidimensional problems. Adopting the arguments just
mentioned it would be reasonable to restrict yourself to the study of linear
hyperbolic systems of partial differential equations with two independent
variables.

With this aim, we consider the system of the first order linear
equations with two independent variables x, t E R:

(2.1.1) A(x,t) 
Ou

~ + B(x,t) + C(x, t) --F(x, t)--~ ,

where

and

~,= u(x,t) = (ul(x,t),...

r(x,t) = (rl(x,t),..

are vectors, A(x, t), B(x, t) and C(x, t) are n x n-matrices for any 
and t. The matrix A is assumed to be invertible and the matrix A-1B can
always be diagonalized. Any such system is said to be x-hyperbolic.

Let a matrix T reduce A-IB to a diagonal matrix K, that is, K
T-I(A-~B)T. Substituting u = Tv and multiplying (2.1.1) by the ma-
trix T-1A-1 from the left yields the canonical form of the x-hyperbolic
system

(2.1.2)
Ov Ov

O--~ + Ii -~ + Dv = G ,

where

D = T-~ OT
OT

~ + T-~A-IB -~

G = T-~A-IF.

+ T-1A-~CT,

In what follows we will always assume that any x-hyperbolic sys-
tem under consideration admits the canonical form (2.1.2). Under such 
formalization the method of integrating along the corresponding charac-
teristics will be adopted as a basic technique for investigating the system
(2.1.2) in solving inverse problems.

In order to understand nature a little better, we introduce as prelim-
inaries the auxiliary inverse problem in which it is required to find a pair
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of the functions vl, v= ̄  C1([0, L] x [0, +c~]) and a pair of the functions
Pl, P2 ̄  C[0, L], satisfying the system of relations

Ovl(x,t) °v~(x’t)-v2(~,t)+p~(x), 0<x<L t>0,
Ot + Ox ’ -

Ov~(x,t) Ov~(x,t) _ v,(x,t) + p~(x) 0 < x 
t > O,(2.1.3) 0~ 0x ’ ’ -

v~(x,o) = ~l(x), v~(x,o) = o < x < L,

v~(L,t) = ¢l(x), v~(O,t) = t_>O.

In the general case a solution of problem (2.1.3) is not obliged to be unique.
In this connection, we should raise the question of imposing additional
restrictions if we want to ensure the uniqueness of a solution of the inverse
problem under consideration.

There are various ways of taking care of these restrictions. For exam-
ple, the conditions for the exponential growth of the derivatives of the
functions v~ and v~ with respect to t, meaning

(2.1.4)
Ov~(x,t)

< M1 exp {a~t},
Ov~(x,t)

~t
_< M~. exp {a~t},

fall within the category of such restrictions. One succeeds in showing that
under a sufficiently small value L conditions (2.1.4) guarantee not only
the uniqueness, but also the existence of a solution of the inverse problem
(2.1.3). This type of situation is covered by the following assertion.

Theorem 2.1.1 Let ~, ~2, ¢~ and ¢~ be continuously differentiable func-
tions such that ~I(L) = ¢1(0) and ~,~(0) = ¢~(0). One assumes, in addi-
tion, that there are positive constants a and M such that for any t >_ 0

I ¢~1 (t) < M exp {at}

and
I¢;(t) l _< Mexp{a~}.

Then there exists a value Lo = Lo(a) > 0 such that for any L < Lo the
inverse problem (2.1.3) has a solution in the class of functions satisfying
estimates (2.1.4). Moreover, there exists a value L~ = L~(a~) > 0 such that
for any L~ < L the inverse problem (2.1.3) can have at most one solution
in the class of functions for which estimates (2.1.4) are true.
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Theorem 2.1.1 follows from one more general theorem to be proved
below. Here we only note that the value L1 decreases with increasing
al. This property is of special interest and needs investigation. Accepting
T1 = 0, T2 = 0, ¢1 = 0 and ¢2 = 0 we say that the nontrivial solutions vl
and v2 of the system (2.1.3) corresponding to certain Pl and P2 constitute
the eigenfunctions of the inverse problem (2.1.3). The meaning 
existence of eigenfunctions of this inverse problem is that its solution is not
unique there. Some of them can be found by the well-established method
of separation of variables. Let

t

Pi(X) exp {a t) dr i = 1, 2, a e(2.1.5) t) R.

0

By separating variables we get the system coming from problem (2.1.3) and
complementing later discussions:

p’l(Z) apl(x) = p2(x) , 0 < x 

followed by

pl(L) = O, p2(O) 

f p~’+(1-a~)p~=O, i= 1,2, O<x<L,
(2.1.6)

pl(L) = O, p2(O) 

For the purposes of the present chapter we have occasion to use the function
arecos (X

(2.i.7) L*(a) 1, a = 1,

log(~+~-a2) ~> 1
~_ ~2 ’ ’

One can readily see that problem (2.1.6) with L = L*(a) possesses
the nontrivial solution

. sin (~x) - v/~-a = cos (~~

sin(~.), ]c~1<1,

ct>l,



2.1. Inverse problems for x-hyperbolic systems 75

With these relations in view, we can specify by formulae (2.1.5) the eigen-
functions of the inverse problem (2.1.3).

The function L* (a) is monotonically decreasing on the semi-axis (-1,
+ e~) and takes the following limiting values:

lim L*(ct) = +eo, lira L*(a) -- 0.
c~-~- i+0 c~-~ +oo

From such reasqning it seems clear that for any L > 0 the inverse problem
(2.1.3) has the eigenfunctions of exponential type ct > -1. Due to this fact
another conclusion can be drawn that if the exponential type c~ > -1 is
held fixed and L > L* (ct), then a solution of the inverse problem turns out
to be nonunique in the class of functions of this exponential type.

Returning to the x-hyperbolic system in the general statement (2.1.2)
we assume now that the function G is representable by

(2.1.8)

where an n x n-matrix H(x, t) is known, while the unknown vector function
p is sought. Under the approved form (2.1.2), we restrict ourselves to the
case where det K 7~ 0. Assume also that the eigenvalues kl,..., k~ of
the matrix K are bounded and continuously differentiable in the domain
{0<x<L, t_>0}. In addition, let ki<Ofor l<i<sandletki>Ofor
s<i<_n(O<s<n).

With these ingredients, we may set up the inverse problem of finding
a pair of the functions

v(x,t) e 1,

which must satisfy relations (2.1.2
mentary conditions

p(x) ~ 

and (2.1.8) together with the supple-

(2.1.9) {v(~,o) = ~,(~), o < x 
vi(O,t ) = ¢i(t), t>_O, l<i<s,

vi(L,t)=¢i(t), t>_O, s<i<_n.

Given a vector v = (xl,... , v.) ~ ’~, t he norm on t hat space is defined
by

II v ll = ma~

The ~sociated operator ~’~ ,~o,~ II A II of an ,~ x ,~-matri× A is spec-
ified by

IIAII-- sup IIA~II.
II ~’ II-- ~-
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When providing the uniqueness of a solution, we should restrict our-
selves to the class of functions being of great importance in the sequel and
satisfying the condition of exponential growth like

(E) II v,(x,t)II -< c exp

The following theorem is the precise formulation of one profound result.
\

Theorem 2.1.2 Let D, H, OD/cOt and OH/Or be continuous functions.
One assumes, in addition, that K and ~ are continuously differentiable and

I1 o II 5 M, O~/Ot ~ M, O~/Ot ~ M, OK~Or ~ M, II ~ II ~ ~,

II ~’(t)II ~ aexp {at}

and
I det H(~,0) I ~ 7 > 

with certain constants M, a, ~, fl and 7. Then there exist constants b,
c and Lo > 0 such that for L < Lo and any continuously differentiable
function ~ satisfying the compatibility conditions

~(o) = ~,~(o), ~ < i < ,,

and
~(~) = ~(0), ~ < i 

t~¢ i,~¢~ ~o~¢~ (~.~.~), (U.l.8), (u.l.9) ~ a ~o~io~ i~ ~ ~la~, of
functions satisfying condition (E).

Proof A key role in the current proof is played by the characteristic
ri(~; x, t) satisfying the system

(~.1.~0) ~ = ~(~’ ~)’

~(z; z,t) = t 

and passing through a point (x, t). Because of the representation

d~ ~ Ovi

we can integrate each component of (2.1.2). The outcome of this 

(2.1.11) v~(x,t) = ~i(~(x,t)) + ~ (-Dv + Hp)~ 
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where
0, l<i<s,Tdx,t) = r~(~;x,t), ~ = L, , < {_< 

Putting these together with (2.1.9) we arrive at the relations

(2.1.12) 7~(x,t) - %bi(Ti(x,O)) = j (-Dv + Hp)~ 
c~i

which should be rearranged for the new functions

w~(~,t) = -57 v~(~,t).

As a final result we get

(2.1.13)
t

v~(,,t) = ~’i(x) + f w~(*, 
0

By differentiating (2.1.11) and (2.1.12) with respect to t and x, respectively,
and involving (2.1.13) we derive the system of equations

(2.1.14) ~(x,,) ,~i(~,t) + / (I~’1 ,v), de
ai

+ (_t;~ ~)~ dr d~ + (z~’3 p)~ 
ai 0 ai

(2.1.15) (H(x,O)p(x))i = ~i(x) + j (~l 

ai

a i 0 o~i

related to the new variables

,~(~,t) W~(Ti(x,t)) -Y+
at o-5-~(e) de,

o~i j:l
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(/£’l)ij (X, t, ~) = Dij (~, i (~; x, t )) - ~( "

(~’2)i~. (x, t, ~) -~- (~, T~(~; x,t))( .

cO H i j , C9"ri
(Ka)ij (x, t, () = ~ ((, ~-i(~; x, t)) --~-((; 

~,(x) = OT~(~, o),(~)- ~(~(~, o)) 

- ~ D~ (~, O) ~ (x)
j=l

(~),~ (x, ~) : -Dis (~, r~(~; x, Ori((; x, O
Ox ’

OD~s (~, rd~; x, 0)) c%-~(#; z, O)

oH,~ (¢, ,~(¢; ~, 0)) o~(¢; ,, 0)(~’3)~ (x, ¢) at o~

It is worth noting here two useful expressions for the derivatives

5-2 if; ~,t) = -~(~,t) -~- if, ~(~; ~, t)) d~ 

}o-T (¢;~,t)= exp -bT (¢, ~(¢; x, t)) 

Under the conditions of the theorem the functions (I)i, ~i, 1 _< i _< 
are really continuous and the matrices K~, K:, Kz, ~’~, ~e and ~a are

continuous and bounded in complete agreement with a simple observation
that the inequalities
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assure us of the validity of the estimates

~-x -< 3 exp {M L}, ~ _< exp{ML} .

Most substantial is the fact that the system of the integral equations
(2.1.14)-(2.1.15) in the class w 6 C, p 6 C is equivalent (within the 
stitution formulae) to the inverse problem (2.1.2), (2.1.8), (2.1.9).

Let f~ be a half-strip {(x,t): 0 < x < L, t >_ 0}. The symbol C(f~) 
used for the space of all pairs of functions

’P -~ (W, p) -~ (Wl, . , Wn,/91,... , ~)n),

whose components wi, 1 < i < n, are defined and continuous on the half-
strip f~ and Pi, 1 < i < n, are defined and continuous on the segment [0, L].
It will be sensible to introduce in the space C(V~) the system of semlnorms

pr(r) : max
O<i<n
O<x<L
O<t<T

{ max{I wi(x,t)l, Ipi(x)I}}

and the operator A acting in accordance with the rule

~=(~,~) : Ar: A(w,p),

where the components of a vector t~ are defined by the last three terms in
(2.1.14) and ~5 is a result of applying the matrix H(x, 0)-~ to a vector, the
components of which are defined by the last three terms in (2.1.15). Also,
we initiate the construction of the vector

r0 = ((I)1,... ,~n,lI/1,... ~ = H(x,0) -1 ~,

by means of which the system of the integral equations (2.1.14)-(2.1.15)
can be recast as

(2.1.16) r = r0 + At.

The Neumann series may be of help in solving the preceding equation
by introducing

oo
(2.1.17) r = ~ Ak r0.

k=0

In the current situation the derivation of some estimates, making it possible
to establish the convergence of (2.1.17) and showing that the sum of the
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series in (2.1.17) solves equation (2.1.16), becomes extremely important.
This can be done using the operator of integration

(If)(t) / f( r) dr
0

and the function defined by the recurrence relation

Io(t) = 1, Ik(t) = I(I~_z(t)).

The components of the image of the kth power of any operator A are
denoted by

,¢2)n)),
With the obvious relation [[ K I[ ~ fl in view, the characteristic of (2.1.10)
satisfies the inequality

As far as the function I~ (t) is nondecreasing and nonnegative, the following
estimates are true:

ri(~;~,t) ~+ZL

(2.1.18) / dT~ J dv=Ii(t),

0 0

(2.1.19) ] I~(ri(~;x,t ) + (m- 1)~L) 

<_ ] I~(t + m3L) d~ <_ LI~(t + m~L),
c~i

(2.1.20)

x ri

+(m-1)~L) dr 

<L

0

t+m~L

= L j Ik(r) dr <_ L

(,~- 1)~L

(t+rn~L )+~L

J Ik(v) 

0

= L Ik+l (t + milL).
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It is straightfor(vard to verify the estimates

(2.1.21)

k

(2.1.22) I/~I ~)(x) I B~ pr(r) E C~ Is( t + k/3
s-~O

by appeal to (2.1.18)-(2.1.20) and the well-known recurrence relation 
the binomial coefficients

c~-1+ c~ = c~+1.

Observe that estimates (2.1.21) and (2.1.22) are valid with constants

max { 1,[[H(x,0)-~ 11 
O<x<L ’

max { max{lllq II,IIK~II
(x,t)egt 

as long as 0 _< t _< T- k/3L if T > k/3L. The preceding estimates
can be derived by induction on k. We proceed as usual. For k = 1 and
0 < t < T -/3 L we are led by the replacement of [1Ki 1] and II ~’~ II both by

their common upper bound M to the following relations:

] --(~)~i 1<- ~p~(r) L+ Yp~.(r)LI~ +~¢p~.(r) 

<_ 2 M Lpr(r) (1 + I1),

I P}I) I _< II H(~, -1 II(~P~-(~) L

+ Mpr(r) LI~ + Mpr(r) 

<_ 2 M L II H(x, O)-~ II PT(r) (1 + I1),

which confirm (2.1.21)-(2.1.22) for k = 1. Suppose now that (2.1.21) 
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(2.1.22) hold true for k = rn - 1. With this in mind, we obtain

m-1

m-1

+ L Cs (t+m~L)m-1

m-1

+ -~B"~-’ pr(r) L E C~_~ I,(t + m~L)

m

Cs
s-1_< (2ML) m-~p~(r) E(m-~+C~-~)Is(t+mZL)

m

-<Bmpr(r) EC~I~(t+mflL)’

thereby justifying the desired result for (2.1.21). The proof of (2.1.22) 
similar to follow.

Furthermore, the function I~(t) admits the estimate

(t + k ~ L)~
(2.1,23) I~(t) < k!

which can be established by induction on k as well. Letting k = 1 we con-
clude that (2.1.23) follows directly from the definition of Ik(t). If (2.1.23)
holds true for k = m- 1, then

t+~L

Ira(t)= J Irn-l(T) dT< / (r+(rn-1)l)L)m-~ dr- (m - 1)!
0 0

(t-l-m~L)m ((m-1)~L) m < (t+mflL)m

m! m! -

This provides sufficient background for the conclusion that (2.1.23) is valid.

The well-known inequality C~ _< 2~ for binomial coefficients leads to
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the chain of relations

k k

~ C~ I,(t) < ~ ~ ( t + s~L)s
-

s=0 s=0

~ (t + ~ZL)~
<E2~
-

~=0

< 2~ ~ (~ + ~ZL)~
-

= 2t exp {t + k~L}.

Putting q = 2 B exp {3/3 L} and replacing T by T + k/3L, we deduce from
(2.1.21) and (2.1.22) 

(2.1.24) pT(A~r) <_ q~ T pT+~zr(r).

We now proceed to estimate the seminorms of the element r0.
stated above,

~i(~; x,t) _< t+ ~ZL
and, therefore,

As

I ¢i(T/(x,t)) I _< a exp {aT/}

_< a exp {at + a~L}

= a exp {a~L} exp {at}.

Since the values ODij/Ot, Ori/Ot and O~/Ot are bounded,

I ¢i(x,t) l ~ Co exp {at},

yielding

(2.1.25) p~(~o) _< ~, exp {~ T}.

All this enables us to estimate the members of Neumann’s series in (2.1.17).
From (2.1.24)-(2.1.25) it follows 

pr(Akro) <_ c~ exp{(o~+ 1)T) [q exp{aC3L)]k.
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With the aid of the last inequality we try to majorize the series in (2.1.17)
by a convergent geometric progression keeping q exp {ct ~ L} < 1. Having
stipulated this condition, the series in (2.1.17) converges uniformly over
0<t<Tand

cl exp {(~ + i)
(2.1.26) Pr(r) -< ~ -- ~ e--~p ~-~-} 

It follows from the foregoing that (2.1.17) is just a solution to equation
(2.1.16) and this solution is of exponential growth in agreement with rela-
tion (2.1.26).

The quantity q exp {a~L} of the form

4~L max {1,~H(x,0)-~]} exp{3ZL}exp{aZL}

is continuous and monotonically increasing as a function of L and vanishes
for L = 0. Hence there exists L0 > 0 such that for L < L0

q exp {a~L} < 1

and, therefore, the inverse problem at hand possesses a solution of proper
form. Thus, the theorem is completely proved. ¯

Theorem 2.1.3 Let D, H, Dt and Ht be continuous functions and let K
be a continuously differentiable function. If

IIDII_<M, IID, II_<M, IIH, II_<M,

It K II I det H(z, 0) l >_ 7 > 

with certain positive constants M, fl and 7, then for any b > 0 there exists

L1 > 0 such that for L < L1 the inverse problem (2.1.2), (2.1.8), (2.1.9) can
have at most one solution in the class of functions satisfying the estimate

Proof This assertion will be proved if we succeed in showing that the
homogeneous equation corresponding to (2.1.16) has a trivial solution only.
Let r=Arand

exp
Since A~ r = r, relation (2.1.24) implies that

(2.1.27) p~(r) = p~(A%) ~ c~ [q exp{bZL}] ~ exp{(b+ 1)r}.

Hence, if we choose L1 so as to satisfy q exp{b~L} < 1 for L < L1, then
the relation pr(r) = 0 is attained by letting k ~ ~ in (2.1.27) and is valid
for any T. But it is possible only if r = 0 and thereby the theorem is
completely proved. ¯
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Of particular interest is the situation in which the matrix K has fixed
sign. Under the assumption imposed above the existence and uniqueness of
a solution of the inverse problem concerned are obtained for any L. For the
sake of definiteness, the case of negative eigenvalues will appear in more a
detailed exposition.

Theorem 2.1.4 Let D, H, Dt and H~ be continuous functions and let ~, ¢
and K be continuously differentiable functions. One assumes, in addition,
that

II ¢’(t)II < a exp {at}, ~ det H(z, 0)[ ~ 7 > O, ~(0) = ¢(0),

-~(z,t)~ ~ ~ (l<i<n)

with certain constants M, fl, 7 and a. Then in ~he domain ~ the inverse
problem (2.1.2), (2.1.8), (2.1.9) has a solution

V e C1, p e C, II v, II ~ c exp {b~)

and Ibis solulioe is unique in ~he iedicaled class of fu~clions.

Proof The proof of the existence of a solution under the above agreements
is carried out as usuM. This amounts to fixing a point (~, ~) ~ D and con-
sidering characteristic (2.i.i0). Upon integrating along this characteristic
we arrive at relations (2.1.II) and (2.1.12), where a]] the ~{’s are equal 
zero. After differentiating we get the system of equations (2.I.14)-(2.1.15)
of the second kind which can be rewritten in the concise form (2.1.16).

The idea behind derivation of the estimates in question is to refer,
in addition to the operator I, to another integration operator J with the
V~Iues

0

The symbol J} (~) stands for the functions defined by the recursion

~0(~) ~ J~(~) = ~(~_a(~)).

Using the well-known expression

mk

J~(~) = 
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we replace (2.1.21)-(2.1.22) by the following estimates:

k

I t~}~)(x,t)[ _< ~pr(r) J~(z) EC~/~(t +

k

I < B J (x) Zs( + ZL).
s:0

In this line, one useful inequality

p~(A~r) ~_ ex pTpT+k~L(r)

will be involved in place of (2.1.24) and will be useful in the estimation 
the sum of Neumann’s series:

pT(r) < C~ exp {(a+ I)T) [q exp{aflL)]k
-- k!

k:O

----- C1 exp {q exp {a~L}} exp {(a + 1)T}.

Further reasoning is similar to the proof of Theorem 2.1.2.
To prove the uniqueness here one should reproduce almost word for

word the corresponding arguments adopted in proving Theorem 2.1.3 by

replacing the value [q exp {b~3L}]k by [q exp {bflL}]~/k !. As k --~ cx~, the
last sequence tends to 0 for any L, thereby justifying the assertion of the
theorem. ¯

In view of the solution uniqueness established for the inverse problem
of finding the right-hand side function, one can easily prove the uniqueness
theorem for inverse problems of recovering other coefficients of the govern-
ing equations. The methodology of the considered problem provides proper
guidelines for subsequent investigations.

Let us"consider the nonlinear inverse problem of finding a matrix
D = D(x) built into the system (2.1.2). As the total number of unknown
coefficients dij(x), 1 < i < n, 1 <_ < n,of thematrix D is equalto n2,

it is reasonable to absorb more information on the boundary behavior of n
solutions of the system

(2.1.28) {
v(~)(x,O)=~(k)(x), O<x<L, 

v!~)(O t) =¢i (x) t>O l<i<s l<k<n

v (L, ¢i (), t>0,_ s<i<n.,_ l<k<n.
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In general, the solutions sought correspond to different right-hand side
functions

a(x,t) = G(k)(z,t), 1 < 

which are assumed to be available.
Other ideas are connected with some reduction (within the aspect

of uniqueness) of the nonlinear coefficient inverse problem in view to the
linear inverse problem we have resolved earlier. In preparation for this,
we introduce the vector function v = (v(1), v(2),... , (~)) and the diagonal
hypermatrix ~ with n blocks on the main diagonal, each of which coincides
with the matrix K. We deal also with the partitioned matrix ~ composed
of n x n-blocks/~ij, 1 < i < n, 1 _< j _< n. In the block ~i~ the jth row
coincides with the vector v(i) and the others are taken to be zero. By a
vector G we mean one whose components are identical with vectors G(k),

that is, G = (G(1), G(2),... , G(~)). By merely setting

p= (~l,d12,...,dln,d21,d22,...,d2n,...,dnl,dn2,...,dnn)

the augmented system for the vector v reduces to

(2.1.29)
0v 0v
--Oz + ~" -~ + b p = G.

Assume that the inverse problem of recovering a matrix D has two
distinct solutions (v (1), p (1)) and (v (2), p (2)), where the vectors 
p(2) are put in correspondence with the matrices (1) and D(2), r espec-
tively. By introducing u = v(2) -v(1) we subtract equation (2.1.29) written
for v = v(2) from the same equation but written for v = v(1). As a final
result we get the inverse problem to be investigated:

(2.1.30)

0u 0u /~(2) .0 ~~+~ + ~=N ,

u(z,O) = 0 < z < L,
u}k)(O,t) = t_>O, l<i<s,

u}~)(r, t) = t _> o, s < i _< ,~,
l<k<n,

l<k<n,

where ~(2) stands for the diagonal hypermatrix with n blocks on the main
diagonal, each of which coincides with the matrix D(2); ~r denotes the
matrix -/~ associated with v(1) and

(2) _ p (1).
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It is appropriate to mention that, because of its statement, the coeffi-
cient inverse problem can be treated as a linear inverse problem of the type

(2.1.2), (2.1.8), (2.1.9). Note that the determinant of the matrix ~(x, 

det ~r(x, 0) 

of the form

The following corollary can easily be deduced by applying Theorem
2.1.3 to b = 0.

Corollary 2.1.1 Let K e C1, II I~ II I1 II M and let det (~i)(x))
¢ O. Then there exists a number Lo > 0 such that for L < Lo the in-
verse problem (2.1.2), (2.1.28) can have at most one solution in the class
or functions

v(k) E C1, Ilv} k)II<-M, l<k<n;. D(x) ~ 

2.2 Inverse problems for t-hyperbolic systems

In this section the system (2.1.1) is supposed to be t-hyperbollc. By
definition, this means an alternative form of writing

(2.2.1)
c)v cgv

O---i + I( ~x + DV = a,

where K is a diagonal matrix with entries kij : ki ~ij and 5ij is, as usual,
Kronecker’s delta. We agree to consider the right-hand side function in
the form

C(x, t) = H(x, t) p(t),

where an n x n-matrix H is known and the unknown vector function p is
sought. When recovering a pair of the functions {v, p} in such a setting,
equation (2.2.1) has to be supplied by the boundary condition

(2.2.2) vloa = ~’,

where Of 2 designates the boundary of the half-strip

a={(x,O: O<~<L, t>O}.
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The function ~(x,t) is assumed to be continuous on 0f~ and the functions
~(0, t), p(x, 0) and ~(L, t) are supposed to be continuously differentiable.
Let the eigenvalues of the matrix K obey the same properties as before.
Recall that ki(x , t), 1 < i < n, are bounded and continuously differentiable
in f~, ki < 0 for 1 < i < s and ki > 0 for s < i_< n. In addition, they
are supposed to be bounded away from zero, that is, there exists a positive
constant c such that I ki(x,t)] >_ c, 1 < i < n, for all (x,t) E ft.

Along with the function ri ((; x, t) being a solution of problem (2.1.10)
we deal with the function ~i(r; x,t), which for fixed values z and t gives
the inverse function of ri(~; x, t) and satisfies the system

(2.2.3)
= ,

= x.

After integrating along the characteristics specified by (2.2.3) the inverse
problem (2.2.1)-(2.2.2) reduces to a system of integral equations. 
(ai(x,t),13i(x,t)), 1 <_ i indicate a point at which the characteris-
tic (2.2.3) intersects the boundary Oft and ¢?i(x, t) _< t. Putting

(bi(x,t) = pi(ai(x,t),~3i(x,t)), l<i<n,

we integrate the equations of the system (2.2.1) along the characteristic 
establish the representations

t

(2.2.4) vi(z’,t )-~i(x,t)= / (-Dv+Sp) i dr, l<i<n.

~i(~,t)

The next step is to define the numbers 7i as follows: 7i = 0 for 1 < i < s
and 7i = L for s < i _< n and then set Q(t) = ~i(Ti ,~), 1 ~ i ~_ ft.
Furthermore, substituting into (2,2.4) x = 0 for 1 < i < s and x = L for
s < i _< n yields

t

(2.2.5) ei(t)- q~i(’h,t) = f (-Dv + Hp)~ dr, 1 < 

fli(’Yi ,t)

The new variables

OVi

wi= Ox
l<i<n,
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are involved in the following relationships:

(2.2.6) vi(x,t) = wi((,t ) d(+ Q(* ), 1 < i < 

~’i

Let us differentiate (2.2.4) with respect to x and (2.2.5) with respect 
and eliminate then the functions vi (1 < i < n) from the resulting expres-
sions with the aid of (2.2.6). The tacks and tricks demonstrated permit 
to derive the equations

~i(x,t) ~i(x,t)

- ~ h~ (o~(~, t), Z,(~, 
j--1

0~ (~, t),× ~,~(Z,(~,t)) 

(~.~.8) E hij(Ti’t)pj (t) = ~i(t)+ hij(ai(Ti,t),~i(Ti,t))
j=l j=t

ok× p~(Z~(~,t)) (~,~,t)

t

j--1 ~(7~’ ’,t)

+ / / ~jwj d~dr

~i(~i,t) 

t

/3i(~i ,t)
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by introducing the set of new notations

Fi(z,t) Ooi " t, ) ~
tf

Odij O~i

--Yi-~(x’ - Ox Ox ~(~-) d~-
J=lfli(x,t)

j=l

X~ = d~j(~(~;7~ t), T) 
’ -0~-’

~ij Odij O~i ~ij-
Ohij

= 0---~- 0-~’ Ox Ot

L 1<i<
~i = ’

S,

O, s<i<_n.

Here d~j and hij refer to the elements of the matrices D and H, respectively.
In what follows we will assume that the matrices D, H, Dz and H~

are continuous. Under this premise the coefficients of equation (2.2.7) may
have discontinuities only on the characteristics (i(t; 5i, 0), 1 < i < n 
may happen only with O~i/Ox and O~3i/Ox because other coefficients are

continuous). In equation (2.2.8) only the coefficients Oq~/Ox and O13~/Ox
may have discontinuities at a single point T/ = ri(Ti;Si,O ). Moreover,
all discontinuities appear to be of the first kind. In that case the system
of equations (2.2.7)-(2.2.8) being viewed in the class w ~ C, p ~ C with
regard to relations (2.2.6) will be equivalent to the inverse boundary value
problem (2.2.1)-(2.2.2) in the class u ~ C~, p ~ C.
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Let us make the substitution

z~(x, t) = w~(x, t) + ~ h~ (~(~, ti, ~(~, ;~ (~(~t)) ~ ~(x,
j=l

which is inverted by the transform

(2.2.9) w~(~,t) z~(x,t)

- ~ h~ (~(~, t), ~(~, t)) p~ (~(x, ~(x,

This yields the following system as far as the functions z~ and pi are con-
cerned:

(2.2.10) zi(x’t) = -k’i ~-~ ( fl Aij zj d~’j=l    .

- ~-~ ~-~ Aij hj~ -~x t,~ d7
j=l k=l .

(2.2.11)



2.2. Inverse problems for t-hyperbolic systems 93

+ f f h. ./~i ~j

In trying to derive necessary compatibility conditions one should con-
sider the ith equation of the governing system (2.2.1) at the points (7i, 

and (6i,0) and then set Ei(t) = ~i(L,t) for 1 < i < s, Ei(t) = ~i(O,t) for
s < i ~ n and X(z) = ~(z, 0). Retaining only the terms containing p~(t),
1 < i < n, we are led to the relations

(~.~.~) ~ h~(V~, 0)V~(0) = ~:(0)+ 
j=l

+ ~ d~5(~, 0) e~(0),
j=l

(2.e.~a) ~ h~(6~, 0)p~(0) = e:(0) + ~(~, x’~(e~)
j=l

+ ~ d~(~, 0) E~(0).
j=l

Observe that the right-hand side of (2.2.12) coincides with the values 
the function ~i(t) at the point t = 0. Assuming the matrix

to be nonsingular and composing the vector ~ = H~~ ~, we conclude that
(2.2.12) and (2.2.13)imply the relations

(e.e.~4) ~(0) + ~(e~, o)~’~(~,) + ~ ~,~(6~, 
j=l

= ~ h~5(e~, o)~(o), ~ < ~.
j=l

Theorem 2.2.1 Lel K ~ C~, II K ll ~ M, ki < 0 for 1 < i < s, ki > 0

for s < i ~ n and let ~ ki(x,t) I ~ c > O, ~ G C, ~(O,t), ~(L,t), ~(z,0) 

C~ and 0, H,D~,H~ G C. Suppose lhat det(hij(~ i,t)) ¢ 0 and the
compatibility conditions (2.2.14) hold. Then there ezists a solution u G C~,

p G C of the inverse problem (2.2.1)-(2.2.2) and this solulion is unique in
the indicaled class of functions.
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Proof To prove the theorem, it suffices to establish the existence and
~uniqueness of the solution of the system of the integro-functional equa-
tions (2.2.10)-(2.2.11). One way of proceeding is to compose the set of 
vector functions

r = (z,p) = (zl,.. ,z, ,pl ,...

where the first n components are defined in f~ and the remaining ones have
the semi-axis [0, ee) as the common domain of definition. Each such set
with the usual operations of addition and multiplication on numbers is a
vector space. Let us define there a linear operator U acting in accordance
with the following rule: the first n components of the vector function Ur
are taken to be the right-hand sides of (2.2.10) with Fi omitted and the last
n components make up a vector obtained by multiplying the matrix H~’I
by the initial vector, whose components are identical with the right-hand
sides of (2.2.11) with ~i omitted. By involving one more vector function

~’0 = (fl,... ,fn,~l,... ,~n)

the system of equations (2.2.10)-(2.2.11) can be rewritten 

(2.2.15) r = ro + Ur.

Let to = 0 and tl > 0. We claim that it is sufficient to solve problem
(2.2.1)-(2.2.2) in the rectangle

G1 = {(x,t): 0<z<L, to_<t_<

Indeed, if we have at our disposal a solution of the problem in G1, our
subsequent reasonings will be connected with further transition from the
domain ft to the domain

~1 -~ {(X,t): 0 < X L,t > _ tl} .

In that case the problem of the same type arises once again. However,
we will be concerned with a new boundary function ~ (x, t), which can be
constructed as follows: ~ (x, t) is identical with ~(x, t) on 0f~ n 0f~l 
at t = t~ is equal to the problem (2.2.1)-(2.2.2) solution we have found 
the domain G~. Since equations (2.2.1) are satisfied at the points (O,tl)
and (L,tl), the boundary function ~(x,t) does follow the compatibility
conditions as desired. Because of this fact, the inverse problem at hand
can be solved in the domain

G2={(z,t): 0<x<L,t~ _<t <t~},
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where t2 > tl, etc. By regarding the spacing

to be fixed we look for a solution of the inverse problem in every domain

Gk = {(x,t): 0 < z < L, tk_l <_ t <

by means of which it is possible to construct a solution of (2.2.1)-(2.2.2)
from the required class everywhere over fL

Setting
p = sup Ik~(z,t) 

z, tED
l<i<n

we are exploring the inverse problem (2.2.1)-(2.2.2) in the rectangle

G= {(x,t): O<x< L,O<t <L/p},

bearing in mind that the boundary function is unknown at the point
t = L/p. Now ~i(Ti ,t) =_ (1< i < n)and t his considerably simplifies
equations (2.2.11) responsible, in the present framework, for the develop-
ment of the Volterra integral equations of the second kind.

The system of equations (2.2.10)-(2.2.11) written in the vector 
(2.2.15) can be solved by means of successive approximations satisfying the
recurrence relations

r(°) = r0 , r (k) = r0 + U r(~-1).

Owing to the choice of the initial approximation and further iterations
the functions z!~)(x t) may have discontinuities of the first kind on the
characteristic

x = ~(t; 5~, 0),
whereas the functions ~(t) and all the approximations pl~)(t) should be
continuous on the segment [0, L/p].

In mastering the difficulties involved due possible discontinuities of
the functions z}~)(z,t), we try to adapt the functions wl~)(~,t) specified
by (2.2.9):

(2.2.9’) w!~)(x t)=z}~:)(x,t)- hij(c~i(x,t),/~i(x,t))
j=l

× f~)(~(~,t))-~2
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Observe that they are really continuous on G. To prove this assertion, it is
sufficient to reveal the continuity of w~)(z, t) in t at the point (~, t~, lying
on the characteristic passing through the point (5i, 0). Via some transform
in which the functions pj(t), 1 <_ j <_ n, on the left-hand side of (2.2.11) are

p~k)(t) and those on the right-hand one are replaced by p~-l)(t)takento be
(~-1)

it is not difficult to establish this property. In addition, we write zj
instead of zj and put t = O. The transform just considered permits us
to reduce to zero the terms containing integrals. Consequently, by appeal
to the explicit formulae for ~i(t), 1 < i < n, we arrive at the recurrence
relations

hij(’~i,O)P~ k)(O) = E hij (’~i ’O)P} k-1)(O) 

j=l j=l

l<i<n,

which assure us of the validity of the equality

for any positive integer k. Here we take into account that the matrices
(hij(7 i , 0)) are nonsingular. Since p(°)(t) = ~(t), we obtain for any k

=

Below the symbol A is used to indicate the value of the jump with
respect to t of a function u defined in the domain G:

Au(2, t~ = lim u(2,t)- lira u(2,t).
t~{+O t~{-O

Now by relation (2.2.9’) we derive the following expression for the jump 
the function w(k)(x, t):

l<i<n.

From the recurrence relation obtained for the functions z}~) by attaching
the superscripts k and k - 1 to the function zi on the left-hand and right-
hand sides of (2.2.10), respectively, it follows that
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and, therefore,

(2.2.16) Aw}k)= AFi - hijp~ ~) A-~x , l<i<n.
j=l

If the point (2,{) lies on the characteristic x = ~i(t; 5i, 0), then/3i(2, {) 

and the variation of the function p~) in (2.2.16) is equal to zero. Conse-
quently, the value of this function equals ~(0) and a minor manipulation
in (2.2.16) yields

(2.2.17) Aw}~(~,~ = E~(0) ~( ~ ;~,~)

-

j=l

0)-
j=l

Recall one useN1 result from maghematical analysis: if ¯ = g(y, p) 
the inverse Nnction of a differentiable Nnction ~ = f(~,p), then

This formula immediately follows by letting to zero the coefficient at @ on
the right-hand side of the identity

which can be established by formal differentiating of the equality

~= f(~(9, P),P).

The above remark implies that

Or O~ O~ "

However, O~i/Or = ~i and, given the compatibility conditions (2.2.14), the
right-hand side of (2.2.17) equals zero. This provides support for the view

that the Nnctions w}~)(a, ~) should be continuous.
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To complete the proof, we introduce a Banach space M(G) consisting
of all vector functions

~= (z,p)= (zl,..., z,,pl,...

the first n components of which are measurable and bounded in the domain
G and the remaining n components are measurable and bounded on the
segment [0, L/p]. Developing the recurrence relations for (5(k),/5(k)) 

(2(~-1),15(~-1)) from equations (2.2.10)-(2.2.11) and 

U~ r= (2(~), ~(k)),

we get the standard Volterra estimates

- k! It, M(G)I,

Ufi(~)ll < (Mok! t)~   Ir, M(G) 

where the norm of an element r = (z,p) on that space is defined by

Ir, M(a)l= max{sup Ilzll, sup Ilpll}.
G [0, L/#]

All this enables us to estimate the norm of the kth power of the operator
U in the space M(G) as follows:

(Mo T)k
(2.2.18) IIU~ll _< ~! ,

where T = L/#. From (2.2.18) it is clear that for all sufficiently large 
the operator U~ becomes a contracting mapping. In turn, this property
ensures the convergence of the sequence {r (~)} to an element (z, p) e M(G)
in the M(G)-norm. That is to say, the uniform convergence of the sequence
{z(~)(x, t)} to the function z(x, t) over the domain G and the uniform con-
vergence of the sequence {p(k)(t)} to the function p(t) over the segment
[0, tl] occur as k --, ec. In view of (2.2.9’), the functions {w(~)(x, t)} 
verge uniformly over G and the limiting function w(x,t) will be related
with z(x,t) and p(t) by (2.2.9). The latter can be derived from (2.2.9’)
by passing to the limit. The functions w(x,t) and p(t) being continuous
must satisfy (2.2.7)-(2.2.8). This proves the existence of the inverse prob-
lem solution. The uniqueness here follows from the contraction mapping
principle. ¯
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The result obtained applies equally well, in its uniqueness aspect, to
the question of uniqueness in the study of problems of recovering other
coefficients of the equations concerned. If you wish to explore this more
deeply, you might find it helpful first to study the problem of finding a
matrix D = D(t) of the system (2.2.1). Additional information is available
on the behavior of n solutions of this system on the boundary of the domain
f~. With this, we are looking for the set of functions

{ v(l (x, ,),..., ,)}

and a matrix D(t) from the system

(2.2.19)
Ov(k) Ov(k)

0-~-- + K ~ + Dv( ~ ) = g(~), 1 < k < n

supplied by the boundary condition

(2.2.20) v(~)loa = T(~), 1 < k < n.

The inverse problem so formulated will be reduced to problem 2.2.1)-
(2.2.2) once we pass to the augmented system related to the function

V : (V(1), V(2), ... , V(n))

and the unknown vector

p = (dl~., d12, ... , d~n, d21, d22, . . . , d2n,... , dnl, dn2,... , dnn) .

Assume that the inverse problem (2.2.19)-(2.2.20) has two solutions (~),

p(~)) and (v(2),p(2)). Putting (2) - v(~ ) we subtr act the s yste
(2.2.19) written for (2) f rom the same system but written f or v (~). The
outcome of this is

(2.2.21)

0v ~ 0v
+ N

vl0a = 0,

+/~v = £rp,

where ~" is a diagonal hypermatrix with n blocks on the main diagonal
each of which coincides with the matrix K, /~ is a diagonal hypermatrix
with n blocks on the main diagonal each of which coincides with the matrix
D(2) corresponding to the vector p (2) and ~ is a hypermatrix consisting

of n x n-blocks Hid, 1 < i < n, 1 <_ j <_ n. In the block ~rij the jth row
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coincides with the vector -v(i)(1) and the others are taken to be zero. Here
also p = p (2) _ p (1).

In what follows the main object of investigation is a pair of the func-
tions (v, p), for which relations (2.2.21) occur. The determinant arising
from the conditions of Theorem 2.2.1 is equal to

~)(0, t)...

l<i<n, l<k<n,

where ~(k), 1 < k < n, are the vectors of the boundary conditions (2.2.20).
But in this respect a profound result has been derived from Theorem 2.2.1
with the following corollary.

Corollary 2.2.1 retiree 1, II K Il <- M, ki < O for l < i < s, ki >O for

s < i < n and Iki(x,t) l k c > O, 1 < i < n. One assumes, in addition, that

det (~T~)(L,t)) # 0 s = 0,det ( 9}~)(0,t)) :/: 0 and det (~lk)( L,t)) # 0

forO < s < n and det (~)(O,t)) #0fors-=n. Then lhe inverse problem

(2.2.19)-(2.2.20) can have at most one solution in the class of functions

V(k) 6 C1, l<k<n; D 6 C.

Let us dwell on the question of existence of the inverse problem
(2.2.19)-(2.2.20) solution. By employing the methods developed above
the existence can be achieved for sufficiently small values of the variable t.
Most of the relations established in the proof of Theorem 2.2.1 remain valid
if the function v will be replaced by v(~), 1 _~ k _~ n, and g(~) will stand
in place of Hp. Integrating the equations of the system (2.2.19) along the
characteristics yields

(2.2.22)
t

_ = /
~i(z,t)

(-D (~) +g(k)) dr

(2.2.23)
t

~i(’ri ,t)

(-D (~) +g(~)) dr
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The first step is to insert in the above calculations

0 v}~)(x,t),
w}~)(x,t)= ~

which are inverted by the formulae

(~.2.~4) v!~)~,~) = f ~!~)~, ~) 
7i

The next step in this direction is to differentiate (2.2.22) with respect 
x and (2.2.23) with respect to t. Via transform (2.2.24) it is possible 
eliminate the functions v}~) from the resulting relations and derive the
following equations:

(2.2.2~) . w}~)(x, t) = F/(k)(x, 

t

dij(v) w~)(~i(v;x,t),v) 
-~z dr

Ox ’
j--1

(~.2.26) ~2 %(~)~’~)(~) =
j----1

+ ~ e~.~(~()~ t)) ~.%,~, t) ’ 0t
j=l

t

J=lfli(~/i, t)

where

Ox

t

-- g~k)(o~i(X’t)’~i(x’t)) 
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_ g~k)(-~(~i, t), Zi(~i, t)) -E c~i, 

t ~ (k)

+ f ~giox O~ot dr-
~i(Ti ,t)

and the functions (I)l ~)(x, t) and ~I~)(t) are of the same form as the functions
¢2i(x,t) and Q(t) involved in (2.2.7)-(2.2.8) once written for the function
v(x, t) = v(~)(x, t), 1 < k < n.

When considered only in the specified domain G, the system of equa-
tions (2.2.25)-(2.2.26)is much more simpler, since ~i(Ti ,t) =_ O, 1 < i < 
Replacing the unknown functions with the aid of substitutions

0x

we arrive at the system of the Volterra equations

t

(2.2.28) z~)(x’t) = Fi’)(x’t)+ ~ i aij(r)
j=l 13i(x,t)

× z~)(~i , ~ dr

t

j:l ra=l~i(x,t)

aij (v) aim (~j (~i 

x ~)(~ ,) aZ~ a{~ dr’ Ox Ox ’

(2.2.29)
n

dq(t)~)(Ti,t)= ~i~)(t)

O~i dr
-- ~ i dij(r) z}k)(~i’r)-~rj=t ~i(3’i ,t)
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t

× ~)(~i ~-)o~j 
’ Ox

In the derivation of compatibility conditions one should consider the ith
equation of the governing system (2.2.19) at the points (7i, 0) (6i, 0),

1 ~ i ~ n. By E~)(t) and X~)(x) we denote the functions coinciding
with E~(t) and X~(x) introduced above in establishing the compatibility
conditions (2.2.12)-(2.2.13). The superscript ~ there indicates that 
functions have been constructed for

~(~, t) = v(~)(~, 
Equutions (2.2.19) imply that

(~.~.30) ~)’(0) + ~(~, 

+ ~
j=l

(k)" ,0)= gi tTi

and

(2.2.31) E}~)’(0) + k~(~,, 0)xl~)’(~)

j---1

When the subscript i of the ingredients of (2.2.30 is held fixed, the
preceding relations for the unknowns

ail (0), ai2(O),..., ain(O)

constitute a system of linear equations with the matrix coinciding with

(~k)(0,0)) for 1 < i <s and (~k)(L,0)) < n.Bein g concerned
with invertible matrices we can find the elements aij for 1 < i < n, 1 <
j _< n. Consequently, the compatibility conditions are convenient to be
presented by relations (2.2.31), whose elements a~j(0), 1 < i < n, 1 _< 
n, should be replaced by their values known from equations (2.2.30).
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Theorem 2.2.2 Let K ~ C1, II K II ~- M, ki < 0 for 1 < i < s, ]~i > 0

for s < i ~_ n, and let ]]~i(x,t)] >_ c > O, 1 < i < n. Let ~(~)(x,t) 
~a(~)(0, t), ~(k)(L,t), ~(~)(x,0) ~ ¯ g(~), g(~ ) ~ Cand,in addit

det (~Ik)(L,t)) ~ 0 s = 0,det ( ~al~)(0,t)) ¢ 0 anddet (~ al~)(L,t)) ¢ 0

for0<s<n, det( (0,t)) # O for s = n. One assumes that the
compatibility conditions (2.2.31), whose ingredients aij(O) are replaced by
their values from equations (2.2.30), hold. Then there exist a time T > 0
such that for t <_ T the inverse problem (2.2.19)-(2.2.20) has a solulion in
the class of functions

v(~)G 1 1 <k<n" D ~ C

Proof By exactly the same reasoning as in the proof of Theorem 2.2.1 it
is convenient to operate in the domain

ar = e a, t < T}

and the space M(f~7,) of all bounded measurable functions

r = {Z(1)(x,t),... ,Z(n)(x,t),

with the norm

Ir, M(~T)I = max { llz(1)(x,t)ll,... ,llz(~)(m,t)l], IlD(t) 
(x,t)~aT

Let an operator U be defined by integral terms in relations (2.2.28)-
(2.2.29). We choose the "initial" element r0 in such a way that the system
of equations (2.2.28)-(2.2.29) can be written in the form (2.2.15), 
ing it possible to solve the governing system by appeal to the successive
approximations

r(0) ---- r0 , r (m) : r o + U r(m-l) m = 1, 2,

Observe that the functions z(k)(m)(x,t) may have discontinuities of the

first kind on the characteristics, while the functions D(’~)(t) should be
continuous. By merely setting t = 0 in (2.2.29) it is easily verified that the
values D(’~)(0) do not depend on m and coincide with the system (2.2.30)
solution. With the aid of (2.2.27) we construct the approximations for
w(~)(z, t), 1 < k < andobserve that the new functions turn out t o be
continuous in f~T by virtue of the compatibility conditions (2.2.31).

The current proof differs from that carried out in the preceding theo-
rem, since the system (2.2.28)-(2.2.29) is nonlinear and its solution can 
shown to exist, generally speaking, only for sufficiently small values of the
variable t. This completes the proof. ¯
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It seems worthwhile
(2.2.20) to help motivate
v(z, t) and d(t) from the

to consider a particular case of problem (2.2.19)-
what is done. It is required to find the functions
system of relations

(2.2.32)

vt + v~ = d(t)v O < x < 1,

v(x,O) = ~(x), 0 < x < 1,

= o, t o,
v(1,t)= t ~0,

t>_O,

where
0, O<x<l-~,

~(x)-- x÷e-1 
(

and 0 < ¢ < 1. The function ~(x) so constructed is continuously differen-
tiable. By the replacement

we obtain the equation

ut + ux = 0 ,

making it possible to derive tbr the inverse problem (2.2.32) solution the
explicit formulae

0, 0<x<l-~,

v(x,t)=
0, x> l-e, t_>x-l+e,

(x-t+~-l)2 -- x>l-e, t<x-l+e,
t ~ ’

2
d(t) 

(t - ~)~ 

Unfortunately, this solution cannot be continuously extended to the domain
t >_ e in spite of the fact that all the conditions of Theorem 2.2.2 are
satisfied. This example shows that usually a solution of (2.2.19)-(2.2.20)
exists only for sufficiently small values t during which we could make the
interval of the solution existence as small as we like. We will not pursue
analysis of this: the ideas needed to do so have been covered.



lO6 2. Inverse Problems for Equations of Hyperbolic Type

2.3 Inverse problems for hyperbolic equations
of the second order

Linear hyperbolic partial differential equations of the second order find a
wide range of applications in mathematical physics problems. As a rule,
they are involved in describing oscillating and wave processes in elastic and
electromagnetic mediums. Certain types of hyperbolic systems of the first
order can also be reduced to the wave equation. On the other hand, a
hyperbolic equation of the second order is, in turn, treated as a hyperbolic
system of the first order. In preceding subsections much progress has been
achieved for inverse problems with hyperbolic systems. Common practice
involves the reduction of the wave equation to such a system.

We now consider in the strip

aT= {(x,t): xER, O<t<T}

the hyperbolic equation of the second order

~ a2utt uxx + b u~ + c ut q- du + F

with the supplementary Cauchy data

u(x,0) = ~(x), x 
(2.3.2)

ut(x,O) = ¢(x), x ~ 

The subsidiary information about the problem (2.3.1)-(2.3.2) solutions 

(2.3.3) u(x i,t) = xi(t), 0 < t < T, 1 < i < 

We begin by placing the problem statement for finding a function F(x, t)
from (2.3.1)-(2.3.3) under the approved decomposition

(2.3.4) F(z,t) = ~ gi(x,t)Pi(t) + h(x,t),
i=1

where gi(x, t) and h(x, t) are the known functions, while the unknown func-
tions pi(t), 1 < i < n, are sought. In what follows the coefficient b(z,t) in
equations (2.3..1) will be taken to be zero without loss of generality. Indeed,
having performed the standard substitution

u(x,t) = v(zc,t) exp -~ a2(~,t ) d~
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we can always come to the same result. For the sake of definiteness, let

(2.3.6) xl < x2 < ’" < x,~_l < x,~

and let the function a(x,t) be positive, bounded and twice continuously
differentiable. Currently the object of investigation is the equation of the
characteristics ~ = ~i(r; x, t) passing through a point (x, t)

(2.3.7) { ~ = ¢ia(~i ’ ~-) 
(t; x, t) = 

where i = 1, 2; el = -1 and e2 = 1.

Theorem 2.3.1 Let a(x, t) > O, l a(x, t) < M,a(x, t) E C2,b(x,t) : 
¢(x) E C1 and let g~(x), xi(t) 2,1 < i < n.One assumes, in ad dit ion,
that ~(*i) = k’i(O) ’¢(xi) = g’ i( for 1 < i < n.Let c(x,t ), d(x,t),
g~(x,t) and h(x,t) be continuous along with their first x-derivatives in 
domain f~T and let det (gi(xj,t)) ~ O. Then in the domain f~T there exists
a solution of the inverse problem (2.3.1)-(2.3.3) in the class

u ~ C2, Pi ~ C, 1 < i < n,

and this solution is unique in the indicated class of functions.

Proof There is a need to emphasize the following fact. If the continu-
ous functions pl, p2 and pa are known, then the Cauchy (direct) prob-
lem (2.3.1)-(2.3.2) will be uniquely solvable in the class of functions 
C~(f~:r). This feature of the direct problem enables us to consider the
inverse problem (2.3.1)-(2.3.3) in any subdomain f~ C fiT, for which 
functions pl, p~ and pa can uniquely be recovered. More specifically, by ft
we mean a bounded closed domain, whose boundary consists of two straight
lines t = 0 and t = T, and two graphs of the functions x = ~(t;x~,T) and
x = ~2(t;z~,T).

A possibility of this inverse problem to be localized is based on the
assumptions that the functions p~, p~ and p~ in question depend only on
t. Let us show that in the specified domain f~ these functions can uniquely
be recovered.

Equation (2.3.1) can be viewed as a system of differential equations
related to the replacements ut = v and u~ = w. Writing this as a vector
equality we arrive at

= 0 a2 + c + .

t 1 0 ¯ 0
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By the replacements

r I ~72~ l(v r2:~ a
r2 = ~ -- W

we are led to the canonical form

rt=Krx+Dr+o,

where

(rl) a 0 ,
0 --a

D= ~a ac + a% - at
ac - aax - at

ac + aa~ -- at , (~ = ~a F .
ac - aax at [’

Additional information provides the validity of the relations

0<i<n,

yielding

(2.3.8) a(xi ,t) [r2(xi ,t) + r~(xi ,t)] = X’i(t), l<i<n.

Keeping the integral along the characteristic

t

Li(x,t) 0

i= 1, 2,

and the new parameters

d
B=-- C-

2a ’

ac + aax - at
2a2

E = ac - aa~ - at
2a2

P --- (Pl ,... ,Pn), g= (gl,..., Pg= L Pigi,
i=1
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we prefer to deal with concise expressions which are good enough for our
purposes. Other ideas are connected with integral equations which are
capable of elucidating many of the facets of current problems. The first
equation is obtained by integrating the equality ut = v as follows:

t

(2.3.9) u(x, t) = ~o(x) + / v(x, dr.

0

Let us integrate the second and third equations of the system (2.3.8) along
the corresponding characteristics and then add one to another. Multiplying
the resulting expressions by a(x,t) and taking into account the relation
a(rl + r3) = v, we arrive at

(2.3.10) v(x,t) = R(x,t) + a(x,t)

+ f (Bu+Ev+ gp)],
L~(~,t)

where

Since

R(x, t) =a(x,t) 0) +

H- a(x,t) (~a) + (~aa 

, . ,t) L~.(x,t)

1 1~’~(,, 0) = g-/a ~(*) ~ ~’(*)

and
1 1

~(~, 0) = ~a ~(x) - ~ ~’(~) 

one might expect that the function/~(a:, t) is known. The remaining integral
equations can be derived by merely inserting x = xi, 1 < i < n, in (2.3.10).
By the same token,

(2.3.11) X’i(t) = R(xi ,t)+ a(xi ,t)

~(
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Our further step is to differentiate relations (2.3.9)-(2.3.11). To avoid
cumbersome expressions, it is reasonable to introduce the following nota-
tions for the function $’(z, t) of two independent variables:

d
(2.3.12) m~(T,x,t) = ~ m(~(T;x,t),~),

(2.3.13) $’i+2(r, x, t) = 9~(~i d~i
’ dx ’

d
(2.3.14) ~+4(r,x,t) = ~ ~(~, 

(m3. 5) = , ~.

In formulae (2.3.12)-(2.3.15) the subscript i takes the values 1 ~nd 2. 
intervention of a new unknown function z(x, t) = v~(x, t) = u~t(x, t) com-
plements the notation of the integral ~long characteristics. If U(r, x, t) 
an arbitrary function of three variables and X(x,t) refers to each of the
functions u, v, w, z and p, one trick we have encountered is to ~dopt

t

Li(x,t) 0

Differentiating relation (2.3.9) with respect to x yields
t

(2.3.16) w(x,t) = ~o’(x) + i z(x, r) d7 ..

0

One more relation, namely,

(2.3.17) z(x,t)-= OR(x,t)Ox + Oa(x,t)Ox [L,ff, t) (Bu+Cv+H~p)

(Bu + Ev + Hgp)] + a(x,t)

L~(x,t)

i=1,2.

+i
L~(x,t)
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is a result of differentiating equation (2.3.10) with respect to 
Let us introduce one of the integration operators acting in accordance

with the rule

i[7(x,t)] = ] *(~,t/de.

By definition,

and

u(x, t) = I [w(x, t)] + x,(t)

=v(~,t) I[z(x,t)]

and equation (2.3.17) takes the form

(2.3.18) z(x,t) = ¢(x,t) + Oa(x,t)
[ (BIw + CIz + Hgp)

L~~x,t)

+ / (BIw+EIz+Hgp)]
L~(x,t)

+a(x,t)[ / (BllW+Cllz

+ (Hg)l p + Ba w + Ca 

+ ] (B2Iw+E2 Iz

+(Hg)~p+B4w+E4z)] 

where

OR(x,t) Oa(x,t)÷(~,t)- 0~ + 0---27,
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L2(x,t)

+a(x’t)[L(ff~l ,t) (B1XI-~-C1xII)

+ / (B2xI+E2x’I)].
L~(x,t)

Differentiating (2.3.11) with respect to t and denoting by Gij(t), 1 < i < 
1 < j < n, the elements of the inverse of (g~(xj, t)), the resulting equations
are solved with respect to the values pi(t), < i < n,leading to the
decompositions

~ Oa(x_!j, t)
(2.3.19) pi(t) : Hi(t) - ~ Gij(t)

Ot
j=l

[
x ] / (BIw + CIz + (Hg) 

LI(~j ,t)

+ / (BIw + EIz + (Hg)p)

L~(xj ,t)

+a(xj,t)[~j(B5Iw+C5IZL~(,t)

+ (Hg)~ p + B7 w + C7 z)

+ / (B6Iw+E61z

L~(xj ,t)

where

+(Hg)6p+Bsw+Egz)]},

Hi(t): Gi j(~) [~ /i/(t) £gI{(~j,~)Ot
d(xj’t) Xj(t)

j=l
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_ la(xj,t) c(xj,t) cga(xj,t)l
cgt a-(~i~)

cga( x j , t )cgt
[ (B xl + 
L~(xj

L~(xj ,t)

-a(xj,t)[ (B sxI+Csx’I)
LI(xj ,t)

L2(xj ,t)

Let us assure ourselves that the system (2.3.16), (2.3.18), (2.3.19)in
the class w, z, p E C is equivalent to the inverse problem (2.3.1)-(2.3.4) 
the class u E C2, p ¢ C. Assume that the functions w, z and p satisfy the
system (2.3.16), (2.3.18), (2.3.19). Furthermore, setting

u(x,t)= w(~,t) d~+x,(t), v(x,t)= )d~+X~l(t)
x1

we integrate equation (2.3.16) over x. After scrutinising the compatibility
conditions we deduce that v = ut, w = u~, z = u~t, v(xl,t) = ~’~(t),
u(x~, t) = X~ (t) and u(x, 0) = p(x). Hence equality (2.3.9) holds 

Observe that relations (2.3.19) are equivalent to those derived from
(2.3.11) by differentiation. Just for this reason (2.3.11) can be recovered
up to constants equal to zero by virtue of the compatibility conditions

x (0) l<i<n.

Similarly, equation (2.3.10) is reconstructed from (2.3.18) up to a function
depending on t. It turns out that a vanishing function happens to be
at our disposal if we assume here x = xi and apply equality (2.3.11) 
i = 1. Therefore, the system (2.3.9)-(2.3.11) is an implication of the system
(2.3.16), (2.3.18), (2.3.19). Moreover,

= =
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Substituting x = xi into (2.3.10) and recalling (2.3.11) yield v(xi, t) = X’i(t)
for 1 < i < n. Whence the compatibility conditions

~(x~) = x~(, 1 < i < n,

provide u(xi ,t) = xi(t), thus causing the occurrence of relations (2.3.2)-
(2.3.a).

It remains to verify whether the function u(x,t) satisfies equation
(2.3.1). We proceed as usual. This amounts to inserting the new functions

~l(x,t) 

(2.3.20) r~(x, t) = R2(x, 

/( h)+ Bu+Cv+Hgp+ -~a ’

Ll(x,t)

(2.3.21) ra(x, t) R3(x, t)

+/
L~(x,t)

Bu + Ev + Hgp + -~a

with

R2(~,t) 

R3(~, t) 

1 1
2a(~,(O;x,t),O) ¢({l(0;x,t)) + ~ ~’(~,(0;x,t)) 

1 1

2a(~(O;a~,t),O) ¢(~(O;x,t))- ~ ~o’(~(O;x,t))

and establishing the following relationships:

a (rl +r~) = 
1 1

r_~(x,0)- 2a(x,0) ¢(x)+ ~ 

and
1 1

ra(x, O) - 2 a(x, O) ¢(x) - -~ 

Upon differentiating (2.3.20)-(2.3.21) along the corresponding characteris-
tics it is easily seen that the functions r~, r~ and ra solve equations (2.3.8).
Subtracting the third equation (2.3.8) from the second yields one useful
relation

(r~ -- ra)t = (r 2 + r~)x + ax(r2+ ra),
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which, with via substituted for r2 + r3, reduces to

(~ - ~3), = vx = z.
Since wt = z and

r~(x, 0) - r~(x, 0) = ~’(~) = ’w(~, 
we might have

and, therefore, the system of equations written initially is a corollary of
(2.3.8) and can be derived from it by the inverse replacements

u=rl, v=a(r2+r3), w=r~-r3.

However, the second equation of this system represents an alternative form
of writing equation (2.3.1). Thus, the equivalence between the system
(2.3.16), (2.3.18), (2.3.19) and the inverse problem concerned is proved.

The system of equations (2.3.16), (2.3.18), (2.3.19) can be solved 
the method of successive approximations. This can be done using the space
C(~) of all vector functions having the form a = (w, z, p), where w 
z are defined and continuous in the domain ~ and the vector p(t) of the
dimension n possesses the same smoothness on the segment [0, T]. The
norm on that space is defined by

(2.3.22) Ilall--max{ ~x twl, ~x Izl, m~
[o,

We refer to the vector

a0 = (~a’(x), ¢(x, t), 

and an operator L in the space C(~) to be defined by the group of uniform
terms on the right-hand sides of relations (2.3.16), (2.3.18) and (2.3.19),
by means of which the system of integral equations can be recast as

(2.3.23) a = a0 + L a.

In the light of the theorem premises the coefficients of equations (2.3.16),
(2.3.18) and (2.3.19) are really continuous and, therefore, bounded in 
domain ~. Taking into account the obvious inequality

one can derive the usual estimates for the Volterra equations:

(NT)~
II L~ all < ~ I1~11,

which can be justified by induction on k. The use of the contraction map-
ping principle implies the existence and uniqueness of the equation (2.2.3)
solution. With the equivalence established above, the same will be valid
for the inverse problem (2.3.1)-(2.3.4), thereby completing the proof of 
theorem. ¯
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By means of substitution (2.3.5) from Theorem 2.3.1 we derive one
useful corollary.

Corollary 2.3.1 Let 0 < a(x,t) < M, a(x,t) 2, ¢(x) ¯ C1 and l et
~(x), Xi(t) 2,1 < i < n.One assumes, in ad dit ion, that ~(xi) = xi(O
and X~i(O) = ¢(xi), 1 <_ i <_ n. Let the functions c(x,t), d(x,t), h(x,t)
and gi(x,t), 1 < i < n, be continuous along with their first x-derivatives 
the domain f~ and let b(x,t) ¯ 2, det (gi(xj , t)) 7 ~ O. Then there exists a
solution of the inverse problem (2.3.1)-(2.3.4) in the class

u ¯ C2, pi ¯ C , l < i < n ,

and ibis solution is unique in the indicated class of functions.

The results obtained permit us to give a definite answer concerning
the uniqueness of recovering other coefficients of equation (2.3.1). Two lines
of research in the study of second order hyperbolic equations are evident
in available publications in this area over recent years. Not much is known
in the case of the combined recovery of the coefficients a(t), c(t), d(t) and
the function u(x, t) satisfying the relations

(2.3.24)

~ttt ~ a~uxz + cut q- du,

u(x, o) ~(x),
u,(~, 0) = ¢(~),
u(~, t) = x~(t), 1<i<3,

where the variables x and t are such that the point (x, t) should belong 
the domain ~T described at the very beginning of this section.

Let both collections

(u(1), a(1), c(1), 

and
(u(~), a(2), c(2), 

solve the inverse problem we have posed above. Setting A(i) = [a( i)] 2 and

v = u(~) - u(1) and subtracting relations (2.3.24) written for u = (1) and
u = u(~) one from another, we derive the system

(~.3.~5)

Vtt = A(2)vxx + c(2)~ t + d(2)v + F,

v(z,O) = 
v~(~,O) = 
v(x~,t) = 1<i<3,
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where

F(~g, t) ~-- (2) - d(1)) tt (1) -4- (c (2) - c( 1)) tt ~1) -- [- (A(~) - A(1)) u(~.

It remains to note that relations (2.3.25) constitute what is called an inverse
problem of the type (2.3.1)-(2.3.4) under the following agreements:

gl(x,t) : u(1)(x,t), g2(~,t) : up)(<t), ~3(x,t) 

pl(t) ----- d(~)(t)- d(1)(t), p2(t) : c(2)(t)- c(1)(t), p3(t) =- A(2)(t)- A(1)(t),

h(x,t) = n = 3.

Moreover,

g, (xj, t) = xj(t),

~2%,t) 

l~j~3,

l~j~3,

1~j~3.

The last value can be expressed by (2.3.24) in terms of the functions Xj (t)
and their derivatives as follows:

X}’(t) c(1)(t)x}(t) d(1)(t)xj(t)
U(x12(Xj, t) A(1)(t ) A(1)(t)

A(1)(t)
, 1 < j < 3.

Due to the determinant properties we thus have

1
det(gi(xj,t))- A(1)(t)

where W(X~ , X2, Xa) is the Wronskian of the system

{)~(t),)~(t),xa(t)} 

It is clear that the system (2.3.25) satisfying the conditions of Theorem
2.3.1 has no solutions other than a trivial solution. This is just the clear
indication that a solution of the inverse problem (2.3.24) is unique. This
profound result is established in the following assertion.
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Corollary 2.3.2 When W(X1, X~, X~) £ O, a solution of problem (2. 3.24)
is unique in the class of functions

uEC 2, u~z z EC, aEC 2, a>0, cEC, dEC.

A similar way of investigating can be approved in solving the inverse
problem of finding the functions u(x, t), c(t) and d(t) from one more system

(2.3.26)
Utt = a2uxx + cut + du,

~(x, o) = ~(x), ~,(x, o) : 
u(xi,t) = xi(t), 1 < i < 2,

where (z, t) E ~T"

Corollary 2.3.3 Let a(x, t) E 2 and 0< a(z,t) <_ M. If theWronskian
W(X1, X2) # O, then a solution of the inverse problem (2.3.26) is unique in
the class of functions

uEC2, cEC, dEC.

It is desirable to have at own disposal some recommendations and
rules governing what can happen. The rest of the present chapter focuses
on the problem of recovering a single coefficient d = d(t) from the following
relations over f~T:

(2.3.27)

Utt : a2Uxx + +b ux + c ut ~- d u + F,

, ~(x, 0) = ~,(x), u,(~, 0) ¢(~),
,,(~1, t) = ~(t).

Theorem 2.3.1 yields the uniqueness condition for the problem at hand.

Corollary 2.3.4 Let a(x,t) E ~, 0< a(x,t) <_ M, b(x ,t) E C ~ andlet
c(x,t), c~(x,t) E C and x(t) # O. Then a solution of problem (2.3.27) is
unique in the class of functions

uEC2, dEC.

Under the same assumptions one can prove the local solvability of
problem (2.3.27) by employing the method developed in Theorem 2.3.1
for b(z, t) = 0 (or otherwise recalling substitution (2.3.5)). The system 
equations related to the functions
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and

can be derived in a similar manner. Relation (2.3.16) remains unchanged,
whereas (2.3.18) should be replaced 

(~.3.~s’) z(~,t) = ~(~,t) Oa(z,t)

[
X | I (BIw+CIz+Bx)

LL~~z,t)

+ / (BIw , EIz + BX)*] 
La(~:,t)

X

[LlJ, t) (BIIw+CIIz-t-Baw+B1X)

+ / (B~Iw+E~Iz+B4w+E4z+B~x)],
L~(x,t)

where

O~(x,t) Oa(x,t)~(~,t)- 0x + 

~ ,t) L2(x,t)

~ t) Lz(x,t)

~(x,t) = a(x,t) [r~(~(O;x,t),O) + r,(~(0;x,t),0)

L,(x,t) L~(x,t)
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Instead of (2.3.19) we arrive at the equation

do(t) at(xl 
X(=,t)

X
~ / (Bhv+CIz+
kL~(~ ,t)

+ J (BIw+EIz+Bx)1
~(~ ,t)

a(x~’t) [L ff~ ~ (BsIw+CaIz
)~(t) ~( ,~)

+ B~w + C~z + B5

+ [ (B6 Iw E6Iz

L~(:c1 ,t)

+Bsw+ Esz + B6X)] 

where

Co(t) a(x~ ,t) c(x~ ,t) - at(x~ ,t) 
a(~, t) x(t)

Evidently, relations (2.3.16), (2.3.18’) and (2.3.19’) constitute a system 
the second kind nonlinear integral Volterra equations. If the coefficients
of the preceding equations are continuous, this system possesses a unique
continuous solution for all sufficiently small t. In concluding the chapter
we give the precise formulation of this fact.
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Corollary 2.3.5 Let a(x,t) E ~, 0< a(x,t) <_ M; b(x,t) e C 2;c(x,
cx(x,t), F(x,t), Fz(x,t) ~ C and let g~(x) 2,¢(x)~ C1 and x(t) ~ C~.

One assumes, in addition, that 9~(Xl) --- x(O), ¢(xl) : x’(O) and x(t) 
Then, for sufficiently small t, there exists a solution of the inverse problem
(2.3.27) in the class of functions

~,(~,t) E 2, d(t) ~ 

We have nothing worthwhile to add to such discussions, so will leave
it at this.





Chapter 3

Inverse Problems for Equations

of the Elliptic Type

3.1 Introduction to inverse problems in potential theory

The first section of this chapter deals with inverse problems in potential
theory and places special emphasis on questions of existence, uniqueness
and stability along with further development of efficient methods for solv-
ing them. As to the question of existence, we are unaware of any criterion
providing its global solution. There are a number of the existence theo-
rems "in the small" for inverse problems related to a body differing only
slightly from a given one as it were. And even,in that case the problems
were not completely solved because of insufficient development of the the-
ory of nonlinear equations capable of describing inverse problems. That
is why, it is natural from the viewpoint of applications to preassume in
most cases the existence of global solutions beforehand and pass to deeper
study of the questions of uniqueness and stability. Quite often, solutions
of inverse problems turn out to be nonunique, thus causing difficulties. It
would be most interesting to learn about extra restrictions on solutions if
we want to ensure their uniqueness. The main difficulty involved in proving
uniqueness lies, as a rule, in the fact that the inverse problems of interest

123
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are equivalent to integral equations of the first kind with the Urysohn-type
kernel for which the usual ways of solving are unacceptable. The problem
of uniqueness is intimately connected with the problem of stability of the
inverse problem solutions. For the inverse problems in view, because they
are stated by means of first kind equations, arbitrarily small perturbations
of the right-hand side function may, generally speaking, be responded by
a finite variation of a solution. The requirement of well-posedness necessi-
tates imposing additional restrictions on the behavior of a solution.

Special attention is paid throughout to the important questions of
uniqueness and stability of solutions of inverse problems related to poten-
tials of elliptic equations of the second order.

This section is of auxiliary character and introduces the basic nota-
tions necessary in the sequel. We begin by defining the potentials which
are in common usage and list their main properties. Denote by x =
(xl,...,x,~) and y = (Yl,...,Y~) the points in the space ’~ and by f l
a bounded domain in R’~ with boundary 0~ of class C2, f7 = ~7 U coll.
For an arbitrary vector field w of the class CI(D) the following relation
ascribed to Gauss and Ostrogradsky appears very useful in the future:

(3.1.1) i divw dY = i (w . ~,y) dsy 
012

where dsv is an (n - 1)-dimensional surface element on c~Q and l,,y is a unit
external normal to the boundary c~f~.

Let us consider a pair of the functions u = u(y) and v = v(y), each
being of the class C2(fl). Substituting w = v ¯ Vu into (3.1.1) yields 
first Green formula

i I i(3.1..2) v ¯ Au dy + Vu ¯ Vv dy = v ¯ ~ dsy ,

f’t 12 012

where the symbols Vu and Vv stand for the gradients of the functions u
and v, respectively.

By successively interchanging the functions u and v in (3.1.2) and
subtracting the resulting relation from (3.1.2) we derive the second Green
formula

(3.1.3) (v. zx - u ̄  Av) dy = v ̄ ¯ ds .

Recall that the Laplace equation Au = 0 has the radially symmetric
solution r ~-’~ for n > 2 and log l_ for n = 2, where r is the distancer
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to a fixed point, say the origin of coordinates. Holding a point x ¯ f~
fixed we introduce the normalized fundamental solution of the Laplace
equation by means of the relations

~log I~-~1’ n=~,
(3.1.4) E(x, v) = Z(I x - u I) = 1 

w,(n-2) ~-~-~1,~-~’ ,~>3,
2 ~-l~ is the area of unit sphere of the space Rn andwhere wn = ~

+~

r(~) = / ~-~ ~xp {-t} d~
0

is the Euler gamma-function.
Evidently, the function E(x, y) is harmonic whenever y ¢ x. However,

because of the singularity at the point y = x, it is impossible to substitute
the function E into the Green formula (3.1.3) in place of the function 
One way of proceeding is to "move" from the domain ~ to the domain
~ ~ B(x,e), where B(x,¢) is a ball of a sufficiently small radius ~ with
center x.

All this enables us to write down (3.1.3) for the domain ~ B(x, ¢) 
substituting E(x, y) for the function v(y) and regarding the point x to be
fixed. The usual manipulations may be of help in estimating the behavior
of the integrals on OB(x, e) as ¢ ~ 0. Adopting the above arguments for
the different locations of x: x ~ fl, x ~ 0~ or x ~ ~, we can derive the
third Green formula

(a.l.a~ ~(~, ~ o~(~ ~(~)
oa

Ou~

Having no opportunity to touch upon this topic, we address the readers
to Bitsadze (1966), (1976), Vladimirov (1971), Tikhonov and Samarskii
(1963) and others.

Let us now introduce the potentials to be involved in further consid-
erations. For any bounded and integrable in ~ function #(y) we adopt the
function

~(~, V) : / ~(x, dy



3. Inverse Problems for Equations of the Elliptic Type

as the potential of a volume mass with density # under the natural
premise that #(y) # almost everywhere inf~. It i s known thatthe volume
potential u so defined obeys the following properties:

(3.1.6) if# 6 L~(9)

(3.1.7) it, 6 Ch(~), 0 < h 

(3.1.8) As Ixl-~ 

where

then u ~ CI+~(R~) 

{-~(x), x~,
then Au(x) = O, x ~ 

log u(z)-~M, n=2,

~ ~-~(~) ~ M, n ~ 3,

M= l
"~n(’~-_-

#(y) dy, n >_ 

Here the symbol ch((~) is used for the H61der space formed by all continu-
ous on l) functions satisfying H61der’s condition with exponent h, 0 < h 
1. The norm on that space is defined by

(3.1.9) sup l u(x)]+Hh(u),

where Hh(u) is Hhlder’s constant and, by definition,

Hh(u): sup {[u(x,)-u(x2)[" 1 -- g2t-h}.
~71, ~2 ~’~

In addition, cl+h((~), l ~ N, 0 < h < 1, is a space comprising all 
functions with the first l derivatives which are Hhlder’s continuous with
exponent h.

The potential of a simple layer is given by the relation

v(x) =/ E(x,y)~(~) (3.1.10)

where the integrable density p(y) # al most everywhere on0~.The
function v(x) defined for x ~ Rn \ c~f~ is twice continuuosly differentiable
and satisfies the Laplace equation, that is, A v(x) = 0 for x ~ Rn \ cgfL
Moreover, in the case where p ~ L~(Of~) the function v belongs to Ch(Rn)
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for any h, 0 < h < 1. Note that if the function p is continuous on 0f~, then
for the simple layer potential the jump formulae are valid:

(3.1.11) ( Ov )+ OE(xo,y) p(y) dsy,

0~

( 
0v

( 0v ~ 
0v -(x0) denote the limits of ~uu~0 as x -+ 

where \0~o] (Xo) and 0u~o

(x0 E O~) taken along the external and internal normal ~xo with respect
to fl, respectively.

3.2 Necessary and sufficient conditions for the equality of
exterior magnetic potentials

This section focuses on establishing several preliminary assertions which
will be used in the sequel.

Let finite domains ~, a = 1,2, be bounded by piecewise smooth
surfaces cWG, (~a C Do, where Do is a bounded domain in the space ~

with a piec~wise smooth boundary 0~. The potentials of volume masses
and the potentials of simple layers are defined as follows:

(3.2.1) uS(x) = u(x; fG,#a) = / E(x,y)#~(y) 

and

(3.2.2)
0~

Let real numbers fl and 3’ be such that f12 + ~2 ¢ 0. By a generalized
magnetic potential we mean the function

(3.2.3)

If A1 and A2, fi,~ C Do, a = 1,2, are open bounded sets, each being a
union of a finite number of domains

(3.2.4) A~ = U al~, A2= [.J a~,
j=l j=l
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where rnl and m2 are fixed numbers, cOQ[ and 0f~ are piecewise smooth
boundaries, OAc~, ct = 1, 2, is the boundary of As, we will replace f~ and
0f~ by As and cOAc~ everywhere in (3.2.1)-(3.2.3).

Let D be an arbitrary domain (in general, multiply connected) and
let

(3.2.5) Do D

The symbol D1 stands for a domain having a piecewise smooth boundary
such that

(3.2.6) D D/)1, mes(OD1 ClOAk) = O, a = 1,2.

Let h(y) be a regular in D solution of the Laplace equation

(3.2.7) Ah(y) = y E D.

For the purposes of the present chapter we have occasioll to use the func-
tional J(h) with the values

J(h) =/3 [ tt a(y) hi ) dy
A,\(Do\~)~)

(3.2.8)

A2\(Do\Da)

+7

OAa\(Do\~)

- / p:(y) h(y)dsu],
OAA(Do\~)

where #~ and p~ are bounded integrable functions.

Lemma 3.2.1 If h(y) is any of the regular in D solutions to equation
(3.2.7), then the functional J(h) specified by (3.2.8) admits the representa-
tion

(3.2.9) J(h) = - / M. [w(x); h(x)] ds~

ODx
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with

(3.2.10) w(x) = wl(x) - w2(x),

where wC~(x), a = 1, 2, are the generalized magnetic potentials defined by
(3.2.3) and the domains D and D1 satisfy conditions (3.2.5)-(3.2.6). Here
the symbol Mx[w; h] denotes the inlegrand on the right-hand side of the
second Green formula (3.1.3):

0w(x)

Proof If h(y) is any solution to equation (3.2.7), then formula (3.1.5) gives
in combination with relations (3.2.5)-(3.2.6) the representation:

(3.2.11) - [ M.[’(x,y);h(x)] ds.:-( 
y ED~,

OD~

where E(x, y) is the fundamental solution (3.1.4) to the Laplace equation.
Multiplying (3.2.11) by ~(y) and integrating over A~ yield

(3.2.12) / ,~(y) h(y) 

Changing the order of integration (this operation is correct, since the in-
tegrals on the right-hand side of (~.2.12) have weak singularity; for more
detail see Hunter (~aa)) and retaining notation (a.2.1), we arrive 

~a~(Do~D~) OD~

If (3.2.11) i8 multiplied by pa(y) and subsequently integrated over 0A~
with (3.2.6) involved, we thus have

(3.2.14) f pa(y) h(y)dsy=- /p~(y){ fMx[E(x,y);h(x)] 
OA.~(DokD,) OA. OD,

OD~
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From (3.2.13) and /3.2.14) it follows that

A.~(Do~) F~(Do~)

= - [
OD~

Finally, subtracting (3.2.15) with a = 1 from (3.2.15) with a = 2 we 
the assertion of the lemma. ̄

Of great importance is the functional

(3.2.16) J(h,A~,~,OA~,p~)

= fl f ,a(y) h(y) dy + 7 f Pa(Y) h(y) ’

A~

where #~ and p~ are bounded me~surable functions.

Lemma 3.2.2 For the equality of exterior magnetic potentials

(3.2.17) w(x,A~,~l,0Al,p~) = w(x,A~,~,OA~,p~),

to be valid it is necessary and su~cient that functional (3.2.16) satisfies the
relation

(3.2.18) J(h, A~, ~, 0A1, p~ ) = J(h, A~, ~, 0A~, p~),

where h(y) is any regular solution to the equation

(a.~.lV) ~(~) = ~ ~ D.

Here D is an arbitrary domain for which the following inclusions occur:

(3.~.20) D0 D ~ D D D (~, ~A~).

Proof First of ~11 observe that if (3.2.18) holds, then for x ~ D0 ~ ~ and
y ~ D with h(y) = E(x, thecombination of r elation (3.2 .18) and repr
sentation (3.2.16) gives (3.2.17).
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Granted (3.2.17), we pass to a domain D1 ordered with respect 
inclusion:

(3.2.21) D

Any domains D and D1, arising from (3.2.20)-(3.2.21), must s~tisfy (3.2.5)-
(3.2.6) and, moreover,

Therefore, the properties of the potential of a volume mass ~nd those of the
potential of ~ single l~yer along with (3.2.17) imply that in (3.2.9)-(3.2.10)

(3.2.23) ~v[w(x);h(x)] : 0 x G ODa.

Together (3.2.8), (3.2.9) and (3.2.22)lead to (3.2.18) ~nd the 
completely proved.

In ~uxiliary lemm~ we agree to consider

(3.2.24) B = (A~ U A2) ~ ~0, A0 = A~ ~ 

(3.2.25) J(h,A~ ~ Ao,,~,OA~,p~) = p~(y) h(y) 

A~Ao

f+

OA=

Lemma 3.2.3 For the equality

(3.2.26) w(x;Al,#~,OA~,pl)= w(x;A2,#2,0A2,p2),

to be valid il is necessary and sufficient that the relations

xE D0\/~,

(3.2.27) #1(y) = #2(y) for y ~ Ao (if t3 ¢ 0),

(3.2.28) J(h,A~ \ Ao,#~,OAl,p~) = J(h, A2 \ Ao,#2,OA2,p:)

hold, where h(y) is any regular solution to the equation

(3.2.29) Ah(y) = O, y ~ 

and D is an arbitrary domain involved in the chain of inclusions

(3.2.30) Do

Here the set B and the functional J built into (3.2.28) are given by formulae
(3.2.24)-(3.2.25).
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Proof The statement of the lemma will be proved if we succeed in showing
that (3.2.26)implies (3.2.27)-(3.2.28). The converse can be justified in 
the same way as we did in Lemma 3.2.2.

From (3.2.24), (3.2.3) and (3.2.26) it follows 

(3.2.31) wl(x) = w~(x), x e 

and thereby we might have for the Laplace operator

(3.2.32) Awl(x) = Aw~(x), x 6 

On the other hand, the properties of the volume mass potential and the
simple layer potential guarantee that

(3.2.33) Aw~(x) = ~ Au~(x) + 7 Ave(x) = -/9 #~(x), x 6 A0,

where us, v~ and w~ have been specified by (3.2.1)-(3.2.3). Consequently,
(3.2.32)-(3.2.33) are followed by (3.2.27) and one useful relation

(3.2.34) / #,(y)E(x,y)dy : / #2(Y) E(x,Y) dy, x ~ 
Ao Ao

Other ideas are connected with the transition to a domain D1 having
piecewise smooth boundary c9D1 such that

(3.2.35) DDD1 DD~D/~.

Any domains D and D~ involved in (3.2.30) and (3.2.35) satisfy (3.2.5)-
(3.2.6) during which

(Do \ 

Under condition (3.2.6) associated with functional (3.2.8) representa-
tion (3.2.9)-(3.2.10) gives

(3.2.36) J(h) : 

With the aid of relation (3.2.34) and the properties of the domains 
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and D1 that we have mentioned the functional J(h) can be rewritten as

(3.2.37) J(h)=z[
AI\(AoOD1)

- / #~(y) h(y)dy1
A2\(AoV~D~,)

+’)’ [~A~pa(y) h(y)dsyO

- / pz(y) h(y) dsy]’
OA~

under the natural premise 0A~ fq (Do \/31) = ~. Since the right-hand side
of (3.2.36) is independent of D1, we are led to (3.2.28) by merely choosing
a sequence of domains {D~},~__I satisfying (3.2.35) such that rues(A0 
D~) ~ 0 as n ~ c~. Thus, the lemma is completely proved. 

Before giving further motivations, it will be convenient to introduce
the new notations as they help avoid purely technical difficulties. Denote
by f.e the boundary of the set 41 U 4s. In the case f~ ¢ f*~ we thus have

= OA1 \r 

In what follows we accept ~, = cOA, for c~ = 1, 2 if A1 =
Let B0 be any connected component of the open set B = (AIUA~)\40

with OBo being the boundary of B0 and set

Assume that the sets A1 and As are located in such a way that

rues (C~Bo Clr~)=0

for at least one of the domains B0. Without loss of generality we mag
suppose that B0 C (41 \ 40). Within notation (3.2.38), the set f’~ 
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represents the boundary of ~1 \/~0. A simple observation may be of help
as further developments occur:

(3.2.41) aB0 n ~’~ = (0B0)~, 0B0 f~ F/2 = (OBo)i.

With these relations established, it is plain to show that

(3.2.42) OBo = (OBo)e t~ (OBo)i.

The following lemma is devoted to an arbitrary domain D ordered
with respect to inclusion:

(3.2.43) Do D L) D D D /)0.

Lemma 3.2.4 Let (3.2.40) hold for the sets A~, o~ = 1, 2. One assumes,
in addition, that the bounded functions #~(y) and p~(y) and the functions
w~(x), ~ = 1, 2, defined by (3.2.3) coincide:

wl(x) = w2( ) (3.2.44)

Then

(3.2.45) ~ /~1(~) h(V) 

So (OBo)~

for any solution h(y) of the Laplace equation regular in a domain D from
inclusions (3.2.43).

Proof One thing is worth noting here. As in Lemma 3.2.3 relation (3.2.45)
c~n be derived with the aid of Lemma 3.2.1. But we prefer the direct way
of proving via representation (3.1.5). This amounts to deep study of D~,
having a piecewise smooth boundary OD~ and satisfying the conditions

(3.2.46) D ~1~ D1 D B0 ,D~(B\/~0) = ~ ,ODI~OBo -~ OBo~r~.

Formula (3.1.5) for any regular solution h(y) to the equation

(3.2.47) Ah(y) = 0, y ~D,
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implies that

(3.2.48) -
O, y ~ Do \ D1.

Let us multiply (3.2.48) by #z(x) and integrate then the resulting relation
over the set As \ A0. Changing the order of integration and retaining

notations (3.2.39)-(3.2.43), we arrive 

= [ h(y) .1 (y) 
Bo

and

Furthermore, let (3.2.48) be multiplied by p~(y) and integrated over
with regard to (3.2.39)-(3.2.43). Since B0 C (A1 \ ~), we thus 

= f pl(~)h(~)
(OBo)~

--O/D~ M,[ IfA ~ E(x,y)p~(y) ds~);h(x)] 

= f p~(~)h(y)ds~.
(OBo)i

Multiplying (3.2.49) and (3.2.51) by fl and 7, respectively, one can add 
results, whose use permits us to obtain the relation

(3.2.53) - M~[w(x,A~\Ao,#l,0A~,pl);h(x)] ds

OD~

Bo
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Likewise, it follows from (3.2.50) and (3.2.52) 

(3.2.54) - / Mx[w(x,A2 \ Ao,l~2,0A2,p~);h(x)] 

f
= ~ / p2(y) h(y)

(OBo)~

In conformity with (3.2.44) the proof of Lemma 4.2.3 serves as a basis for
(3.2.34), thereby justifying that the combination of (3.2.34) and (3.2.45)
gives

(3.2.55) w(x;A 1 \ AO, ~l, G~Al, Pl) : w(x,; 2 \ Ao, #2 , ~m 2, p2 )

for x E Do \ [~.

Therefore, the left-hand sides of (3.2.53) and (3.2.54) are equal by virtue 
(3.2.55) and the properties of the potentials of volume masses and simple
layers. Thus, the equality of the right-hand sides of (a.2.sa)-(a.~.54) is
established. This proves the assertion of the lemma. ̄

In what follows we shall need the concept of generalized solution
to the Laplace equation in the sense of Wiener (for more detail see Keldysh
and Lavrentiev (1937), Keldysh (1940)). In preparation for this, we 
to the boundary 0ft of a domain ~ (in general, multiply connected) such
that a neighborhood of any point of 0f* contains the points of the set
R’~ \ ~. Any domain f~ enabling the solvability of the Dirichlet problem
for the Laplace equation with any continuous boundary data falls into the
category of standard domains.

Let a function f(x) be continuous and defined on the boundary c0f~
of a domain f~, which is multiply connected and bounded. The intention
is to .use a continuous function ~(x) defined everywhere in the space ~

and identical with f(x) on 0Q (for more detail see Keldysh and Lavrentiev
(1937)). In what follows we involve a sequence of domains

with boundaries
OD~, @D~, ... , @D,~, ... ,

containing the closed set f~ t2 cOf~ and converging to the dotnain f~, so that
from a certain number m0 and on any closed subset of R~ \ ~) will be out
D,,~o. We may assume that the components of c0D,~ are analytical with
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/~m+l C Dm for any rn. The symbol h,n~ indicates the solution of the
Dirichlet problem for the Laplace equation in Drn with the boundary data

~[.0D,~. Following the papers of Keldysh and Lavrentiev (1937), Keldysh
(1940) one succeeds in showing that the sequence of functions

hl~,h~,...,h,~,...

converges in the closed domain ~ and { h,~ }~=1 converges uniformly over
a closed subdomain ~’ C ~. The limiting function hi(x ) satisfies the
Laplace equation without concern for how the domains D~n and the function
~(x) will be chosen.

Definition 3.2.1 The function hI ( x ) constructed is said to be a generalized
solution of the Dirichlet problem for the Laplace equation in the domain ~
with the boundary data f(x) continuous on Of~.

Let the domain f~ and its boundary c9~ be given in Definition 3.2.1
and let #(y) be a summable bounded function.

Lemma 3.2.5 Let the density #(y) be such thal u(x,f~,#) = 0 for 
Rn \ (~. Then any generalized solution I of t he Dirichlel p roblem in t he
domain ~ satisfies the relation

f ~(V)t~(~) =(3.2.~) O.

Proof The main idea behind proof is to extract a sequence of domains

D~,D~,... ,Din,... , Dm+l C Dm ,

containing f~ 12 c9~ and having the analytic boundaries c~D,~. As stated
above, there exists a sequence of solutions of the Dirichlet problem for the
Laplace equation, when the boundary data are prescribed by a sequence of
the continuous on 0f~ functions, say

Because the function hrn~ is harmonic in the domain Dm+~, Lemma 3.2.2
implies that

(3.2.57) f ,(v) dv = 0.
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As far as the function f(x) is bounded, the extended function ~(x) can 
so chosen as to satisfy

1~1, [fl-<M--const in R’~,

[hm~[, [hf[<_M in (~ forany m=l, 2,....

This is due to the principle of maximum modulus. The function #(y) being
bounded in (~ provides the validity of the estimate

It(v)  ons ,
which is uniform in m. Therefore, by the Lebesque theorem the limit
relation

(3.2.58) ~i~ f ,(y) h~(y)dy = f ,(y) h~(y)dy

takes place. From (3.2.57) it follows that the left-hand side of (3.2.58)
equals zero. Thus, (3.2.56) is true and thereby the lemma is completely
proved. ¯

To assist the readers in applications, we are going to show how the
assertions of Lemmas 3.2.2-3.2.4 can be extended to cover the generalized
solution h] of the Dirichlet problem for the Laplace equation by using
Lemma 3.2.4 ~s one possible example. ~ue, it is to be shown for the
problem

f ~h(~) = 0, ¯ ~ ~0,
(a.2.a9) = ¯ ,
where B0 arose from (3.2.39)-(3.2.41), that any continuous on ON0 function

W can be put in correspondence with a function h~. Being a generalized so-
lution of the Dirichlet problem (3.2.59) in the sense of Wiener, the function
h~ is subject to the relation

(3.2.60) ~h,(~) = ¯ e ~0,

and takes the values ~(x) at regular points of the boundary 0B0, what
means that

lim h~(x) = W(xo), xo ~ OBo is a regul ar point ),

irrelevant to the choice of a continuous function ~ (see Landis (1971)).
Note that the generalized solution he is identical with the solution of

the Dirichlet problem (3.2.59) itself, if any.

yielding
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Lemma 3.2.6 Under the conditions of Lemma 3.2.4 any generalized solu-
tion hI of the Dirichlet problem (3.2.59) satisfies the relation

Bo (OBo)~

= hay)p (y)

The proof of Lemma 3.2.6 is omitted here, since it is similar to
Lemma 3.2.4 with minor refinements identical with those of Lemma 3.2.5.

3.3 The exterior inverse problem for the volume potential with
variable density for bodies with a "star-shaped" intersection

We cite here a simplified version of the statement of an inverse problem of
finding the shape of a body from available values of its volume potential.
Let Do be an arbitrary domain in the space R’~ enclosing the origin of
coordinates and let Ft be an open bounded set with boundary OFt such that
(~ C Do. In the general case the set Ft is representable as the union of 
finite number of domains FtJ with piecewise boundaries OFtj in conformity
with (3.2.4). Special investigations involve a pair of functions with the
following properties:

(1)the function #(x) is measurable and bounded in 
(2) the function h(x) is harmonic everywhere except for the origin of

coordinates or a certain bounded domain D*, D* c Do.

In each such case the function h(x) is assumed to behave at infinity as the
fundamental solution E(x, 0) of the Laplace equation.

In dealing with the functions h and # the inverse problem for the
potential of volume masses

consists of finding the domain Ft enclosing the origin of coordinates or,
correspondingly, the domain D*, /)* C Ft.

This section examines the uniqueness of solution of the aforemen-
tioned inverse problem. In other words, the main goal of our study is to
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find out the conditions under which the equality of the exterior volume
potentials implies the coincidence of the emerging domains.

We now proceed to a more rigorous statement of the uniqueness prob-
lem. Let f~, o~ = 1, 2, be unknown open bounded sets with boundaries
0~t~. The set cq~t~ is the boundary of Rn \ (~ and ~ C D0, where D0 
a certain domain in the space R". The volume mass potentials ua(x) are
defined by (3.2.1) with a common density ~(y) as follows:

=/Ua(X)

Problem 1 It is required to formulate the conditions under which the
equality of exterior volume potentials

/ E(x,y),(y) dy=[ E(x,y),(y) for x e Do ~(~1

implies the coincidence of ~ and fl~.

Denote by se the boundary of the set ~e = ~ U ~. Under the
natural premise ~ ~ fl~ one can readily show that s~ = s~ U s~ within the
notations

i e i
S1 = G9~’~l (’l ~1 A~2 Sl = G9~-~l \ 81 

(3.3.1)
e e i es~=O~2ns , s~=0~2~s~.

When ~ : ~2 we put s~ : 0~ for a : 1,2. It is worth noting here
two things. First, some of the sets s~ si may be empty. Second, notation

(3.3.1) coincides with (3.2.38) in the case where A= : ~. In the sequel 
will be always preassumed that the boundary 0~, a = 1, 2, is piecewise
smooth.

The symbol Ru is used for the vector directed from the origin of
coordinates O to a point y (n k 2). Let

We might attempt the function ~(y) in the form

(3.3.2) ~(y) = ~(y) 5(y),

where

(a) the function 5(y) (in general, of nonconst~nt sign) is continuously
differentiable und sutisfies the condition

05
~=0;

0r

(b) ~(~) >Oand ~ r~ >Oforall~.
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Theorem 3.3.1 Let the origin of coordinates 0 be enclosed in the set
~1 ~ ~2 and

(1) the radius vector Ru obey the inequality

(3.3.3) (Ru,ny)_>0 for y E s~ , s~ ,

where ny is a unit external normal to the boundary 0~, a = 1, 2,
and (Ry, n~) signifies the scalar product of the vectors Ry and nu;

(2) the exterior volume potentials of the Laplace equation generated by
the domains ~, a = 1, 2, with density # of class (3.3.2) satisfy the
equality

(3.3.4)

Then

Proof We agree to consider ~)0 = ~1 ~1 ~2 with mesFt0 :~ 0. We spoke
above about f~ denoting the domain bounded by the surface s~, for which
the relation (~ = (~1 U ~ takes place.

Together condition (3.3.4) and Lemma 3.2.2 with ~ = 1 and 3’ = 
imply the relation

(3.3.5) ] ] = 0

for any function h(y) harmonic in the domain D D ((~1 fl ~).
In further reasoning the contradiction arguments may be of help in

achieving the final aim. We are first interested in the case where 5(y) = 
which admits comparatively simple proof. To put it differently, the positive
function #(y) ~ C~((~ Cl ~)2) must satisfy the inequality

0 (rn#) 0  r ¢ 0 y~ ~=~1 ~J~=~2 ~t > ~(3.3.6) C9-~ .... 

By merely setting h = 1 in (3.3.5) it is easily verified that the masses
of the bodies ft~ and f~ are equal in that case. Therefore, due to the
positiveness of the density neither of the domains f~a will be strictly inside
another. Because of this fact, another conclusion can be drawn for the
domains f~; and ft~ with different connectedness that their mutual location
together with (3.3.3) guarantees that either of the sets s:,, c~ = 1, 2, will
be nonempty.
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If for one reason or another it is known that a function H(y) is har-
monic in D, then so is the function

t OH
(3.3.7) h = Y~ Oy~

After that, substituting (3.3.7) into (3.3.5) yields the relation

(3.3.8)
k=l

dy=0,

which can be rewritten as

(3.3.9)

Other ideas are connected with transformations of the first and second
volume integrals of (3.3.9) into the surface ones. ~y such manipulations
we arrive at

H# yk cos (yk;ny) dsy
k:l

k=l
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All this enables us to write down the equation

dy= O.

(3.3.1o) = 0
for

- j ~/~(R~,ng) d%
o~

dy.

Let the function f(y) be defined on the surface se by the relations

1,. y~s~,
(3.3.11) ~(~) = 0, ~

under the n~tural premise rues s: ~ 0, ~ = 1,2.
The function so constructed is ~imed at extending relation (3.3.10) 

~awlve the function H~ being h~rmonic in ~e and taking the vMues f(y) on
the boundary surface s~ except for a set of zero surface me~ure, by means
of a sequence of surface patches ( e se "
e~ ~Oask~,where

Putting

(3.3.13)
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we might select a monotonically increasing sequence of functions {f~ (y)} k=,
being continuous on st such that

f +l(y) >

Here7k(Y) refers to a continuous function whose values range from 0 to 
For every continuous on st function f~:(y) the generalized solution

HA of the Dirichlet problem is introduced to carry out more a detailed
exploration. Since

f~+i(Y) >- f~(Y), y ~,

the principle of maximum modulus with respect to the domain f~e implies
that

(3.3.14) HIk+l (Y)

In so doing, [H~,k [ < 1.
As a matter of fact, {HI~ }¢° is an increasing sequence of functions

k--1
which are bounded in f~* and harmonic in f~*. By Harnack’s theorem this
sequence converges to a function HI uniformly over f~e and the limiting
function appears to be harmonic in ~*. The convergence HI~ (y) --, I (y)
occurs for all y ~ ~)1 U ~)2. Using the results ascribed to Keldysh and
Lavrentiev (1937), Keldysh (1940) we see that the function HI~ takes 
values f~(y) on st at any point of the stability boundary. Due to this
property the construction of f~(y) guarantees that the limiting function
HI(y) takes the values f(y) on the boundary a~ except for a set of zero
measure.

When k is held fixed, the sequence {Hm~ }~:~, by means of which
we have defined the function HA in Section 1.2, converges in the closed
domain f~ and I tIm~k I < 1 for m = 1,2,.... Hence the Lebesque theorem

on the passage to the limit yields

lim J(Hm~,~)= J(HI~)

for any fixed k.
The function H]~, in turn, converges to HI in the closed domain f~

and [ HI~ [ < 1 for k = 1, 2,.... On the same grounds as before, we find by
the Lebesque theorem that

lim J(HIk ) = J(HI).

Because of (3.3.10),
J(H,~%) = 
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for any fixed k and m = 1,2,.... Consequently, Y(/-/]~) = 0 for any k, 
that

/3.3.15) J(Hf) = 

where the function //] is harmonic in ~ and takes the boundary values
equal to flY) from (3.3.11) almost everywhere. Moreover,

/3.3.16) 0 < H~, < 1.

In continuation of such an analysis we refer to the functional
with the values

e
s~ U s~

(3.3.17)

Since

HI #(y) (Ry, ny) ds~

-/
82 U 81

H! #(y) (Ry, nu) ds~

]

k--1

(3.3.18)
a-~

n# + r ~rr

:r n-1 ~ ’
condition (3.3.6) assures us of the validity of the inequality

(3.3.19) ~--~-y~(#y~) >0, when r¢0 foryE~lU#t~.
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In the estimation of the quantity J(HI) with the aid of (3.3.16), (3.3.19)
and (3.3.17) we derive in passing the inequality

e i
s~ U s~

-/

HI #(y) (Ry, ny) dsy

HI #(y) (Ry, nu) dsy

so that we arrive at one useful relation

J(HI) > / I #(y) ( Ry, n ~) dsy
e Us~

81

- f HZ~(~)(R~,n~)
i

s~ U s~

- f ~(v) (~t,, ~,) 

+ J #(y) (Ru,ny) dsy
i

82

dy.
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The preceding manipulations are based on the well-known decomposition

fh \ f~0

-- / # (Ry, ny) dsy ,
i

82

where ny is a unit external normal to the boundary cOf~ for a = 1, 2.
In accordance with what has been said, the function HI takes the

boundary values f(y) almost everywhere on se= sle U s~.e In view of this,

substituting the data of (3.3.11) into the preceding inequality yields

(3.3.20) J(H]) 

dy.

Putting these together with relations (3.3.15) and (3.3.19) we deduce 

/ E° ]z~ ~ N (. v~) > o.
k----1

Since #(y) > 0 for any y E D1 U D2, the combination of the second
condition of the theorem with (3.3.16) gives

JH] #(y) (Ry,nv) dsv >_ O,
i

81

(1 - H/)#(y) (R~,n~) d% >_ O,
i

82
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meaning J(H]) > 0, which disagrees with (3.3.15). Thus, the theorem 
its first part is proved.

The situation in which the density #(y) happens to be of nonconstant

¯ sign and satisfies (3.3.2) with items (a) and (b) comes second. In 
(b) condition (3.3.4) written for an arbitrary function H(y) harmonic in D
implies relation (3.3.10), that is,

(3.3.21) J(H) = 0,

where

f
J(H) = J H(y)#(y) (Ry,ny) dsy

f
- J H(y)#(y) (Ry,ny) dsy

- H(y) 

fh \

dy

The well-established decomposition

J(H) = J~,+(H)+ J#-(g)

applies equally well to the following members: the first term J,+(H) com-
prises those parts of integrals in (3.3.21) which are taken over 0~ and
~ \ ~0, where ~(y) > 0 for all y ~ fil U ~. The second term J,- 
corresponds to those parts of integrals in (3.3.21) which are taken over
and ~ \ ~0, where ~(y) _< 0 for all y ~ ~1 

Let

0~÷ = {~ e 0~, ,(~) > 0}; 0~,- = {~ e 0~, ,(~) < 0};
(3.3.22)

~+ = {~ e ~, ~(~) > 0}; ~.- = {~ e ~, ,(~) ~ 0}.
Bearing in mind (3.3.1) and the way notation (3.3.22) has been introduced
above, it is possible to produce a number of the new symbols. In particular,
it is fairly common to use

~ {~e~~. .(~) >0} ~=~,~
S~+ ~

~. ~ ¯
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Within these notations, we introduce the function f(y) defined on the sur-
face se = e es1 tO s~ by the relations

1 for yes1,+, s2,-,
(3.3.23) f(Y) = fo r y

Under the premises of the theorem it follows from the foregoing that f(y) k

const for y ~ se. As in the first part of the proof it is necessary to extend
relation (3.3.10) in order to involve the solution Hi(y) of the Dirichlet
problem for the Laplace equation. The boundary values taken by Hi(y)
on 8e coincide with those from (a.u.a) almost everywhere. In this line, we
obtain

(3.3.24) J(H:) = 0,

where

and

(3.3.25) J/*+(H]) 

J(H]) = J~,+(HI) + J/*-(H])

1 ¯ #(y) (Ry,ny) dsv

81/,+

i
81#+

HI(y) #(y) (Rv, n~) dsy

-/
i

82/,+

Hi(y) p(y) (R~, ny) dsy

HI(y) ~- ~0
k=l ~Yk (t’tYk)

HI(Y)[~0

dy

dy;
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(3.3.26)
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Zu-(H]) = / H](Y)#(Y)(Ru’nu) u

dy

i
81#-

82#-

i
82#-

1 ¯ #(y) (Ry,ny) 

HI(Y) #(Y) (Ru, u) dsu

(~ \ ~o)#-

+ Hi(y ) ~ -ff~y~(#y~) dy.

(~2 \ ~o),-
Conditions (3.3.2) in terms of (3.3.22) imply the chain of inequalities

(3.3.27) ~L-~(~y,) >0 for ye(~\~o)u+, 4=1,2;
k=l

(3.3.28) ~y~(#y~: <0 for Ye(~a\~0)u-, a=l,2.

In view of the bounds 0 < HI < 1 for any y ~ fl*, we are led by relations
(3.3.2), (3.3.27) and (3.3.28) to the estimates

(3.3.29) - Hi(y ) ~ -~y~(#y~) 
k=l

(~ \ ~o),+

_> - f ,(v) (R~, ~) 
81~+

i
82~+
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(3.3.30) Hi(y) 0

82tt-

-/
i

81#-

From (3.3.27)-(3.3.30) fo].]ows that

(3.3.31)

(3.3.32)

#(y) (Ry, ny) dsy

,u(y) (Ry, ny) dsy.

151

Taking into account (3.3.3), the properties of the function #(y) specified
by (3.3.2) and the properties of the function Hi(y) revealed in estimates
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(3.3.23), we deduce that every term in square brackets on the right-hand
sides of (3.3.31)-(3.3.32) is nonnegative and, moreover, at least one of 
is strictly positive. Thus, we should have J(H]) > 0, violating (3.3.24).
The obtained contradiction proves the assertion of the theorem. ̄

Remark 3.3.1 Condition (3.3.3) of Theorem 3.3.1 is satisfied 
is a "star-shaped" set with respect to the point O E ~)1 ~1(~2. For each such
set, R~ \ (~)1 ~1~2) appears to be a one-component set. In particular, 
either of the sets ~1 and (~2 is "star-shaped" with respect to a common

point O, we thus have (3.3.3).

3.4 Integral stability estimates for the inverse problem of
the exterior potential with constant density

As we have already mentioned in preliminaries to this chapter, the question
of uniqueness of inverse problem solutions is intimately connected with their
stability. The general topological criterion of stability ascribed to Tikhonov
(1943) and based on the corresponding uniqueness theorems implies the
qualitative stability tests.

In this section several stability estimates for the inverse problem of the
exterior potential for n _> 3 will be derived in the class of "non-star-shaped"
bodies that consists of the so-called "absolutely star-ambient" and "abso-
lutely projectively-ambient" bodies including those with "star-shaped" in-
tersections and, correspondingly, with boundaries having intersections only
at two points by a straight line parallel to a known direction.

We denote by u(x; A~) = u(x; Ac~, 1) the volume potential of the body
As with unit density. Throughout this section, we retain the notations
given by formulae (3.2.~)-(3.2.4), (3.~.3S) and (3.3.~) and attempt 
damental solution of the Laplace equation in the form (3.1.4). In particular,
we agree to consider

1 1
(3.4.1) E(x,y)= 4rr

for n=3andr~y =
As we will see a little later, it will be convenient to deal with

(3.4.2) w(x) = w(x; A~) - w(x; 

where

(3.4.3) w(x; d~) = 

- (~ + Z~q~) ~ 
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71 and/31 are real numbers, %2 +~3~2 ~ 0, and q = (ql,... , qn) is a constant
vector.

For A1 :/: A2 the traditional tool for carrying out this work involves

(3.4.4)

(3.4.5)

where the function

(3.4.6) q~(y) = (TaR~ + ~lq, ny 

is adopted as the scalar product of the vectors 71Rv + ~lq and n~. Here
n~ denotes a unit exterior normal to the boundary OAe, cr = 1,2. In what
follows we accept A~ = ~c~ unless otherwise is explicitly stated, where
f~a is a simply connected domain with a piecewise smooth boundary 0f~.
Also, either of the sets f20 = fh Cl f~ and R’~ \ (fi~ U ~) is supposed to 
simply connected.

Theorem 3.4.1 Let U(x; ~) be the volume mass potentials of domains
~, n >_ 3, a = 1, 2, whose constant density is equal to 1. One assumes, in
addition, that the potentials U(x, f~c~) can harmonically be extended from
Rn \ ~ for x ~ n \ D*, where D*is a simply con nected domain wit h a
smooth boundary OD*, D* C f~e. Then, within notations (3.4.2)-(3.4.6),
the estimate

(3.4.7) F e -- F i < C1 max
0 w(x)

-- xEOD* ~x

is valid with ca = const > 0 depending only on the configuration of the

boundary O D*

at a point x ~ OD* of the function w(x), which has been harmonically
extended to the boundary

Proof Let D and D1 be arbitrary domains with piecewise smooth bound-
aries cOD and OD~ such that

D D bl ~ D~ D ((~ U ~)~).
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A simply connected domain D.1 with a smooth boundary OD.1 is much
involved in further reasoning to avoid cumbersome calculations under the
agreements that D1 D D./and none of the singular points of both functions
u(x; ~a), ~ -- 1,2, lies within the domain/9./.

One way of proceeding is to refer to the functional

(3.4.8) J(H) = / H(y)~(y) dsy- / H(y)~(y) 

where H(y) is an arbitrary harmonic in D function, (I)(y) has been defined
in (3.4.6) and c9~ is the boundary of ~2~ C ~, n>_3, a =1, 2.Be-
fore we undertake the proof of the theorem, a preliminary lemma will be
introduced.

Lemma 3.4.1 The functional J(H) specified by (3.4.8) admits the estimate

(3.4.9) I J(H)I < c~ max IH(y) max   w(x)
-- yEOD1 xEOD .1 ~ ’

where c~ -- const > 0 depends on ~he boundary OD*~.

Proof Indeed, any function H(y) harmonic in the domain D D ~ can be
represented in the form

/
{ H(y), y~ D~,(3.4.10) Mx [E(x,y);g(x)] = 0, y ~ R ~ ~ ~,

OD~

where E(x, y) stands for the fundamental solution of the Laplace equation
for n ~ 3. The expression for M[u; v] is as follows:

Ou Ov
(3.4.11) M[u;v] = v.(x) On. On~ u(x)

with n~ denoting a unit external normal to OD~ at point z. Furthermore,
we will use as a tool in achieving important results a functional and a
harmonic function which carry out the following actions:

(3.4.12) Y(h) = f h(y) dy- dy

and

(3.4.13) =
k----1
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Here H(y) is harmonic in D and the numbers 7~, ~ and q~ have been
defined in (3.4.6). Via representation (3.4.10) for the function H(y) we
might have

(3.4.14) h(y) ey = ~y~ [(7,y~ + ~lqk) H(y)] ey
~, ~, k=l

for a = 1, 2. Using the well-established decomposition for n _> 3

(3.4.15)
k=l

: ~ E(x, ~) - ~ (~ + ~lq~) 
k=l

we rewrite the expression in curly brackets from the last formula (3.4.14)
as

(3.4.16)
~ k=l

where the function w(x; ~) has been defined in (3.4.3). Therefore, with
the aid of (3.4.14) and (3.4.16) we establish for any pair of the functions
h(y) and H(y) built into (3.4.13) the relation

(3.4.17) / h(y) dy: / M~[w(x;~.);H(x)] 
cOD~
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Some progress will be achieved if the function h(y) will be taken in the
form (3.4.13) with further substitution into (3.4.12). As a final result 
get the equality

(3.4.18) j(H) J( H),

where the functional J(H) has been defined by (3.4.8). On the other hand,
(3.4.12), (3.4.17) and (3.4.18) imply 

(3.4.19) J(H) = / M~[w(z);H(x)] 

with w(x) being still subject to (3.4.2)-(3.4.3).
Via representation (3.4.19) one can derive an upper bound for the

absolute value of the functional J(H). In the light of the premises of the
lemma the function w(x) is harmonically extendable from ~ \D~to the
domain PC~ \ D*’. When solving the exterior boundary value Neymann
problem, one can find on the surface cgD*’ the density w(y) of the simple
layer potentiM

(3.4.20) v(x) = / w(y) E(x,y) 
OD"

for which

[-~n~ ]- 0 w(x) for x e OD*’(3.4.21)
c9 v(x) - cgnx

,

where v(x) denotes the limiting value of

0 v(:e’) as :e’ OD*’)
On---2

along a unit external normal n, to D*’. In conformity with the uniqueness
of a solution of the exterior boundary value Neymann problem (n >_ 3),
relation (3.4.21) yields

(3.4.22) w(x) = v(x) for x 6 ’~ \ D*’,
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showing the notation w(x) to be a sensible one. Consequently, 3.4.19),
(3.4.20) and (3.4.22) serve to motivate the representations

OD1 0 ’

OD*j ODI

With (3.4.10) in view, the latter becomes much more simpler:

J(H)= / w(y)H(y)(3.4.24) dsy .

OD*’

Thus, the functional J(H) can be estimated as follows:

(3.4.25) IJ(H) I< max lH(y)l ] tw(y) yEOD*~

OD*~

< max Ig(y)l f I~(y)l d%.
y~OD~ J

On the other hand, we should take into account that the function w(y)
solves the integral Fredholm equation of the second kind

(3.4.26) (I - T)~ = 

on the basis of (3.4.20)-(3.4.21) and the formulae for the jump of the normal
derivative of the potential of the simple layer. Here I is, as usual, the
identity operator. The operator T and the function f act in accordance
with the following rules:

OE(x, y)
(3.4,27) Tw = 2

On~ w(y) ds~ 
OD*~

f(x) =-20w(x)
On~ ’

~ E OD*’.

On the strength of the uniqueness of a solution of the exterior Neymann
problem (n >_ 3) the inverse operator (I - -1 should bebounded in the
space of all continuous functions. Thus, (3.4.26 and (3.4.27) imply 
inequality

(3.4.28) max lw(y) l < c~ w(z) c2 =- const > 0.
yEOD.~ -- x~OD.~ ~

Estimate (3.4.9) is an immedi’ate implication of (3.4.26) and (3.4.28) 
this proves the assertion of the lemma. ̄
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We return to proving the theorem by appeal to a function f(y) defined
on the surface se = e esI (2 s~ by the relations

-sign(I)(y) for y E 
(3.4.29) f(Y) = sign(I)(y) for y G 

By means of the function f(y) one can produce a generalized solution
HI (y) of the Dirichlet problem for the Laplace equation in ~uch a way that
HI(y) will be harmonic within ~e, I H~.(y)[ _< 1 will occur for y ~ ~
and the boundary values of HI (y) on the boundary s~ will coincide almost
everywhere with f(y) involved in (3.4.29). All tricks and turns remain
unchanged as in the proof of Theorem 3.3.1. The way its result is used
here is to select a sequence of functions { gm~ }~=~, l Y~ ~ ~ 1, which
makes it possible to find a function H]~ with relevant properties:

~H]~]~ 1 and HA converges to HI in ~.

Under the conditions of the theorem we are now in a position to consider
the domain D*, D~ C ~, instead of the domain D*~, arising from the
preceding lemma. Since ~* C fie, estimate (3.4.9) implies that

0
(3.4.30) Y(U~) < I J(H~)I < max w(¢)

-- ~ ~EOD* ~

Holding k fixed and passing ~o ~he limi~ in (~.4.~0) as m ~ ~, we derive
~he estimates

(~.4.~) ~(~) < I~(~)~ < ~(~)
-- -- xEOD* ~

~

which after another passage to the limit as k ~ ~ look as follows:

(a.4.a~) j(g~) < ~j(H~)I < c~ max w(z) 
-- -- x~OD* ~

On the other hand, the boundary values of HI on s~ have been defined
by (3.4.29), so that (3.4.8) gives

(3.4.33) / I¢(y) l dsy

S1

+ / I~(y) l dsy
82

+ / HS(y) ~(y) dsy
i

81

i

= J(H]).
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Since I H] I -< 1, inequality (3.4.33) is followed 

(3.4.34)

- / IcD(y) l d% <_ J(H]).
i

82

Now estimate (3.4.7) is an immediate implication of (3.4.32) and (3.4.34)
with notations (3.4.4)-(3.4.6). This completes the task of motivating 
desired estimate. []

We give below several corollaries to Theorem 3.4.1 that furnish the
justification for what we wish to do.

Corollary 3.4.1 Let ~1 ¢ ~2" If there exist a point O, numbers
and a vector q such that

(3.4.35)

i i e e
Sl 82 81 82

then the exterior potentials u(x; 0~) of a constant density cannot coincide,
that is, the set R’~ \ ( (~1 U (~) encloses a point ~ such 

(3.4.36)

Remark 3.4.1 In the case where 71 = 1 and ~1 = 0 we might have
¢P(y) = (Ry, n~) and

(3.4.37) I I(au,n ) d% I I(Ru’nY) d%
i i

81 82

_< / I(R~, ny)[ dsy

81

+ / I(R~,ns) d%

82
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instead of condition (3.4.35).
Note that Corollary 3.4.1 is still valid if (3.4.37) is replaced 

(3.4.38) ]’ I(Ry,ny), dsy + ] [(Ru,nu)[ dsy
i i

81 82

81 82

It is obvious that (3.4.37) follows from (3.4.38). We claim that (3.4.38)
holds if, in particular, the set {~1 f3 ~2 is "star-shaped" with respect to a
certain point O ̄  {~1 f3 {~2, both sets se a = 1,2, are not empty with

mes (s~ f3 s~) = 0. To avoid generality for which we have no real need, 
will consistently confine ourselves to a domain D C R’* bounded by the
surface cqD. Then the volume of D can be expressed by

mesD=-/dy= l /[~-~ OYk ]dy 1/(Ry,ny) dsy
D D k-~l OD

yielding

(3.4.39) mesD = 1 ] (R~,n~) ds~
n

OD

In particular, if the set ~1 f3 ~2 is "star-shaped" with respect to at least
one point O ̄  ~1N~2, mes(s’1 f~s*2) = 0 and mess: :/= 0, a = 1,2, then

(Rv, ny) _> 0 on i~, ~= 1,2. Because of (3.4.39), themeaning of r elation
(3.4.38) is that we should have

mes(~,~) > mes(~).

Remark 3.4.2 If 7x = 0 and/?~ = 1, then ¢(y) = (q, nv) and condition
(3.4.35) can be replaced 

(3.4.40) /[(q, ny)[dsv+J[(q,n~ )[dsg

81 82

81 S2

The preceding inequality holds true if, in particular,

mes( 
i i by a straight line, parallel to theand the intersection of the set s~ t_J s~

vector q, contains at most two points or two whole segments.
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Remark 3.4.3 A geometric interpretation for conditions (3.4.37) and
(3.4.40) is connected with introduction of a surface piece

such that a ray originating from the point O intersects every part g~ either
at one point or by one whole segment. Let

II v,~(~)II = I vK(~,) I + I v~(,) I + ... 
where [ VK(~J) [ means the absolute value of the volume of the cone con-
structed over the piece ~J with vertex O. Within this notation, condition

(3.4.37) can be rewritten 

(3.4.41)

Likewise, let the piece g = ~1 U ,.. U ~rn be such that every part g-r
can uniquely be projected onto a plane N _1_ q by straight lines parallel to
the vector q. If so, it is reasonable to try to use the quantity

(3.4.42) II o-~.(~)II = I o,,w) I + I o,,(~) I + ... + I os-w,,) 
where I cr~(~j) [ means the absolute value of the surface area of ~r(~J), 
projection of the dimension n - 1 of ~J onto the plane N. Therefore,
condition (3.4.40) becomes

(3.4.43)

Under condition (3.4.41) the bodies fh and f~ fall within the category 
"absolutely star-ambient" domains. The bodies f~ and f~ are said to
be "absolutely projectively-outwards-ambient" provided condition

(3.4.43) holds.
If, in particular, under the initial conditions the set ~)~ ~1 ~; is "star-

shaped" with respect to an inner point, then the domains ft~ are referred to
as "absolutely star-ambient". Such domains fta turn out to be "absolutely
projectively-outwards-ambient" when a straight line, parallel to the vector
q, will intersect the boundary of the set ft~ ~1 f~ at most at two points.

Remark 3.4.4 Because of (3.4.7), we might have

0 < F~ - Fi

for any "absolutely star-ambient" or "absolutely projectively-ambient" do-
mains.

Other stability estimates given below are asserted by Theorem 3.4.1.
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Corollary 3.4.2 Let a set P conlain all singular points of the potentials
u(x; ~), ~ = 1, 2, and let

if
(3.4.44) In(x; Q1) - u(x; Q2)I < x 6 0D*,

then

(3.4.45) Fe - Fi _< C3 ~- ,

where ca = ca(OD*) =- const > 0 and l = dist(OD*,s ~) denotes the dis-
tance between OD* and s~.

Indeed, the function u(x) =_ u(x; ~1) - u(x; Q2) is harmonic in the
domain R’~ \/5 and, consequently, is uniformly bounded in a domain 
ordered with respect to inclusion: R" \ D C G C ~ C ’~ \ /5. T herefore,
estimate (3.4.45) follows from (3.4.7) and (3.4.44) on the basis of the 
known estimates for the derivatives of the function u.

Assuming rues (0f~l ;3 0~2) = 0 and retaining notations (3.4.40) 
(3.4.42), we recast estimate (3.4.7) 

[1t II - I1 II] + [11 II - II II]

-- x6OD*

Our next step is to define for the domains ~1 and ~2 the distance
function by means of the relation

(3.4.46) dist (~1, ~2) = rues 

where ~1®~2 = (~IUQ2)\(~ ~2) designates the symmetric difference
between the domains ~1 and ~2. Once equipped with the distance function
defined by (3.4.46), the union of domains becomes a metric, space. For more
detail we refer the readers to Sobolev (1988).

Corollary 3.4.3 If ~o = ~ ~ ~ is a "star-shaped" set with respect lo a
point 0 ~ ~ 7~ ~ and all the conditions of Theorem 3.4.1 (or Corollary
3.4.2) hold, then the estimates

(3.4.47) d(~2~,D2) < c~ max Ow(z)
-- x6OD*

and

(3.4.48) d(a,, a~) _< c5 

are true.
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Proof Indeed, if the domain ~0 is supposed to be "star-shaped" with
respect to a point O E ~t0, then on account Remark 3.4.1

F~ - Fi >_ nmes (fl~. (3 ~2)

and Fi < F~, so that estimates (3.4.47) and (3.4.48) follow from (3.4.7)
and (3.4.44). 

Corollary 3.4.4 If under the premices of Corollary 3.4.2 any straight line,
parallel to the vector q, may intersect the boundary of the set ~1N~2 either
at most at two points or by two whole segments, then

mes(~l(3~2) -~0 as 6-~0.

Proof We proceed to establish this relation by inserting 71 = 0 and/31 = 0.
i iSince any straight line parallel to q may intersect s1 and s2 at most at two

points, the inequality F~ - Fi >_ 0 is certainly true. On account of Remark
3.4.2 estimate (3.4.45) implies the above corollary. 

Remark 3.4.5 Under the conditions of Theorem 3.4.1 we might have

(3.4.49) F~- Yi ~_ / [w(y)[ dsu,
OD*

where the function w(y) and the function w(x) for x ~ OD* are related

by the integral equation

1 w(x)+ / 0 w(x).
(3.4.50)

--~ ~ E(x,y)w(y) u = On,
OD*

A preliminary step in establishing the preceding relationship is to pass
to the limit in (3.4.25) with respect to k and m in order to demonstrate
that the functional J(H]) satisfies the estimate

IJ(H~)I ~ / I~(Y) I 
OD*

whose use permits us to show that (3.4.49) becomes an implication 
(3.4.34).

It is worth noting he’re two things. With the aid of relations (3.4.49)-
(3.4.50) one can derive various estimates of the integral type. Some of them
are more sharper than (3.4.7) and (3.4.47).
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Being concerned with the difference of the potentials

(3.4.51)

and the sphere S/~ of radius R, we will assume that either of the domains
~)~, o~ = 1, 2, lies entirely within the sphere n and the subsidiary Cauchy
data can be estimated as follows:

(3.4.52)
Ou

where G(/~) is a part of Sn. Relying on the well-known estimates for 
solution to the integral equation (3.4.50) in terms of the right-hand function
and exploiting some facts from Lavrentiev (1956), (1957), we can write 
explicitly a function ¢(¢1) giving the upper bound for the right-hand side
of (3.4.49) such that ¢(el) -* 0 as el -~ 

Similar remarks are still valid with regard to inequalities (3.4.7) and
(3.4.45), whose right-hand sides are estimated in terms of the Cauchy data
(3.4.52) like c6 ~(¢1). For example, if ¢ emerged from (3.4.44), each 
number admits the expansion e = const ~(el), where e~ arose from esti-
mates (3.4.52) and ~(~) ~ 0 as ~ --, 0. Also, it is possible to represent
~(e~) in the explicit form.

Other ideas are connected with the derivation of stability estimates.
Let open bounded sets A1 and A2 be so chosen as to keep the notations
given by (3.2.38). For the potentials u(x; A~) of the sets A~ with unit den-
sity it would be possible to get stability estimates and uniqueness theorems
similar to those stated above.

As an example we cite below an assertion similar to Corollary 3.4.1.

Theorem 3.4.2 Let there exist a point O, the numbers ~/~ and ~, 7~ +~ 7£

O, and a constanl vector q such lhat

If the potentials u(x; Ac~) satisfy the equality

(3.4.54) u(x;A~) = u(x;A2) x ~ R~\ (~l U~

then Aa = A~.
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Proof As usual, this amounts to taking into consideration the union -~1

~2. When that set is not connected, we initiate another construction

X* cR’~\ (A~u

for which A~ n (~1 U ~2) consists of a finite number of points. The set A*
can be regarded as a union of domains with piecewise boundaries except for
a finite number of points. Moreover, by construction, the set ~ U ~ U A*
will be connected.

Set

(3.4.55) ~ = ~1 U A~, ~ = ~ U A~.

Let us denote by u(x;A*) the potential of the set A* with density
~ ~ 1. Condition (3.4.53) implies that

u(x; A1) + u(x; A*) = u(¢; m~) + u(x; for z ~ R"~ (A~U A~ UA~),

so that we obtain

(3.4.56) u(x; B1) = ~(Z; B2) for z G R" k (~ U ~2).

Since ~1 U ~ is a connected closed set, Lemma 3.2.2 yields the relation

B~

which is valid for an urbitr~ry function h harmonic in D D ~ ~ ~. In
view of (3.4.55), the l~st equality becomes

A~

As in the proof of Theorem 3.4.1 we need the function

{-si~n~(~) to~ ~,

(~.4.~9) f(~) si~, ~(~) ~or ~ ~ ~,

0 for y

and insert in place of h

= +
k=l
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Adopting the arguments of Theorem 3.4.1 we arrive at the relation

A1 A2

which can be rewritten for later use as

f HfO(y) dsy- f Hf~(y) (3.4.60)

Since IN! I ~ 1 on ~U~, the boundary data (3.4.59) and relation (3.4.60)
assure us of the wlidity of the estimate

which contradicts (3.4.53) and thereby proves the theorem. 

3.5 Uniqueness theorems for the harmonic potential of
"non-star-shaped" bodies with variable density

Unlike Section 3.3 we will prove in the sequel the uniqueness theorems for
the volume potential of the Laplace equation

zXh = 0

related to "non-star-shaped" bodies. Also, in contrast to Section 3.4 the
available densities do not have constant signs.

Let As, c~ = 1, 2, be open bounded sets satisfying conditions (3.2.38).

Theorem 3.5.1 If there exists at least one constant vector q, for which
the following conditions hold:

(1) either of the sets (s~)J(j = 1,... ,jl) and (s~)j ( j = 1,... ,j2 
is not empty and any straight line, parallel to the vector q, may
intersect the set F~ U F~ either at most at two points or by two
whole segments;
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(2) the function p(y) is subject to the relation O#(y)/Oyn = O, where
the axis Oyn is direcled along the vector q and the function #(y)
does not have, in general, constant sign for all y ¯

(3) the harmonic potentials u(x;A~,#) with density # possess the
property

(3.5.2) ~(x; A1, #) = ~(x; A~, #) for ̄  ̄  ~t~ \ (A1 U ~) 

then A1 = A2.

Proof To avoid cumbersome calculations, we confine ourselves to the case
A~ = f~, which admits comparatively simple proof. Condition (3) just
formulated and Lemma 3.2.2 with fl = 1 and 1’ = 0 imply that any function
h(y) being harmonic in a domain D, D D ((~1 U (~), complies with 
relation

The meaning of this is that h(y) represents a regular solution to equation
(3.5.1) over D. To do the same amount of work, the function h will 
taken to be

h(y) = q~ Oy~ ’ = (q ~’"" ’
k----1

where H(y) is an arbitrary harmonic in D function. Upon substituting the
last expression into (3.5.3) we see that condition 2) of the present theorem
may be of help in transforming the volume integrals to the surface ones,
whose use permits us to establish the relation

(3.5.4) #(y) H(y)(q, ny) u- / #(y) H( y)(q, ny u=O,

where (q, ny) is the scalar product of the vectors q and ny. Here, as usual,
ny is a unit external normal to 0~a, (~ --- 1,2, at point y.

Good judgment in the selection of notations

s~ = { y ¯ 0~, [#(y) ,(q, nu)] > 

s~- = { y ¯ 0a2, [#(y)(q, ny)] < 
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with saving (3.3.1) may improve the clarity of the exposition. In particular,
we are led by relation (3.5.4) 

(3.5.5) H(v) ,(v) (q, 
s~+us1 Us~l+us1

- ff H(y)#(y) (q,n~) dsu = O.

s~+us2 u s~+ U s~

What is more, it is supposed that a function f(y) is defined on the surface
se by means of the relations

1 for yEs~+,s2 ,
(3.5.6) f(Y) = 0 for y E s~-, s;+,

provided that f(y) # const for y E s*.

As in the proof of Theorem 3.3.1 relation (3.5.5) can be extended 
cover a generalized solution H] of the Dirichlet problem for the Laplace
equation. In that case the boundary values of the function HI will coincide
almost everywhere on the boundary s* with f involved in (3.5.6). Under
such a formalization, (3.5.5) and (3.5.6) together imply 

(3.5.~) ~(@) = 0,

where
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- / He it(u) (q, 

j ~¢ it(u) (q, ,,~)
i-

Under the agreements f(~) ~ const and 0.( hi ~ 1 for ~ ~ ~e, we 
now in ~ position to evaluate the integral

(3.5.9) Jl= f H~p(y)(q, ny) dsy- f H$p(y)(q, ny) 

8~I + 82

Indeed, by construction, [p(y)(q, ny)] > 0 on + and [, (y)(q,n~)] ~ 
~- and, therefore, J1 > 0,on 82
The next step is the estimation of another integral

(3.5.10) J2= f g(y)(q, nu) dsu-f H~it(y)(q,n~)dsv.

In what follows y~ will denote the point with components (y,, y~,... , y~_~, O)
and dy~ will stand for a volume element of the dimension n - 1. If (s~+)~ is
a piece of the surface s~+, for which there exists a unique projection onto
~ hyperplane N perpendicular to the vector q, then it does so to the axis
Oy~ and (3.5.10) can be rewritten 

(3.5.11)

+ J it(y)(q, ny) 

(~+)’

- / HI It(y) (%n~) ds~.

s~+

In the case where rues ~r(s~+) ¢ 0 we thus have

it(y) (q,,~) > 0

s~+ \ (8~+)’
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and

f #(y) (q, ny) dsy - J H! #(y) (q, nu) ds~

(s~+)’ s~+

f
= / #(y’)[1- HI] dy’ > 0.

+)

The same procedure works for the integral J2 > 0 under the constraint
mes~r(s~+) ¢ 0. By exactly the same reasoning as before we can deduce
that Ja > 0 for the integral

(3.5.12) J3= / H]#(y)(q, ny) ds~- / #(y)(q, 

81 5"2

under the natural premise mes ~r(s;-) 7~ 
With the obvious decomposition J = J1 -t- J2 -t- J3 in view, we obtain

the inequality J(H.~) > 0 for the case where

mes ~r(s~ U s~) 7~ 

If it is not so, that is, mes ~r(s~ U s~) = 0, we can state under the conditions
of the theorem that mess~ ¢ 0 for every set s~, c~ = 1, 2. Then at least
one of the integrals J,, c~ = 1, 2, should be strictly positive. But this fact
is not consistent with (3.5.7). We have a contradiction and finish the proof
in the case where f(y) 7~ const for y 6 se. On the contrary, let f-- 1
for y e se, it being understood that #(y) > 0, e =s~+ U s~-, s~ = s~-

i = s~+. It follows from the foregoing that the condition O#/Oy,~ = 0
and s2
assures us of the validity of the relation

(3.5.13) - #(y) (q, E(x, 

+ / #(y)(q, ny)E(x,y) for x 6 Q~

with
~t(X) ---- ~t(X; al, #) -- U(X; a2, 
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Furthermore, the combination of (3.5.13) and (3.5.4) with H(y)lye,e 
E(x, y)lye~e gives

(3.5.14)
Ou
0x--~" = #(Y) (n, ny) Go(x, y) dsy

i-

- / #(y)(q, ny)G0(x,y) dsy for x¯

s~+

where
H(y) - E(x, y) = Go(x, 

is Green’s function. This serves as a basis that for x ¯ f~e we would have
Ou/Ox~_ > 0, violating the relation c)u/c)xn = 0, valid for all x ¯ R~ \ ~)e,
~e = f~l U ~2. The obtained contradiction proves the assertion of the

theorem. ¯

3.6 The exterior contact inverse problem for the magnetic
potential with variable density of constant sign

This section is devoted to the problem of finding the shape of a contact
body from available values of its magnetic potential represented as a sum
of potentials generated by a volume mass and a simple layer.

Recall that, in conformity with (3.2.3), the magnetic potential is de-
fined to be

wS(x) = w(z; As, OAs, #~,

OA,~

where/3 and 7 are real numbers such that/3 2 + 72 ¢ 0 and E(x, y) is the
fundamental solution of the Laplace equation. The symbol As will stand
for an open set satisfying the standard requirements imposed in Section
3.2. Throughout the entire section, we retain the notations of Section 3.2.

The main goal of our study is to show the uniqueness of a solution of
the exterior inverse problem for the magnetic potentials of contact bodies
with variable densities of constant signs. Although the new important
theorems will be postponed until the sequel to this section, let us stress that



172 3. Inverse Problems for Equations of the Elliptic Type

these imply, as a corollary, more general results for the volume potential
with fl = 1 and 7 = 0 in (3.2.3) as opposed to the propositions of the
preceding sections saying about noncontact bodies.

Following established practice we introduce in agreement with (3.2.24)

B = (A1 [-JA2) \ Ao = A1 CI A2.

The next theorem asserts the uniqueness of the solution when the magnetic
potentials coincide outside the domains A~ as well as inside their intersec-
tion; meaning the validity of two equalities between exterior and interior
magnetic potentials, respectively.

Theorem 3.6.1 Let for arbitrary domains A,, a = 1, 2, imposed above
the functions #~ E Cl(~Z~c~) andp, ~ C(OA,) must be nonnegative. If the
functions w"(x), o~ = 1, 2, with positive coefficients fl and 7, f12 + 72 7~ O,
satisfy the equality

(3.6.1) wl(x) = w2(x) for x ~ Rn \ ~,

then

(3.6.2) A1 = A~

and

Itl(x) =#2(x), x ~ A1, if /3~£ 0;
(3.6.3)

pl(x) =p2(x), X G OA1, if 7 ~£ O.

Proof Let A1 -¢ A2. Observe that for such sets A~ all the conditions
of Section 3.2 are satisfied. This is certainly true for (3.2.40), making 
possible to rely on Lemma 3.2.4 from which it follows that any regular in a
domain D solution h(y) to the Laplace equation satisfies equality (3.2.45)
taking now the form

(3.6.4) J(H) = 

where

(3.6.5)
f

Bo (OBo)

-7 f
( O J~o i
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Before giving further motivations, it will be sensible to define on OBo (see
(3.2.39)-(3.2.42)) the function f(y) by means of the relations

1 if ye(0B0)e,
(3.6.6) f(Y) = 0 if y E (OBo)~ .

Because of (3.6.1), f(y) 7~ const for y E 0B0. As in the proof of Theorem
3.3.1 equality (3.6.4) can be extended to involve a generalized solution a, (y)
of the Dirichlet problem with the boundary data (3.6.6). The function

hi(y) is just a regular solution to the equation

(Ah])(y)=O for y~B0

and takes the values of the function f(y) specified by (3.6.6) at almost all
points of 0B0, so that

(3.6.7) J(h]) = 

where, by definition (3.6.6),

(3.6.8) J(h/) =/3 hi (y)#l(y)dy+ 7 /

Bo ( O Bo ~
p~(y)h(y) 

The Hopf principle asserts that a nonconstant solution hi (y) cannot
attain a negative relative minimum in the interior of the domain and

(3.6.9) 0<hi < 1 for almost all y~B0.

From (3.6.8) and (3.6.9) it follows that J(hf > 0), which disagrees with
(3.6.7) and provides support for the view that

(3.6.10) A1 = A2 = A0.

Using notations (3.2.24), (3.2.3) to~ether with condition (3.6.1) we 
that

wl(x) = w2(x) for x ~ A0.

Applying the Laplace operator to the preceding equality yields

(3.6.11) (Awl)(x)= (Aw2)(x) for 

The properties of the potentials of volume masses and simple layers provide
sufficient background for the relationships

(3.6.12) (Awa)(x) = -¢3#a(x) for x G A~, a = 
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When ~ ~ 0, (3.6.10) and (3.6.12) are followed 

(3.6.13) #1(~:) = #2/~:) for ~: E A0 = A1 = 

For 7 ~ 0 the combination of (3.6.10) and (3.6.13) gives

(3.6.14) Yl(x) v~(x) for x E R’ ~ \ A1

In conformity with (3.6.10),

v (x) : j p (y) E(x, (3.6.15)

The formula for the jump of the derivative of the simple layer potential
v~(x) allows us to deduce that

(3.6.16) cgv~

(Ov~ ~ Ova(x)
where \0V~o] stand for the limiting values of cgv~° as x ~ Xo, Xo ~

OA1, along the interior and exterior normal V~o to the set A1, respectively
(x ~ A~ and x ~ ~ ~A~). Within t hese notations, r elation ( 3.6.14) i mplies
that

so that (3.6.17) with 7 ¢ 0 assures us of the validity of the equality pl(x0) 
p~(xo) at any point xo ~ OA~. This proves the assertion of the theorem. ~

Definition 3.6.1 Two sets A~ and A~ are said to be externally eontaet
in the sense of Prilepko (1968b) if the boundary of any connected component
of the set Ao = A~ n A2 (mes Ao ¢ O) contains an (n - 1)-dimensionM part
~. (mes F. ¢ 0) being common with boundary of a certain component of
the set R~ ~ (A1 U A~).

Here the sets A~, a = 1,2, are again supposed to satisfy (3.2.40). 
state a number of results with respect to

(3.6.1S) e~(~) = ~(~;~,~) + 7v(~;0~,

where 7 and ~ are real numbers such that ~2 + 7~ ¢ 0, that Nrnish the
justification for what we wish to do.
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A1 and A2 are externally contact A1 and A2 are not externally contact

Theorem 3.6.2 Let As, ~ = 1,2, be externally contact sets. If nonnegative
functions # C Cl(f~c~) and p ~ C(OA~) and nonnegative numbers/3 and 
are such that the equality

(3.6.19) ~bl(x) (v 2(x), x ~ a~~ ( A~~ A~),

holds, then A~ = A~.

As a preliminary the following assertion is introduced.

Lemma 3.6.1 Let externally contact sets Aa, ~ : 1,2, be in line with
(3.2.40). g the functions ~ ~ C~(~a) and p ~ C(OA~) involved (3.6.18)
admit a representation of the type (3.6.19), which appears below, then the
equality

=

is valid for all z ~ Ao.

Proof As before, it will be convenient to have at our disposal the function

(~.6.~0) ~(~) = ~(~) - ~(~),

for which the properties of the potentials under consideration imply that

(3.6.21) (AO)(z) = 0 for x ~ ~,

where the set B has been defined by (3.2.24). By the same token,

(3.6.22) ~(x) ~ C°+~(R~)
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with anyh, 0<h< 1.
In what follows the symbol F. will stand for the collection of all in-

terior points of the set ~,, ~’. C OA1 V~OA2. Since the sets As, a = 1,2,
are externally contact, the open set F. is nonempty and can be decom-
posed into connected, open and piecewise smooth surfaces. As such, the
boundary OA0 of the set A0 contains the set F..

By successively applying (3.2.18), the formulae of the jump for the
derivative of the simple layer potential v(x; As,p) and the properties 
the volume mass potential u(z; As, #) we establish the relationship

(3.6.23)

where the symbols

denote the limiting values of
d~(x)

du~o

as x --~ x0, x0 G F., along the normal ~’*o in the cases when x G A0 and
x G R~ \ (-~1 (2 -~2), respectively.

We next consider an open ball Q = Q~o with center xo ~ F. such
that ~ V~ (/} \ r.) = 0. As usual, 0Q designates the boundary of Q. It 
convenient to introduce further entries defined by

(3.6.24) (aO)+ = aO a A0, r’, = 0 ~ r,

and

[de(~)]+ OE(~,:~)
(3.6.25) {M~[(v(x);E(y,x)]} + =E(y,x)[ du, J

Ou~ [~(x)]+"

From (3.1.5), (3.6.21) and the last notation it follows 

(3.6.26)

(oo)+

M~[~(~); Z(V, ~)] d~ + / {M~[~(~); ~(~, x)]}+ d~
r:

{@ for y~QVIAo,

0 for ~eO~(a~\~i~2~).
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It is straightforward to verify that the combination of (3.6.20)-(3.6.26)
gives

(3.6.27) ~(y) = 0, y ̄  R" \ (all 

whose use permits us to find by formula (3.6.23) that

(3.6.28)
~ = 0 if zo ¯

With the aid of (3.6.22) and (3.6.28) we deduce from relation (3.6.26) 

(3.6.29) {Mx[Cv(x);E(y,x)]} + = 0 for

Substitution of (3.6.29)into (3.6.26) yields

(3.6.30)

(0Q)+

Mx[~(x); E(~, x)] 

{~(y) for y¯QNA0,

= for y ¯ QN (R’~ \.~1U~2).

We note in passing that the function

(3.6.31) F(y) = / M~[Cv(x);E(y,x)] 

(oQ)+

is just a regular solution to the equation

(3.6.32) (AF)(y) for y ¯ Rn\ (c~+.

Relations (3.6.30) and (3.6.31) are followed 

(3.6.33) F(y) = 0 for y ¯ Q N (R’~ \ 41 [~ 2),

which means that the function F(y) and its normal derivative are equal to
zero on P~.. Due to the uniqueness of the Cauchy problem solution relations
(3.6.32)-(3.6.33) imply 

(3.6.34) F(y)=O for y¯Q~m0.

On the other hand, (3.6.30) yields

(3.6.35) F(y) = ~(y) for y ¯ e~A0.
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Putting these together with/3.6.34) we conclude that

(3.6.36) ~(y)-- 0 for yEQ~A0.

It is worth bearing in mind here the uniqueness of the solution of
the Cauchy problem for (3.6.21). Because of this fact, it follows from the
foregoing that

(3.6.37) ~/~)-- 0 for ~ E A0,

so that the combination of (3.6.20) and /3.6.37) gives the equality

(3.6.38) ~21(z) = ~2(x) for y ~ 

thereby justifying the assertion of the lemma. ̄

A simple observation that (3.6.19) and (3.6.38) together imply 
equality

(3.6.39) ~.~I(x) ---- ~2(X) for y ~ \/~

may be useful in the further development. Whence it is clear that all the
conditions of Theorem 3.6.1 are satisfied in such a setting. In view of this,
equality (3.6.2) is true and this proves the assertion of the theorem. 

Corollary 3.6.1 If for externally contact sets As, ~ = 1, 2, the volume
mass potentials u(x;As,#) of a given nonnegative density 
satisfy the condition

= ¯ \

then A1 :

Corollary 3.6.2 If for externally contact sets As with boundaries 0Aa,

a = 1, 2, the simple layer potentials v(x; OAa, #) of a nonnegative density
p ~ C(DA~) satisfy the condition

v(x;OA~,p)= v(x;0A~,p) for

then OA~ = OA2.
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3.7 Integral equation for finding the density of a given body
via its exterior potential

In this section we state the theorems on the solution uniqueness for the
problem of finding the density of a given body from the available informa-
tion about its exterior potential. In passing we try to write out explicitly
its solutions for certain configurations of domains and bodies and offer one
possible way of deriving the explicit formulae.

In a common setting an open set A is supposed to be a union of a
finite number of bounded domains ~j with piecewise smooth boundaries
0~2j, on which the function

(3.7.1) u(x; A, I.t,) = / E(x, y)#¢,(y) dy, a = 

A

represents the volume mass potential of a given set A with density #~(y) 
0 for ahr~st all y E A. As before, the function E(x,y) is used for the
fundamental solution of the Laplace equation.

Before giving further motivations, it will be sensible to describe the
class of functions #~(y) E Ca(.~), a = 1, 2, satisfying the condition

(3.7.2) #.(y) = q(y) u~(y),

where

(a) u~(y) is continuously differentiable on ~ and Ou~/Oyk,
a positive integer kl is kept fixed;

(b) r/(y) > 0 and either for y 

- 0, where

0 (u)/0vk, >_ 

or for y ~ .~

O~l(y)/Oy~ <_ 

Theorem 3.7.1 The equality #~(y) = #2(y) holds for all y ~ A when 
functions #~(y) happen to be of class (3.7.2) and the condition

(3.7.3) u(x;A,#~) = u(x;A,#2), x ~ ’~ \ _~,

is satisfied for the exterior potentials of a given set A.
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Proof Although the complete theory we have presented could be recast in
this case, we confine ourselves to the set A consisting of a single bounded
domain ft, whose boundary cgft is piecewise smooth.

From condition (3.7.3) it seems clear that any function h(y) being
harmonic in a domain D D (~ is subject to the relation

(3.7.4) i (#1 - #~) h(y) dy = 

Here we apply Lemma 3.2.2 to A = A1 = A2 and ~ = 1, 7 = 0.
Furthermore, set #(y) = #1(y) -#2(Y) and assume to the contrary

that #(y) ¢ 0 for y E ~). From item (a) of condition (3.7.2) and (3.7.4) 
is easily seen that the function

= -

does not have constant sign on the boundary Oft. Indeed, if the function
~(y) is, for example, positive on the boundary Oft, then so is the function
u(y) in the domain ft, since

O~/Oyk, = O.

Therefore, the function #(y) would be strictly positive in ft. But this
disagrees with (3.7.4) due to the fact that the function h(y) can be replaced
there by a positive solution to the Laplace equation, by means of which the
left-hand side of (3.7.4) becomes strictly positive. Hence,

sign u(y) ~ const

and, thereby, on the boundary c0f2

sign #(y) ~ const 

Under the natural premise v(y) ¢ weinsert in (3.7.4) the function
h(y) = OH(y)/Oykl, where H(y) is a harmonic function in D D f2, by
means of which the following relation is attained:

(3.7.5) dy = o
i H(y)#(y)(q, ny)ds~- i 

.

of~ ~

Here (q, ny) is the scalar product of a unit vector q along the Oyez-axis and
a vector ny, which coincides with a unit external normal at point y E Of 2.
In this context, it is of interest several possible cases.
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Case 1. Let
O~(y)/Oyk, >_ 

for y 6 ~ and let a function f(y) defined on 0Q be such that

(3.7.6) f(y) si gn#(y) fo r y 60

Observe that
f(y) g~ const

on c9~. Let (3.7.5) be extended to involve in subsequent reasonings the
function Hf(y), which is harmonic in the domain ~ and takes values (3.7.6)
almost everywhere on cgfl. In this line,

(3.7.7) J(H]) = 

where

(3.7.8) J(H]) = / ]#(y)[(q, ny)dsy- / H](y) O#(y___~) 
OFt

and

Ft’={y6~: 0r~(Y----~) >0}.
Oy~,

It is clear that the set ~’ so constructed is a subset of ~ and contains only

those points for which cO~?(y)/cOyk, > 0. To simplify the rest of the proof,
we will assume that ~’ is a domain with a piecewise boundary cgQ~ and

mes f~’ ~ 0.
Since ]HI(y) ] < 1 for any y ~ ~, item (a) of condition (3.7.2) 

the configuration of the domain ~ imply the inequality

O#(y)
dy < / It~(y) l(q, nv) dsy(3.7.9)

J Hi(y) 
.

gt’ OFt’

For f~’ = f~ the preceding formulae (3.7.8)-(3.7.9) give J(H]) > 0. If
~’ C Q and any straight line, parallel to a vector q, may intersect either of

the boundaries 0Q and 0Q~ at most at two points, then the combination
of (3.7.8)-(3.7.9) gives

S’+

S~- S-
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where the new sets

S+ = {yE0f~: (q, ny) >0};

S’+ -- {y ¯cO~’: (q, ny) > 0};

S- = {yec%~: (q, ny)_<0};

S’- = {y ~ cOf~’: (q, ny) _< 

make our exposition more transparent. From item (a) of condition (3.7.2)
it follows that every expression in square brackets on the right of (3.7.10)
is nonnegative and at least one of them is strictly positive. This provides
support for the view that J(H]) > 

When no additional restriction on the structure of the boundaries
c~f~~ and c0f~ is imposed, a minor adaptation of fragmentation implies the
inequality

JI/~(y)[(q, ny) dsy - J [#(Y) l(q, ny) dsy > O,

so that J(H]) > 0. Adopting similar arguments we are led to the same
inequality for other possible configurations of f2~. But the strict positiveness
of J(H]) disagrees with (3.7.7). This proves the assertion of the theorem
in the first case.

Case 2. When Orl(y)/cgy~, <_ for y ~ (~, it wil l be convenient to
introduce the new sets

(3.7.11)
S+ = {y ¯ cga: #(y)(q, ny) > 

S- = {y e cOa: #(y)(q, ny) _< 

a.+ = {y ¯ a: _> 0};

and the function f(y) defined on the boundary by means of the relations

1 for y ~ S+,
(3.7.12) f(Y) -- 0 for y ~ S-.

It is worth noting here that u = 0 for f(y) = const on the boundary
As before, equality (3.7.5) can be extended in any convenient way. The

function Hf being harmonic in f~ and having the boundary values (3.7.12)
almost everywhere on 0f~ applies equally well to such an extension, thus
causing

(3.7.13) J(H]) = 
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where

(3.7.14) J(H]) = / #(y)(q, ny) dsy

S+

-~/ H](y)~ dy

~+

-_ ! gj(~) ~ a~.
~u-

We are only interested in special investigations for the case ~- = ~
where

(3.7.15) ~’~_ = { ~ ~ ~-: °"(~--A) < },
since the others can be treated in a similar manner.

By virtue of (3.7.11) and (3.7.15) and the properties of the function
#(y) we find that

(3.7.16)

o~(y)
>0 for y~-,

c9y~1

tOrt(Y) <0 for ye~+.
cgy~ -

We put for the boundary 0~.- of ~.-

S+~_ = {yecgl’]~_: (q, ny)>0}

S~-- = {y e 0~-: (q,n~) _~ 

As far as 0 < HI < 1 for any y ~ ~, it is not difficult to establish the chain
of relations

(3.7.17)
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yielding

(3.7.18)
J(HI)>- IS/++ #(Y)(q’ny)ds~

- / #(y)(q, ny) 

S-~_

o (y) 
+ -[~, Hi(y)~ .dy

Here we used also (3.7.17). With the aid of relations (3.7.16) and (3.7.11)
and the properties of the functions ~(y) and r~(y) we deduce that each of 
terms in square brackets on the right-hand side of (3.7.18) is nonnegative.
Moreover, at least one of those terms is strictly positive. In view of this,
we would have J(HI) > 0, which disagrees with (3.7.13). The obtained
contradiction proves the assertion of the theorem. ̄

We now focus our attention on one more possible case in connection
with spherical coordinates (p, 0) of y E R" (n _> 2), where p means 
length of the radius-vector of y. The symbol 0 is used as a common nota-
tion for all angular coordinates in the space R". This follows established
practice and does not lead to any ambiguity. Of special interest is the class
of functions #~(y) E C1(2), a = 1, 2, satisfying the condition

(3.7.19) #~(y) = ((y) 5~(y),

where

(a) 5~(y) (a = 1, 2)is continuosly differentiable for y ~ 2 c9~/0p =
O;

(b) ~(y) > 0 and either O(p’~)/Op >_ orO(p"~)/Op <_ for y ~ 2,
where p is the length of the radius-vector of a point y with the
origin O ~ R~ \ 2.

If under the conditions of item (b) the origin O ~ 4, then ~(y)
is supposed to be positive along with O(p’~()/Op >_ for p < P0and
O(p’~)/Op >_ for p _>P0,where p0 i s keptfixed, suffi ciently small and
positive.
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Theorem 3.7.2 If ~he functions I%(Y) satisfy condition (3.7.19) and ~he
exlerior po~eniials of ~he se~ A are such ~ha~

(3.7.20) u(x;A,#~) -- u(x;A,#2) for n\2,

then ll~ = ll~ for y ~ A.

Proof The proof of this theorem is similar to that ca~rried out in Theorem
3,7.1. In this line, let A = fL Consider the case when ~(y) > 0 and
@(phi)lOp > 0 for y ~ ~. By virtue of (3.7.20) any function g(y) being
harmonic in D ~ ~2 implies that

= 0,(3.7.21)

where

(3.7.22)
f

J(H) = J H(y) p(y) (Ry, ny) ds~

dy

and (Ry, nv) is the scalar product of the radius-vector Ry on ny. Having 
our disposal the difference of functions #(y) = #x(y) - #2(y)~ we conclude
that ~(y) ~ const on 0~ if ~(y) ~ 0 in ~. Let a function f(y) be defined
on the boundary ~ by the relation

(3.7.23) f(y) = sign~(y) for y ~ O~."

Equation (3.7.21) is again extended to involve in subsequent reason-
ings the function Hl(y ) being harmonic in ~ and having the boundary
values (3.7.23) almost everywhere on 0~. All this enables us to write down
the equation

(3.7.24)

where

(3.7.25)

J(n ) = 

f
J(H]) = J Ip(y) ](a~,nu) d%

~ k=.l -~(y~

Observe that ]H~(y)~ < 1. In light of the properties o~ the ~unction
~(y) expression (3.7.~5) imphes J(H~) > 0, violating ~3.7.~4). In 
to carry out the proof of Theorem 3.7.2 in the remaining cases we adopt
the arguments used in the proof of Theorem 3.7.1 by ~eplacing (q, n~) and
O~(y)/Oy~ by (R~, nu) and ~=~ O(~y~)/~y~, respectively. ~
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Finally, we proceed to the third class of functions #~(y), a = 1, 
represented by

,.(y) = 7 (y) 
where 7 and/3 are positive constants, 72 ÷ ¢32 :/= 0, the functions 6~(y) and
u~(y) are so chosen as to satisfy (3.7.2), the functions r/(y) and ~(y) 
the following properties:

~(y)>0, 0--~-~(y )_>0, ~(y)>0, ~PP (pn~) >0 for 

Combination of appropriate expedients from the proofs of Theorems
3.7.1-3.7.2 gives the following result.

Theorem 3.7.3 [,el the functions try(y) admit decomposition (3.7.26). If
jl

the exterior polenlials of a given set A = Uj=I~j are such that

u(z;A,#~)= u(x;A,#~) 

then the function

has constanl sign on lhe boundaries O~j.

Our next goal is to develop an integro-differential equation of the first
kind for the density of the potential assuming that the function #(y) 
c~+h((~) does not vanish almost everywhere on (~ and the boundary 0~ is
piecewise smooth. The intention is to use the volume mass potential

(3.7.27)

where E(z, y) is the fundamental solution of the Laplace equation. As 
matter of fact, the inverse problem of finding a density via the exterior po-
tential amounts to recovering the function #(z), x ¯ ~, involved in (3.7.1)
from available values of the function u(x) for x ¯ R~ \ (L

Other ideas are connected with introduction of the function w(x) 
means of the relations

(3.7.28)
k=l

for n > 2,
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where constants fll and 71 are such that 7~ + fll ~ +~ 0 and q = (ql,..., q,~)

is a unit vector along the Oy~l-axis.
With the aid of the decompositions

~__~ ~ [(~ +~q~(~,~l] 

~
" 0 E(z,y) n>2,~ z(~,~)- ~ (~ + Z~q~) ,

~ E(x,y), n=2,~ ~ E(~, ~) - ~ - (~z~ ~)~
k=l

the function w(z) can be rewritten as

(s.~.~) w(~) = [ s(s) ¢(s) E(~, 

where

(’~lYk 4" ~lqk) ~k 

k=l

~(y) = (71R~ 

is the scalar product of the vectors 71Ry 4" fll q and n~.
Let n~o be a unit external normal to the surface cqQ at point x0 and

let (n~o-~y) be the angle between nxo and rxy, where rxy is the vector
joining x and y provided that x lies on the normal n~o and x ~ R~ ~ ~.
We thus have

cos(n~)

Recall that the normal derivative of the simple layer potential undergoes
a jump, while the first derivatives of the Newtonian potential (3.7.27) are
really continuous on the entire space. With this in mind, we obtain

(3.7.30) A(~) = f + P(#), n 
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where

1 /t (I) -- / CO8 (nx-~xy)(3.7.31) A(#~) 
(n_2)w~lx_yl~_l

(3.7.32) P(#) ~-- - / (n- "~)C [~---~1n-1

× + zlqk) x e 0n,
k----1

(3.7.33) f(x)-- 00@~ ---lira Ow(x’)

In formula (3.7.33) the points x’ G ’~ \~ are lo cated onthenormal n~
taken at x ~ 0fL Summarizing, the following statement is established.

Lemma 3.7.1 If a potenlial u(x) of the lype (3.7.27) is given for all
x G Rn \ (~, lhen ils densily #(x) salisfies lhe inlegro-differenlial equa-
tion (3.7.30).

Lemma 3.7.1 implies a number of useful corollaries for certain types
of densities. Indeed, consider one more class of functions #(y) satisfying
the condition

o~ = o, (p, o) = v e ft.(3.7.34) Op

By merely setting 71 = 0 and/31 = 0 in (3.7.30)-(3.7.33) it is possible 
derive the equation

(3.7.35) A(# (I)) -- 

where ep(x) = (R~, n~) for x ~ 
In certain functional spaces both equations (3.7.30) and (3.7.35) admit

alternative forms. For example, one can consider a space B, whose norm is
equivalent to the Cl+h-norm (for more detail see Prilepko (1965a)). 
the boundary 09t happens to be of class C2+h and the function # satisfying
(3.7.34) belongs to the class c1+h(O~"~), all the ingredients of (3.7.35) belong
to the space B in light of the properties of the potential. Due to the
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uniqueness of a solution of the exterior Neymann problem for the Laplace
equation (n _> 3) and the Banach theorem on inverse operator, for any
operator A in the space B there exists the bounded inverse A-1, by means
of which equation (3.7.35) reduces to the equivalent one:

(3.7.36) # ~5 = A-l(f).

Having involved the preceding equation in later discussions we arrive at
the following assertions.

Corollary 3.7.1 If potential (3.7.27), whose density is of the type (3.7.34),
satisfies the coudition

u(x)=0 for xERn\(~, n>_3,

then ct(y) = 0 for y ~ 

Corollary 3.7.2 Let f~ C R’~, n > 3, be a "star-shaped" domain with
respect lo an inner point and let (3.7.34) hold. Then the values of the
function ct(x) for x ~ Of~ can be expressed in terms of lhe exterior potential
u(x) 

ct(x) = A-~(f) cb-~(x),

where if(x) = (R,,n,) for all x ~ Oa and the function f(x) is given 
formulae (3.7.33) and (3.7.28).

For another formulae expressing the values of ct via the corresponding
potential in the cases of a "star-shaped" domain and a density of the type
(3.7.34) we refer the readers to Antokhin (1966).

Of special investigation is the class of functions ct(y) satisfying the
condition

(3.7.37) OCt(Y)- fo r y~ (~.
OY~:1

Upon substituting fla = 1 and % = 0 into (3.7.30)-(3.7.33) we derive 
equation

(3.7.38) A(# ~) = 

where ¢(x) = (q, n,) for x ~ 0a. Equation (3.7.38) implies the following
result.
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Corollary 3.7.3 If potential (3.7.27) has a density # of the type (3.7.37)
and

u(x)=o fo,, x~R~\(?, n>2,

then #(y) --- 0 for y ¯ Ft.

In what follows we are in a new framework making it possible to
determine in the domain f~ the density it(y) of a given potential u(x) for
x ~ R’~ \ ~ in the class of functions it(y) solving the equation

(3.7.39) L it = 0,

where L is a differential operator of the second order acting on y ~ Ft.
Under some appropriate restrictions on the smoothness of the function
it(y) and the. boundary OFt, the properties of the potential u(x) imply 

(3.7.40) [LAu]=0 for xe~.

The new functions ~(zo) and ¢(z¢) are defined on the boundary 0~ 

where the known functions ak = ak(xo) are defined on Oft. One thing is
worth noting here. If we have at our disposal the function u(z) defined 
(3.7.27) everywhere in ~ \~, i t i s possible t o assign the values of u (x) a
~for x ~ OFt. The problem here is to find the function h(x), x ~ f~,
being a solution to the equation

(3.7.43) [~ ~ h](,) = 0, , e 

supplied by the boundary conditions

(3.7.44) h(zo) = ~,(Zo), Zo ~ cga,

(3.7.45) ~ ak ~ h(,0) = ¢(~0),
k=l

x0 ~

Having resolved (3.7.43)-(3.7.45) we need a suitably chosen form of writing,
namely

#(x)=Ah(x) for xeFt.
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When the Laplace operator is considered in place of L, we give as one
possible example the class of functions It(y) satisfying the Laplace equation
in the domain ft:

(3.7.46) A It = 0.

In such a setting the function h(z) involved in (3.7.43)-(3.7.45) should 
recovered from the set of relations

(3.7.47) A2 h = O, x Eft,

(3.7.48) h(z) = u(z), x ~ Oft,

0 0
(3.7.49)

On~ h(x) - On~ u(x), x e 

It is worth emphasizing once again that the values of u(x) and 0~(~) do

exist on Oft, since the exterior potential was defined by (3.7.27) everywhere
on R’~ \ ~. As we have mentioned above, the solution of problem (3.7.47)-
(3.7.49) is one of the ways of finding the function It(x), x e ft. Moreover,
due to the uniqueness of this solution we obtain the following result.

Corollary 3.7.4 /f potential (3.7.27) has a density It of the type (3.7.46)
and the condition u(x) = 0 holds for all x ~ ~ \~,then It( y) = 0for 

In addition, we formulate the relevant existence theorem which will
be used in later discussions.

Theorem 3.7.3 When the density It of potential (3.7.27) happens to be
of the type (3.7.46), there exists a solution of the problem of finding the
density of a given body via its exterior potential, this solution is unique and

It(x) = ZX h(x), 

where h(x) is a unique solution of the direct problem (3.7.47)-(3.7.49).

When the function It(y) happens to be of class (3.7.37), Corollary
3.7.3 formulated above can be proved in another way for L =_ O/Ox~. In
that case the density It(y) evidently satisfies (3.7.37). Then any potential
u(x) of the type (3.7.27) gives a solution to the equation

(3.7.50) ( _~0--~- A u~ (x) : fo r
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By merely setting Z(x) = c~u(x)/cgx~ we recast equation (3.7.50) 

(~x z)(x) : 0 for ~.

From the premises of Corollary 3.7.3 we know that the exterior potential
u(z) vanishes for z ~ ’~ \~). Th is pr ovides reason enough toconclude
that the boundary condition

Z(x) = x ~

is fulfilled. We thus have Z(z) = 0 for all x ~ f~ and, thereby, Ou(x)/Oz~ 
0 for all z ~ f2. Together, the preceding and the condition

u(~) = z ~

which is a corollary of the initial assumption, assure us of the validity of
the relation u(x) = 0 for all ¯ e ~2 and, in turn, #(x) = 0 for all 

3.8 Uniqueness of the inverse problem solution for the simple
layer potential

This section is devoted to the exterior inverse problem of recovering the
shape of a given body from available values of the exterior potential of
a simple layer. First, the uniqueness theorems will be proved for poten-
tials of arbitrary contact bodies with variable densities having no constant
signs. These results differ markedly from the preceding assertions emerg-
ing from the uniqueness theorems for magnetic potentials of contact bodies
with densities having constant signs. Second, we will prove the uniqueness
theorems for noncontact bodies.

Let A1 and A2 be open bounded sets under the agreement that either
of these sets is a union of a finite number of domains; meaning, as further
developments occur,

(3.8.1)
j=l j=l

(3.8.~)
Fil = cgA1 n ft~ n 22,
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where ml and rn2 are fixed numbers and [,e = 0(.~, U d2) (for more detail
we refer to (3.2.4) and (3.2.38)). Within these notations, we now consider
the simple layer potential v defined by

(3+3) v(x; 8Ac,, pc,) = / E(x, y) pa(y) 

OA~

where pa # 0 almost everywhere on O Ac,. Recall that the definition of
externally contact set is available in Section 3.6.

Theorem 3.8.1 Let Ac,, c~ = 1, 2, be externally contact sets and the simple
layer potentials v(x; OAc,, p) with density p E C(OAC,) satisfy the condition

(3.8.4) v(x; OA1, p) = v(z; OA2, p), z E ’~ \ (- ~1 O

Then AI = A2.

Proof Observe that we imposed no restriction on the sign of the function
p. For this reason it is necessary to examine two possible cases. If the
function p(y) has constant sign, the assertion in question is an immediate
implication of Theorem 3.6.2 with 7 = 1 and ~3 = 0. If p(y) does not have
constant sign and A1 ¢ A2, then Lemma 3.2.4 with /3 = 0 and 3’ = 1
implies that a solution h(y) of the Laplace equation

(3.8.5) (Ah)(y) = O, y ~ D,

being regular in a domain D C R’~, /) D D D /)0, satisfies the equality

(3.8.6) 0.

(OBo)¢ (0So)i

Here the domain B0 was taken from (3.2.39)-(3.2.42).
The function f(y) is defined on OBo = (OBo)eU(OBo)~ by the relations

signp(y), y e (OBo)~,
f(Y) = -signp(y), y ~ (OBo)i.

As in the proof of Theorem 3.3.1 equality (3.8.6) can be extended to involve
a generalized solution hi of the Dirichlet problem for the Laplace equation
with the boundary values associated with f(y). In this line,

= o,
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where

(OBo)~

The function hI being a regular solution to the equation

(AhI)(y) =0 for yE B0

takes the values of f(y) almost everywhere on c~B0 and ensures the decoin-
position

(OBo)O (OBo)~

yielding J(hj) > 0, which disagree8 with the equality J(h]) = O. The
obtained contradiction proves the ~sertion of the theorem. ~

It is worth bearing in mind that the sets in the above theorem were
contact and this restriction cannot be relaxed. There is an example describ-
ing two different bodies with a constant density, whose exterior logarithmic
potentials of a simple layer are equal to each other.

We now raise the question of the solution uniqueness for the problem
of recovering the shape of a body from available values of its potential.

Theorem 3.8.2 Let bounded sets As and functwns p~ ~ C(OA~), a = 1, 2,
be such that

F~

If A1 ~ A~, then the exterior potentials v(x; OAt, p~) and v(x; OA~, p~) 
a simple layer are different, that is, there is a point ~ ~ R’~ \ (J~ ~ ~) 
which

(3.8.8) v(&; cOA~, ,Ol) ¢ v(~; 69A2, p~).

Proof Let A~ ¢ A~ and

(3.8.9) v(x;OAl,p~)=v(x;0A~,p~) forall x~R~\(~LJ~).
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Then by Lemma 3.2.2 with f~ = 0 and i’ = 1 the equality

J(h) = (3.8.10)

is valid with

(3.8.11)

195

(3.8.16)

where

(3.8.17) J(hs)= ] ,pl(y)I dsy + ] Ip2(y)I ds,

] h! (y) Pl (Y) 

r~

- ] h~(~) ~2(~) 

OA1 OA~

where h(y) is an arbitrary regular solution to the equation

(3.8.12) (Ah)(y) = 0 for y 

Here D is ordered with respect to inclusion:

(~.S.~) ~ D ~ D ~ D (~ ~ ~).

Our subsequent arguments are based on the use of the function f(y)
defined on the surface )e = )~ U ); = 0(~1U ~) by means of the relations

signp~(y), ye~,
(3.8.14) f(Y) = -signp~(y), y ~ 

As in the proof of Theorem 3.3.1 equality (3.8.10) should be extended 
be valid for a generalized solution hj(y) of the Dirichlet problem for the
equation

(3.8.15) (a~)(~)= 0 for ~, A~ =AlCAzar~,

with the boundary data (3.8.14). It follows from the foregoing that

J(n~) = 
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Since the function hi(y) is a solution of (3.8.15) with the boundary values
(3.8.14), the Hopf principle yields the estimate

(3.8.18) I hjl-< 1 for ye.~,

where .~ = fi~l U fi,2. From (3.8.17)-(3.8.18) it follows 

(3.8.19) J(hf) ~ / IPl(Y)[ dsy -Jff / IP2( )I dsy

lpl(y)l dsy- f lp2(y)l 
F~

Because of (3.8.7), the right-hand side of (3.8.19) is strictly positive, mean-
ing J(h]) > 0. But this contradicts (3.8.16) and thereby completes 
proof of the theorem. ̄

Theorem 3.8.3 One assumes that A~, c~ = 1, 2, are open sets and either
of these sets is a union of the same finite number of ionvex domains ~J~. If
the exterior potentials v(x; Aa, 1) of a simple layer with densities pa =_ 1,
ct = 1, 2, coincide, that is,

(3.8.20) v(x; dl, 1) = v(x; A~, 1) for x

then

(3.8.21) A1 = A~.

Proof Assume to the contrary that A~ ~: A~. The domains f~J being
convex imply that

i i
(3.8.22) mes ~ + rues ~; > mes F~ + mes r~.

With the relation p~ _= 1 in view, we deduce (3.8.7) from (3.8.22). 
Theorem 3.8.2 becomes valid, so that equality (3.8.8) holds true. But this
contradicts condition (3.8.20). Thus, the theorem is completely proved. 

As an immediate implication of the above result we quote

Theorem 3.8.4 If for two convex domains ~2~, c~ = 1, 2, the exterior po-
tentials v(x;0f~a,1) of a simple layer with densities pc~ = 1, c~ = 1, 2,
coincide, that is,

/or

then 9h = ~2.
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3.9 Stability in inverse problems for the potential of a simple
layer in the space Rn, n >_ 3

In this section some stability estimates will be derived for the exterior
inverse problem related to the potential of a simple layer in the case of
recovering the shape of a given body.

Let f2~ be bounded domains with boundaries c)f~, ct = 1,2. Within
notation (3.2.38), it will be sensible to introduce

(3.9.1)
e

se
i es~ = Of2~ r3 , s2 = Of~ \ s2 

In the case when f~l = ~2, the boundaries s~ will be taken to be
a = 1,2. Unless otherwise is explicitly stated, g~ are supposed to be
simply connected domains for the reader’s convenience only. Then so are
both sets

and
R~ \ (~1 ~)

for n > 3.
As we will see a little later, the function

(3.9.2)

where v(x; 0f~, p~) is the potential of a simple layer over the boundary
0f~ with density p~ ~ C(Of~), finds a wide range of applications in this
field (see (3.2.2)).

For ~1 ¢ ~2 further numbers are defined by

(3.9.3)

(3.9.4) G~ = / Im(y) ds~ ÷ / IP~(Y) I
i i

s1 s2

Theorem 3.9.1 One assumes that the simple layer potentials v(x; Ogre, p~)
can be extended from R~ \ ~ onto ’~ \ D*as a r egular sol ution to the
equation

(3.9.5) Av(x;0f2~,p~)=0 for z~R~\D*, n>_3, c~=1,2,
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where D* is a simply connected domain, whose boundary OD* is of class
C2+h, D* C ~e and ~e U Of~e : (~1 U ~. Then the estimate

(3.9.6) Ge - Gi ~ C1 n]a~x
xEOD*

a v(x)

is valid, where cl = const > 0 depends only on the configuration of the
boundary @D* and the values of av(x)/Ovx are taken at points x E OD*.

Proof Let D and D1 be domains with boundaries 0D and c9D1 of class
Cl+h which can be ordered with respect to inclusion:

D D D1 D D1 D (~1 u~2).

We refer to the functional with the values

(3.9.7) i(h) = / p,(y) h(y) dsv- / p2(y) h(y) 

where h is a regular in D solution to the equution

(3.9.8) (Ah)(y) = O, y 

An auxiliary lemma may be useful in the sequel.

Lemma 3.9.1 The functional J(h) specified by (3.9.7) admits the estimate

0(3.9.9) IJ(h) l < max Ih(Y) l 
-- yEOD~ y~OD*

Proof Indeed, any regular in D solution h(y) to equation (3.9.8) is repre-
sentable by

] { h(y), y E D1,(3.9.10) M~ [E(x, y); h(x)] ds~ = 0, y e R’~ \ i)1,

OD~

where E(x, y) is the fundamental solution of the Laplace equation and the
expression for M[.;. ] amounts to (3.2.9). Multiplying relation (3.9.10)
by pa(y) and integrating the resultig expression over cOf~, we arrive at

(3.9.11) / p~(y) h(y) dsy

0
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From (3.9.1)-(3.9.11) it follows that the functional J(h) can be rewritten
as

(3.9.12) J(h) = M~[v(x); h( x)] ds~.

Recalling ~ha~ ~(z) is a regular solution ~o ~he equation

(3.9.13) (~)(z) = 0 for z ~ ~D*,

we now ~urn ~o ~he simple layer po~endal

(3.9.14) ~(x) = f w(y) E(x,y) 
OD*

which solves the exterior Neymann problem

A~(x)=0, x~R ~D*, n~3,

(3.9.15) ~(x) -

Here

(3.9.16)

is a normal at point x E cOD* and

0
lim ~(~)

for ~ ~ R’~ \ D*, x ~ OD*.

Therefore, the density w(y) of potential (3.9.14) will satisfy an integral
Fredholm equation of the second kind, whose solution does exist and is
obliged to be unique.

By the uniqueness of a solution of the exterior Neymann problem
(n > 3),

(3.9.17) v(x)= ~(x) for }eRn\D*
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Relations (3.9.17) and (3.9.12) are followed 

J(h) = / M~ [~(x); h(x)] ds~

OD1 0

OD°

= J ~(y)h(y)
OD~

so that

(3.9.1S)
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J(h) = f ~(~)h(~)d%
OD*

which serves to motivate the estimate

(3.9.19) Y(h)< max Ih(y)[ / Iw(y)
yEOD*

OD*

dsy ,

y E OD*,

( )-OE(y,()
K(y, ~) = 2 C%,y

’ Y’ ~ ~ OD*.

Now estimate (3.9.9) is a corollary of (3.9.19)-(3.9.21) and thereby 
lemma is completely proved. ¯

with

0
(3.9.21) f~(y)= 2 ~_. v(y),

(3.9.20) -w(y) + / K(y,[) w(~) dQ = f~ 
OD*

where the function w(y) is a solution to the integral equation
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With this result established, we return to the proof of the theorem
involving the function f(y), which is defined on the surface e by t he rela-
tions

sign p~
(3.9.22) f(Y)= -signp2(y), yEs~.

It is obvious that I h]l _< 1. By exactly the same reasoning as in the
derivation of (3.4.32) from (3.4.25) we should take into account the 
ceding inequality I hi I -< 1 and appeal to (3.9.19), whose use permits us 
find that

(3.9.23) I J(h])l<_ / Iw(Y) l 

On the other hand, when treating (3.9.22) as the boundary data for the
function hi, the following expansion arises from (3.9.22):

(3.9.24) I Ipl(y)l dsy + / Ip2(y)l 

s1 s2

+ / hI (Y) Pl (Y) 
i

- f =
i

To demonstrate this decomposition, we should adopt the arguments used
in Theorem 3.7.2.

Recall that I h~,l _< 1. Then the combination of relations (3.9.2)-
(3.9.4) and (3.9.23) gives

(3.9.25) G~ - G~ <_ J(hl).

Estimates (3.9.23) and (3.9.25) together yield

(3.9.26) G~-G~_< f [w(~)[ d%,

OD*

where w(y) is a unique solution (n 7_ 3) to the integral Fredhohn equation
(3.9.20), whose right-hand side is expressed in terms of the values of the
normal derivative of the function v(x) on 0D* with the aid of the first
formula (1.9.21). Estimate (3.9.6) follows from (3.9.26) in light of the 
known properties of the function w(y) being a solution to equation (3.9.20).
This proves the assertion of the theorem. ̄
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Remark 3.9.1 Under the assumptions of Theorem 3.9.1 estimate (3.9.6)
can be replaced by (3.9.26).

We cite now some a.ssertions afforded by the above results.

Corollary 3.9.1 Let a set P contain all of the singular points of the po-
tentials v(x;OAa,pa), a = 1,2, and let D* will be ordered with respect to
inclusion:

P C D* C D-~; C

if

(3.9.27)

then

I v(,~; OA1, Pa) - v(x; OA2, p2)l < ~, Vx 6 s~,

(3.9.28) G~ - Gi _< c~ 7 ’

where c~ - const = cz(OD*) > 0 and l = dist(OD*,s ~) is the distance
’between the boundaries OD* and se.

This assertion is a corollary to Theorem 3.8.3 and the relevant prop-
erties of harmonic functions.

Corollary 3.9.2 Let all the conditions of Theorem 3.9.1 or.Corollary 3.9.1
hold. If pc, =- 1 and Q~, a = 1,2, are convex domains, then the estimate

¯ a~(x)
messe - mess’ < c4 max

-- z6OD* ~

is valid or, what amounts to the same,

e i ~
mess -mess _<c5 ~- .



Chapter 4

Inverse Problems in Dynamics

of Viscous Incompressible Fluid

4.1 Preliminaries

We begin our exposition with a brief survey of the facts regarding the
solvability of direct problems for linearized and nonlinear Navier-Stokes
equations. It is worth noting here that we quote merely the theorems which
will serve in the sequel as a necessary background for special investigations
of plenty of inverse problems.

We give a number of definitions for functional spaces which will be
encountered throughout the entire chapter. Let gt be a bounded domain in
the space R~ with boundary c~ of class C2.

The space L~ (~) consists of all vector functions v(z) with components
vi(x) E L2(~), i = 1, 2, ..., n, and is equipped with the scalar product

(u,v)~,~ = /u(z). v(z)dx, u(x). v(x) ui (z )v~(z).
i----1

The associated norm on that space is defined by

203
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The space W~(~) comprises all vector functions v with components vi(x) 
W~(~), i = 1, 2, ... , n, and the norm

-,,2,a = Ivl+ Iv. &, Iv.l=
Ft i,j=l

o
Let J (ft) be the closure in the L~(~)-norm of the set of all smooth

solenoidal and compactly supported vectors. It is well-known that L2(~) 

~ (f})@G(f}), where G(f~) is the orthogonal complement 
The space G(~) consists of all vectors having the form V ¢, where ¢ 
a single-valued, measurable and square summable function, whose first
derivatives belong to the space Lu(f}). The norms on the functional spaces
Lq(f}), W~(f}), Lq,r(Qr ) and W’l"~(Qr) of vector functions are defined
in the usual way. As before, it is convenient to introduce the notations

Let W~’~tr)~,0v,~rz ~ be a subspace of Sobolev’s space W~’ ~(Qr), which con-
sists of all vector functions vanishing on Sr _-- Of} x [0, T]. The space

J (Qr) comprises all vectors from L2(Qr) that belong to ~ (f}) for almost
all t E [0, T].

We now focus our attention on the formulations of some results con-
cerning the solvability of stationary and nonstationary direct problems
in hydrodynamics.

The following assertion is valid for the linear stationary direct problem
of finding a pair of the functions {u, V q}, which satisfy in the domain f}
the system of equations

(4.1.1) -uAu= -Vq+h, div u= 0,

and the boundary condition

(4.1.2) u(x) = z ~ Of 2.
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Theorem 4.1.1 (Temam (1979), p. 37) For h E L,~(~), m > 1, problem
(4.1.1)-(4.1.2) has a solution u E W~(~), ~ q ~ Lm(f~), this solution is
unique in the indicated class o.f functions and the estimate

]1 u (2)

is valid with constant c depending only on m and fL

Consider now the linear nonstationary direct problem of recovering a
pair of the functions {v, V p), which satisfy in Qr the system of linearized
Navier-gtokes equations along with the incompressibility equation

(4.1.3) vt-t/Av=-Vp÷F1 , divv=0, (z,t)¢Qr =_ ~x(0, T),

the initial condition

(4.1.4) v (x, 0) = al(x),

and the boundary condition

(4.1.5) v (x, t) = (z, t) ~ S~ -- 0fl x [0,

where the vector functions F1, a~ and the coefficient u are given.

Theorem 4.1.2 (Ladyzhenskaya (1970), p. 109) For F1 E L2(Q~) and
0 0 :2,1

~a~ ~ W~(f~)f3 J(~) a solution v ~ W~,0(~T) f3 (~T), ~Tp ~ L~(QT)
of the direct problem (4.1.3)-(4.1.5) exists and is unique and the following
estimate is true:

(4.1.6)

o
Theorem 4.1.3 (Ladyzhenskaya (1970), p. 112) For a~ ~ J(f~) and
F~ E L2,~(QT) there always exists a solution v of problem (4.1.3)-(4.1.5)

~r~’°~¢3 ~ This solution is unique in the indicated class ofthat belongs to ~ ~’~T~"
functions and the estimate

(4.1.7)

t

0

t

0

0<t<T,
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is valid.

Here V2’°(@) is a Banach space which is the closure in the norm

max II ,’( t)112, ~ + II v= 112, "[ V ~O~,O(QT): tE[O,T]
’

of the set of all smooth vectors vanishing in a neighborhood of St.
Of special interest is the direct problem of finding a pair of the

functions {v, Vp}, which satisfy in Qr the nonlinear time-dependent
Navier-Stokes system

(4.1.8) vt-pAv+(v,V)v:-Vp+r2, divv=0, (x,t)~Qr,

the initial condition

(4.1.9) v (x, 0) = a2(x), x e f~,

and the boundary condition

(4.1.10) v (z, t) = (x, t) e $7,

where the functions F~, a2 and the coefficient v are known in advance and

(~, v),~ = v~ 0~ ’
i----1

We begin by considering the case of a three-dimensional flow, that
is, the case when f~ C R ~

~heorem 4.1.4 (Lady~henskaya (1970), p. 202) Let f~ a, F~ ~

L2(QT), (F2)t e L:(Qr), a2 e W~(a)nW~(a)nJ and let the inequality

~)~/4 ]1/2M4 = - - ( g c~(a) t]-lM~ (M~ + Ma) (4.1.11)

be valid with

T

0

M~ = II P~ [ v/~ ~ - (a~, V) a~ + r~(., 0)] 112, 
T

+ / I1 (Fu)t(’, t)II~,a dr,
0
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Pj being the orthogonal projector of L2(~) onto ~ (~) and c1(~) appearing
in the Poincar~-Friedrichs inequality (see (4.2.21) below). Then problem
(4.1.8)-(4.1.10) has in QT a generalized solution v such that Iv[2,

o

vtx E L:(Q~) and vt(. , t) is an element of J(~) continuously depending

on t E [0, T] in the wea~ topology of ~ (~). Moreover, this solution 
unique in the indicated class of functions and the function v satisfies for
each t ~ [0, T] the estimates

(4.1.12) II"~ t)ll2,n _< [.-1~(~2+M~)]1/~

(4.1.13) [[vt( t)[]~,a _< 

(4.1.14) 2 

t

. , [[~,a d~-
0

+ 2M~._< Pj [u A a~ -- (a~, V) a~ + F2( ¯, 0)] 

Theorem 4.1.5 (Ladyzhenskaya (1970), p. 209) Under the conditions of
Theorem 4.1.4 the function v(., t) is continuous with respect to t ~ [0, T]
in the W~(~)-norm, the function vt(., t) is continuous with respect to
t G [0, T] in the L~(~)-norm and the following estimate holds:

IIv(., t)ll~)~ _< o < t < ~r,

M5 = c~’(r~.{[ sup [[ F2(’, t)[[2, a + M2 
~ t~[0, T]

X { 1AI-C~ [M-1M1 (M2--~ M3)]1/ 2 }

and c~ , %, ca are constants depeedin~ onl~ on ~, ~ and T.

It is worth noting here that M5 does not depend on ~.

In the case of a two-dimensional flow, that is, the case when ~ C
~ the direct problem for the nonstationary nonlinear system (4.1.8) is, 
general, uniquely solvable. This profound result is revealed in the following
theorem.
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Theorem 4.1.6 (Ladyzhenskaya (1970), p. 198) Let ~ C R~, F2 E

L2(QT), (F2)t e L2((~T) and a2 e W~(~) 71"~(~) 7] ,~ (~). Then problem
(4.1.8)-(4.1.10) has in Q~. a generalized solution v such that Ivl2,v~,vt,

o

vtx ~ L~(QT) and vt(. , t) is an element of 3 (~) continuously depending
o

on t ~ [0, T] in the weak topology of J (f~). This solution is unique in the
indicated class of functions and the function v satisfies for 0 < t < T the
estimates

t

(4.1.16) I[v(’,t)]t~,a-< ]la2112,r~+/llF~(’,t)ll2,adt, O<t <T,
0

(4.1.17)

(4.1.18)

(4.1.19)

T

u llvxll~,~r <- Ila2112,~ + -~ IIF~(’,t) l]2,a t ,
0

]]vt(. ,t)]]2,n_< Ms exp{M6~-~}, O<t <T,

t

,v)]l~,a dr _< M22 × [1 + 2 exp{M6u-2)

+2 M6 u-2exp {2 M6 u-2} ] ,

where

T

0

T T

0 0

, t)112, dr.

Theorem 4.1.7 Under the conditions of Theorem 4.1.6 the function
v(., t) is continuous with respect lot ~ [0, T] in the W~(~)-norm, the

o

function vt(. ,t) is continuous with respect to t E [0, T] in the J (f~)-norm
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and the following estimates hold:

(4.1.20)

209

0<t<T,

IIv(. t) (:) < M7 0<t<T

mr:c~[ sup IIF~(’,t)ll~,~÷m2 exp{M6~-2}]
te[0,r]

)~/~
× M=exp{M6u-u}÷ sup

tel0, T]

and cl, c= are constants depending only on f~, v and T.

The proof of this assertion is similar to that carried out in Theorem
4.1.5. One can see that Mr does not depend on t.

4.2 Nonstationary linearized system of Navier-Stokes equations:
the final overdetermination

The main goal of our studies is to consider the inverse problem with the
final overdetermination for nonstationary linearized Navier-Stokes equa-
tions. All the methods we develop throughout this section apply equally
well to systems which can arise in various approaches to the linearization
of nonlinear Navier-Stokes equations. For more a detailed outline of the
results obtained we offer the linearization type presented by the system
(4.1.3).

Before considering details, we are interested in a common setting of
the inverse problem. For this, suppose that an unknown external force
function Fl(x, t) is sought on the basis of indirect measurements. Our ap-
proach is connected with a suitably chosen statement of the inverse problmn
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and some restriction on the input data making it possible to treat an initial
problem as a well-posed one for which

(i) a solution exists and is unique;
(ii) the solution is stable in the norm of the corresponding space 

functions.

Without loss of generality we may assume that the function v satisfies
the homogeneous initial condition (4.1.2) almost everywhere in ~, that is,
we accept al = 0.

Additional information is available here on a solution of the system

(4.1.3)-(4.1.5) as the condition of final overdetermination in which 
traces of the velocity v and the pressure gradient Up are prescribed at
the final moment t = T of the segment [0, T] under consideration.

The vector F1 is taken to be

(4.2.1) F1 = f(x) g(z, 

where the vector f(x) is unknown and the scalar g(x, t) is given.
With these ingredients, we are led to the inverse problem of finding a

collection of the vector functions {v, Vp, f}, which satisfy the system

(4.2.2)
vt-uAv=-Vp+f(x) g(x,t),

divv=0, (z,t) 6QT,

the initial condition

(4.2.3) v(x,O) = x 6 f~,

the boundary condition

(4.2.4) v(x, t) : (x, t) e S 

and the conditions of final overdetermlnation

(4.2.5) v(x, T) = ~p(x), Vp(x, T) = V¢(z), ¢ 6 a,

provided that the functions g, 9~, V ¢ and the coefficient ~, are given.
We list the basic trends of further development. As a first step to-

wards the solution of this problem, we are going to derive an operator
equation of the second kind for f. If we succeed in showing that the result-
ing equation is equivalent to the inverse problem posed above, the question
of the solvability of the inverse problem and the uniqueness of its solution
will reduce to the study of an operator equation of the second kind.

In this regard, it is necessary to give a rigorous definition for a solution
of the inverse problem (4.2.2)-(4.2.5).
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Definition 4.2.1 A collection off unctions {v, ~7p, f) is called a gener-
alized solution of the inverse problem (4.2.2)-(4.2.5) if (4.2.2)-(4.2.5) 

o
2,1fulfilled, v 6 W2,o(Qr) N 3 (Qr), f ~ L2(Q), ~7p(., t) ~ G(Q) for each t

from the segment [0, T] and continuously depends on t in the L~(~)-norm
on [0, T].

Furthermore, assume that g, gt 6 C(QT) and [g(x, T)[ >_ gT > 0 for

each x ~ ~. By relating f ~ L:(Q) to be fixed we might treat (4.2.2)-
(4.2.4) as the system corresponding to the direct problem of finding a pair

of the vector functions {v, Up}. Theorem 4.1.2 implies that {v, ~7p} with
this property exists and is unique. Observe that the function vt(., t) 
continuous in the L2(f~)-norm on the segment [0, T], since

(F1)t fg t ~ L2 (QT).

This provides reason enough to appeal in subsequent studies to the linear
operator

A: L=(~) ~-~ L:(~)

with the values

1
(4.2.6) (A f)(x) vt(x, T), x ~ ~,

T)

where v has been found as the function involved in the solution {v, U p}
of the system (4.2.2)-(4.2.4) in the sense indicated above and associated
with the function f.

We now consider in L2(~) a linear operator equation of the second
kind for such a function f:

(4.~.7) f = Af+ X,

where X from the space L:(Q) is given.
The first theorem provides a framework in which the solvability of

equation (4.2.7)implies that of the inverse problem (4.2.2)-(4.2.5) 
vice versa.

Theorem 4.2.1 Let

g, g, e I (x, 501 > > 0
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and

1
(4.2.8) X- g(x,T) (-uA~o+V¢).

Then the following assertions are valid:

(a) if the linear equation (4.2.7) is uniquely solvable, then so is the
inverse problem (4.2.2)-(4.2.5);

(b) if there exists a solution of the inverse problem (4.2.2)-(4.2.5) and
this solution is unique, then the linear equation has a unique solu-
tion.

Proof To prove item a) we assume that (4.2.8) holds and (4.2.7) 
unique solution, say f. Upon substituting f into (4.2.~2) we make use of the
system (4.2.2)-(4.2.4) for finding a pair of the functions {v, ~7p} as 
solution of the direct problem corresponding to the external force function
~’~1 : f(z)g(a:, 

Theorem 4.1.2 yields the existence of a unique pair {v, XTp} solving
o

2, 1the direct problem at hand. By the same token, v E W2,0(Qr)nJ (Qr) and
X7p e L2(Qr). As F1, (F1)~ e L2(Qr), the functions v and 27p obey 

nice properties such as v,(., t), Av(., t) G L2(~) and ~p(., t) 
which fit our purposes. Moreover, vt(. ,t), Av(.,t) and ~Tp(.,t) 
continuous in the L2(~)-norm as the functions of the argument t on the
segment [0, T].

We claim that v and 27p so constructed are subject to the conditions
of the final overdetermination (4.2.5). Indeed,

o o

N Na V~bl E

and

(4.2.9) vt(x, T) - uA~ol = -V¢1 +f(x) g(x, T)

if we agree to consider
v(~, T) = ~o~ (~)

and
T) = 

On the other hand, (4.2.7)-(4.2.8) together imply 

(4.2.10) g(x, T) A f- uA~o = -re + f(x) g(x, 
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By successively applying (4.2.6), (4.2.9) and (4.2.10) it is not difficult 
verify that the functions ~o - ~ol and V(~b - ~bl) satisfy the system 
stationary linear equations

(4.2.11)-uA(~,-~ol)=-V(~b-~bl), div(~o-~ol)=O, 

supplied by the boundary condition

(4.2.12) (~o- ~o~) (x) 

Taking the scalar product of both sides of the first equation (4.2.11)
and ~o - ~o~ in L~(f~), we obtain t, ll (~o - ~o~)x II~,a = o, what means that
~o = ~ol and V ¢ = V ~b~ almost everywhere in ~. This provides support
for decision-making that the inverse problem (4.2.2)-(4.2.5) is solvable.

Assuming that the solution {v, Vp, f} of the inverse problem (4.2.2)-
(4.2.5) is nonunique, it is plain to show the nonuniqueness of the solution
of (4.2.7) when X happens to be of the form (4.2.8). But this contradicts
the initial assumption.

We proceed to prove item b). Let the inverse problem (4.2.2)-(4.2.5i
have a unique solution, say {v, Vp, f}. Since F1 ~ fg and (F1)t = fg~
belong to the space L~(QT), we shall need as yet the smoothness properties
of vt(., t), zxv(., t) and Vp(., arguing as in theproof of i tema).

When system (4.2.2) is considered at t T,we have

v,(x, T) - ~,A v(x, T) = -Vp(x, T) g(x, T

and, because of (4.2.5),

vt(x, T)- uA~ = -V ¢ + f(x) g(x, T).

From (4.2.6) it follows that A f = f + X, where

1

With this relation established, we can deduce that there exists a solution
of (4.2.7). On the contrary, let (4.2.7) will have more than one solution.
In just the same way as we did in item a) there is no difficulty to find
that problem (4.2.2)-(4.2.5) can have more than one solutisn. But 
contradicts the initial assumption and thereby proves the assertion of the
theorem. ¯

In the following theorem we impose rather mild restrictions on the
input data and prove on their basis the existence and uniqueness of the
solution of problem (4.2.2)-(4.2.5).
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Theorem 4.2.2 Let

and let

(4.2.13)

where
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g, g, ~ c(Q~.), I g(~, ~) > g~> o

~o e wi(~)~ v~(~)~ 

m1<1,

for

1 [sup Ig(x,O) lexp{-uT/ca(~)}
mI ~ --

gT L xE~

T

+ f -exp {-u(T- t)/c1(9t)} I gt (x, t) l dt]
0

and ca(~2) is the constant from the Poincard-Friedrichs inequality (see
(4.2.21) below). Then there exists a solution of the inverse problem (4.2.2)-
(4.2.5), this solution is unique in the indicaled class of functions and the
estimates

1
(4.2.14)

(4215)[1vH~2,~)~ II ~’PH2’Q~ < (1 -ma)gr

0

are valid with constant 5 from (4.1.6).

Proof Before we undertake the proof, it will be useful to reveal some
remarkable properties of the direct problem (4.1.3)-(4.1.5), due to which
an important a priori estimate for the operator A is obtained.

If the conditions of Theorem 4.1.2 are supplied by

(~), ~ L~,a(Qr),
o o

~ e w~(a) f~ w~(~) ~ a 

then v will possess extra differential properties. When this is the case, we

know from Ladyzhenskaya (1966) that the derivative t ~~,O(Q~,) gives
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a solution of the system

(4.2.16) wt-~Aw=Vq+F*, div w=0,

(4.2.17) w(z, 0) = a*(x), x E f2,

(x, t) E Q~.,

215

(4.2.18) w(x,t) x ~ St,

which is satisfied by vt in the sense of the integral identity:

t

/j(-w. 4Pr+UWx . Ox) dx dr
0 a

-I- / w(x,t)’ ¢2(x,t) dx- / a" . ~2(x,O) 

t

= //F*.Odxdr, 0<t<T,
0

’,’ J , ,~(~, t) (~, t) s~..v~: ~w2 (Q~)R (Q~) =o,
Here we accepted

F* = (F,)t, a*

0

~nd Pz is the orthogonal projector of Le(~) onto 3 (~).

Moreover, any solution w of problem (4.2.16)-(4.2.18) from ~,0(Qr 
possesses the generalized derivatives wt and w~, which are square sum-
mable on ~ ~ Iv, T] for any e from the interval (0, T) and the derivatives

w~,(., t) are elements of L:(~) continuously depending on t in the L~(~)-
norm for all t ~ [~, T].

Let e be un arbitrary fixed number from (0, T). In the light of differ-
ential properties of solutions to (4.2.16)-(4.2.18) we establish with the 
of the preceding integral identity the energy relation

1 d .(4.m~9) 5 ~,w(,t) 

= / gt(x,t) f(x) ¯ w(x,t) dx, O<e<t<T,



4. Inverse Problems in Dynamics of Viscous Incompressible Fluid

from which it follows for 0 < ~ < t < T that

d(4.2.~o) ~ IIw(.,011=,~ 

_< IIf() g,(’,

Here we used also the Poincarg-Friedrichs inequality

(4.2.21)

o

which is valid for any u E W~(f~) (see Temam (1979), Chapter 1, (1.9))
and a constant Cl(f~) depending solely on ft and bounded by the value
4 (diam f~)2.

Multiplying both sides of (4.2.20) by exp {-u (Z - t)/cl (f~), integrat-
ing the resulting expressions with respect to t from ~ to T and letting
~ --+ 0, we deduce that any solution of the system (4.2.16)-(4.2.18) satisfies
the inequality

(4.2.22) It w(., T) I1~, a _< I1 a* I1~, a exp {-uT/c~

T

÷ f II f( ")gt(’, t))1~, a {-u (r - Z)/c~(~)) dr.
0

~l’°ro ~ solves problem (4.2.16)-(4.2.18), we thus Sincevt ~ ~ ~’~r J

w(x,T) vt (x , T) a*= P:i(f(x)g(x,O)).

Therefore, (4.2.22) implies that the linear operator A specified by (4.2.6)
is bounded and admits the estimate

(4.2.23) IIA fll~-,a <

where rnl is taken from (4.2.13).
As rna < 1, the linear operator equation (4.2.7) has a unique solution

for any ~ from the space L2(f~) and, in particular,.we might agree with

x = (-u zx ~, + v ¢)/~(~, 

for which (4.2.14) holds true and Theorem 4.2.1 implies the existence and
uniqueness of the solution {v, V p, f} of the inverse problem (4.2.2)-(4.2.5).
Estimate (4.2.15) immediately follows from (4.1.6) and (4.2.14). This 
pletes the proof of the theorem. ̄



4.2. Navier-Stokes equations: the final overdetermination 217

To illustrate the results obtained it is worth noting three things.

Remark 4.2.1 Suppose that under the conditions of Theorem 4:2.2 the
function 9 depends only on t under the constraints

g, g’ E C([0, T]), g(t) > O, g’(t) >_ O, g(T) 7~ 

In this case ml < 1 for any T > 0 and Theorem 4.2.2 turns out to be of
global character. That is to say, the inverse problem (4.2.2)-(4.2.5) 
these input data is uniquely solvable for any T, 0 < T < o~.

Remark 4.2.2 If

g = g(t), g, g’ c([0, 7"]), g( T) # 

then the inverse problem (4.2.2)-(4.2.5) can be investigated by the method
of separating variables by means of which it is plain to expand its solu-
tion in the Fourier series with respect to the eigenfunctions of the Stokes

operator ~,Pj A. If this happens, the function f is sought in the space
L2(a) assuming that both components Pj f and PGf in the subspaces

2} (t2) and G(a), respectively, are, generally speaking, nontrivial (recall
o

that L~(a) = J (a) ~ G(~)).

Remark 4.2.3 Once the function g depends only on t, it will be possible
to impose the condition of the final overdetermination (4.2.5) omitting the
information about the final value of the pressure gradient V p(x,T). In
other words, the final overdetermination contains v(x, T) = ~o(x) and 

o
more. However, in this case we look for the function f in the space J (f~).

In conclusion an example is given as one possible application.

Example 4.2.1 Consider the inverse problem of determining a collection
of functions {v, V p, f}, which satisfy the set of relations

(4.2.24) vt -

(4.2.25) v(x, 0) = 

(4.2.26) v(x, t) = (x, t) G St,

(4.2.27) v(x,
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(4.2.28)

with

In the case where g(a:, t) = 1 one can see that ml < 1. Therefore, Theo-
rem 4.2.2 implies that there exists a unique solution ’{v, K7 p, f}, which is of
global character. The condition of the final overdetermination (4.2.27) con-
tains only the value of v at the final moment t = T. Therefore, according

0

to Remark 4.2.3, the function f should be sought in J (~). We employ the
method of separating variables that provides a powerful tool for finding a
unique solution of the inverse problem (4.2.24)-(4.2.27) in an explicit form.
It is well-known that all the eigenvalues of the Stokes operator are nonneg-
ative, have finite multiplicity and tend to - oo. The eigenfunctions of the
Stokes operator { X~ (x) } ~=1 constitute a complete and orthogonal system

o o o

in the metrics of the spaces J (f~) and W~(f~) Cl J (f~). In the framework
of the method of separating variables for the system (4.2.24)-(4.2.26) 
thus have

t

v(x,,/= exp (,- ,)}
k=l 0

[ f(x) ¯ X~(x) dx.

With the aid of (4.2.27) and (4.2.28) we derive the expansion

(4.2.29) ~(~:) 

which implies that

f/~ = A~ 9~ (1 - exp {-~ r})-~,(4.2.30)

where
f

= / ¯

Consequently, using (4.2.30) we find the formula

f(x)= 1 - exp {-A~ T} p~ X~(x),
k=l

thereby representing the function f only in terms of the input data of the
inverse problem (4.2.24)-(4.2.27). The function v admits for now expansion
(4.2.28), so that the pressure gradient V p can be found from (4.2.24) 
merely inserting v and f both.

More a detailed exploration of the properties of the operator A allows
us to establish the following result.
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Theorem 4.2.3 Let g, gt E C((~ r) and Ig(x,T) > gT> 0 fo r x
Then the operator A is completely continuous on the space L:(~).

Proof We again appeal to the differential properties of the solution w of
problem (4.2.16)-(4.2.18) arguing as in the proof of Theorem 4.2.2. 
usual, an arbitrary number v from (0, T) is considered to be fixed. As far

as II w~(., t)tl~,a is continuous on the segment Iv, T], there is v* ~ [v, 
such that

(4.2.31)

T

, t) H~,a dt = (T-v)H wx(’,

By means of the element F* = f gt from the space L2(QT) it is straightfor-

ward to verify that the system (4.2.16) implies that

(4.2.32)

With the aid of the equality

T T

it is reasonable to recast (4.2.32) 

(4.2.33)

T

From (4.2.31) and (4.2.33) we derive the inequality

(4.2.34)

As stated in Ladyzhenskaya (1970, p. 113]), (4.2.19) implies the estimate

(4.2.35)

T 2

 llwxll ,< . II IIF*(’,t)ll~,~dt
0
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with F* = f(x)gt(x,t),a* = Pj(f(x)g(x,O)) and w(.,T)
Using (4.2.34)-(4.2.35) behind we establish the relation

(4.2.36)

yielding

(4.2.37)

where the constants ms and m3 are independent of f. On the other hand,
o

the operator A acts, in fact, from L2(f~) into W~(f~). In view of this,
o

Rellich’s theorem on compactness of the imbedding W~(f~) C L2(a) yields
that the linear operator A is completely continuous on L2(f~), thereby
proving the assertion of the theorem. ̄

Corollary 4.2.1 Under the conditions of Theorem 4.2.3 the Fredholm
alternative is true for equation (4.2.7).

It is to be hoped that this result adds interest and aim in understand-
ing one specific property of the inverse problem (4.2.2)-(4.2.5). It turns
out that under certain restrictions on the input data the uniqueness of the
solution of the inverse problem at hand implies its existence and stability.
This property is known as the Predholm-type property of the inverse
problem and is much involved in subsequent reasoning.

Theorem 4.2.4 Let

for
0 o

Then the following assertions are valid:

(a) if the linear homoqeneous equation A f = f admits a trivial solution
only, then the inverse problem (4.2.2)-(4.2.5) has a solution and
this solution is unique in the indicated class of functions;

(b) if the uniqueness theorem for the inverse problem (4.2.2)-(4.2.5)
holds, then there ezists a solution of the inverse problem (4.2.2)-
(4.2.5) and this solution is unique.

The proof of Theorem 4.2.4 follows immediately fi’om Theorem 4.2.1
and Corollary 4.2.1.
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4.3 Nonstationary linearized system of Navier-Stokes equations:
the integral overdetermlnatlon

We are much interested in the inverse problem involving the nonsta-
tionary linearized system of Navier-Stokes equations when the overdeter-
ruination condition is given in a certain integral form.

As in Subsection 4.2 an unknown vector function of the external force
F1 is sought via the measurement of its indirect indications: the velocity
of the flow v and (or) the pressure gradient Up. In addition, F1 is taken
to be

(4.3.1) F1 = f(t) g(x, t),

where f(t) is unknown, while g(x, t) is given.
With these assumptions, we may set up the inverse problem in which

it is required to find a triple of the functions {v, Vp, f}, which satisfy the
system

(4.3.2) vt-uAv -Vp+ f(t ) g(z , t), div v = O,(z , t ) e QT 

the initial condition

(4.3.3) v(x, 0) = x E ~2,

the boundary condition

(4.3.4) v (x, t) = (x, t) e St,

and the integral overdetermination condition

(4.3.5) f v(x, t) ¯ w(x) dx = p(t), 0 < t 

provided that the functions g, w, p and the coefficient u are known in
advance. We look for a solution of the inverse problem (4.3.2)-(4.3.5) 
the class of functions

0
W~ ~ J , ,v~ 2:0(Q~) ~1 (QT) Vp ~ G(Q~) f ~ C([0, T]).

The norm of the space C([0, T])is defined 

(4.3.6) [tfllc = sup l exp{-Tt)f(~t)l,
tE[0, T]
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where 7 is a positive number which will be specified below.
In tackling problem (4.3.2)-(4.3.5) one might reasonably try to adapt

the method ascribed to Prilepko and Vksin (1989a). Their methodology
guides the derivation of a linear operator equation of the second kind for f
and necessitates imposing the extra restrictions

g ̄  c([0, r], L2(a)), ,o ̄  w~(a), ~,, ~,’ ̄  C([0, 

g(x,t) ¯ w(x) dx[_> go>0 for 0<t <T (go=const).

When an arbitrary function f from C([0, T]) is held fixed, the system
(4.3.2)-(4.3.4) serves as a basis for recovering a pair of the functions {v, 
as a solution of the direct problem with the prescribed function g and co-
efficient v. In agreement with Theorem 4.1.2 there exists a unique solution
{v, Vp} of problem (4.3.2)-(4.3.4)

0

Vp¯G(QT),

it being understood that any function f from the space C([0, T]) is asso-
ciated with the unique function v thus obtained. The traditional way of
covering this is to introduce the linear operator

AI: C([O, T]) ~-~ C([O, 

acting in accordance with the rule

(4,3.7) (A~ f)(t) = g~(t) 

where

g,(t) = / g(z, t) dx

and v is the function involved in the solution {v, V p} of the system (4.3.2)-
(4.3.4), the meaning of which we have discussed above.

Our further step is to consider the linear operator equation of the
second kind over the space C([0, T]):

(4.3.8) f = A, f + h, where h, = ~’(t)’ 9,(t) 
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Theorem 4.3.1 Let

~, ~’ ~ c([0, T]), ~(0) 

o o

~ e w~(~)NW~l(e)Na (~),

Jg(*, O. ~(*) > go> ofor * e [0, T].

Then for a solution of the inverse problem (4.3.2)-(4.3.5) to exist it is
necessary and sufficient thai equation (4.3.8) is solvable.

Proof We first prove the necessity. Let the inverse problem (4.3.2)-(4.3.5)
possess a solution, say {v, Vp, f). Taking the scalar product in L2(~)
between w and both sides of the first equation (4.3.2) we arrive 

(4.3.9)

recalling that

0

vp(., t). ,.,(~) d. = 0 ~or ,.., (~).

From (4.3.9), (4.3.5) and (4.3.7) we conclude that f solves the equation

f= Alf ÷h~.

But this means that (4.3.8) is solvable.
Proceeding to the proof of the sufficiency we suppose that equation

(4.3.8) possesses a solution, say f ~ C([0, T]). By Theorem 4.1.2 on 
unique solvability of the direct problem we are able to recover {v,
as the solution of (4.3.2)-(4.3.4) associated with f, so that it remains 
show that the function v satisfies the overdetermination condition (4.3.5).
Under the agreement

f ..(:~, t) ¯ ,,,(:~) d:~ = ~,, (t), t e [0, 

it is not difficult to check that the initial condition (4.3.3) gives TI(0) 
By exactly the same reasoning as in the derivation of (4.3.9) we find that

(4.3.~.o) f = A~ f + ~o’~(t)/g~(t).
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On the other hand,

(4.3.11) f = A1 f

which is consistent with the initial assumption.

From such reasoning it seems clear that the combination of (4.3.10)
and (4.3.11) gives

~’l(t) = ~’(t)
for t E [0, T]. By the same token,

~,,(o) ~(0) = o,

yielding

~,,(t) = ~(t)

for t E [0, T]. This provides support for the view that {v, 27 p, f} is just a
solution of the inverse problem (4.3.2)-(4.3.5). 

In the next theorem we establish sufficient conditions under which the
inverse problem solution can be shown to exist and to be unique.

Theorem 4.3.2 Let

g ~ C([O, T], L~(~)) 

~, ~a’ e C([0, T]), ~(0) 0,

o 0

,.o e w~(r~) NW~(r~) N J (r~),

/g(x, t) .w(x)dx >_ go > O fort ~ [O, 

Then there exists a solution of the inverse problem (4.3.2)-(4.3.5), this
solution is unique in the indicated class of functions and the estimates
hold:

(4.3.12) II f IIc -< ml II ~’ IIc,

(4.3.13) tlvlI~;~)T +1127P11=,% --< m=ll~’llC,

where the constants rnl and ms depend only on the input data of the inverse
problem under consideralion.
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Proof It follows from relation (4.3.7) specifying the operator A1 that

(4.3.14) tlAIIItc< lullA~ll2,a sup (exp{--Tt)
go t E [0, T]

Taking the scalar product in the space L~(~) between v and the first equa-
tion (4.3.2) we establish the relation known as the energy identity:

2 dt IIv(.,OIl~,a÷~ IIv,(.,t)ll~,~ f( t)
g. vdx,

which implies the inequality

d
d~ Ilv("t)ll~’~ < Hf(t)g("t)[l~’a’ O<t<T.

Integrating over r from 0 to t the resulting expression yields

(4.3.15) IIv(., 011~,~
t

~< IIv(., o)112,~÷ sup Ilg(.,t)ll~,a / If(r)[ dr.tE[0,T]
0

Putting these together with the initial condition
timate

(4.3.16)

where

4.3.3) we obtain the es-

m3 = --IlzXwll~,~ sup IIg( ,t)ll~,a.
790 tE[0,T]

For the moment, we choose 7 so that

(4.3.17) m3 < 1.

From (4.3.16) and (4.3.17) we deduce that there exists a unique solution
to equation (4.3.8) in C([0, T]) and (4.3.12) holds true. Relations (4.1.6)
and (4.3.12) imply estimate (4.3.13). Due to Theorem 4.3.1 the inverse
problem (4.3.2)-(4.3.5) has a solution {v, Vp, f}. In order to prove 
uniqueness, assume to the contrary that there were two distinct collections
{v~, V p~, fa } and {v~, V p~, f~} both solving the inverse problem (4.3.2)-
(4.3.5). We claim that f~ does not coincide with f~, since otherwise v~
and V pa would be equal to v~ and V p~, respectively, due to the unique-
ness theorem for the direct problem related to the system (4.3.2)-(4.3.4).
Repeating the same arguments adopted in the development of (4,3.9) for
these specific cases we see that both functions fa and f~ satisfy (4.3.8). But
this contradicts the solution uniqueness established above for the governing
equation, thereby completing the proof of the theorem. ̄
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In practical applications of advanced theory one could require to mea-
sure the pressure gradient V p instead of the flow velocity v. In that case the
statement of the inverse problem is somewhat different (see Vasin (1992b))
and necessitates seeking a collection of the functions {v, Vp,/), which
satisfy in QT the system

(4.3.18) vt-uAv=-~Tp+f(t) g(x,t), divv=0, (x,t) EQT,

the initial condition

(4.3.19) v(x, 0)= 

the boundary condition

(4.3.20) v

and the condition of integral overdeterminafion

(4.3.21) f V p(~, t) ¯ X(x) ¢(t)

provided that the functions g, X, ¢ and the coefficient u are given.
In a common setting we look for a solution of (4.3.18)-(4.3.21) in 

class of functions

o
2,1v~Wz, o(QT)~3(Q.T), f~C([O,T]),

under the agreement that the integral

JVp(x, ~(~)dxt)

o

is continuous in t E [0, T] for any ̄  ~ G(~) N W~(f~). In addition, 
supposes that

Jg(x,t) ¯ X(z) 

X ¯ W[(f~), ~b e C([0, T]),

>_ go > 0, 0 < t < T (go = const).
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On the same grounds as in the derivation of (4.3.8), we involve in the
further development the linear operator

A2: C([0, T]) ~ C([0, 

acting in accordance with the rule

(4.3.22) (A2 f)(t) - g2(t)_ dx ,

where
f

g2(t) = / g(X, t) dx.

In the theorem below we establish the conditions under which the linear
operator equation of the second kind

(4.3.23) f = A2 f + h~

with h~ = -¢(t)/g2(t) is equivalent to the inverse problem at hand.

Theorem 4.3.3 Let

([ ))
°

g E c 0, T], L2(fl , X e G(fl)NW~(~)(~W~(~),

¢ ~ C([0, T]), g(x,t).x(x)dx _>g0>0, 0<t<T.

Then for a solution of the inverse problem (4.3.18)-(4.3.21) to exist it is
necessary and sufficient that there exists a solution to equation (4.3.23).

Proof We proceed to prove the necessity. Let the inverse problem (4.3.18)-
0

(4.3.21) admit a solution, say {v, ~’p, f}. In dealing with t GJ(Qr) an

X G G(f~) we can show that the system (4.3.18) implies 

(4.3.24) /Vp(x, t). X(x) = u / v( x, t). A X(x) dx

+ f(t) g(x, t) ¯ X(~e) dx,
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since

Observe that the function on the left-hand side of (4.3.24 is continuous on
the segment [0, T]. This is due to the fact that

/ (v t v t)) ¯ 

+ If( t + At)l IIxII2,rt " IIg(’, t + At) - g(., t)lt~,rt

+ II g(, t)I12,~ ¯ II x II~,~ lf(t +/~t) - f(t)l,

where f e C([0, T]) and 
With relation (4.3.22) in view, which specifies the operator A2, 

deduce that (4.3.24) yields f = A2 f + h~. This proves the necessity.
The sufficiency can be established in a similar way as in the proof

of Theorem 4.3.1 and the details are omitted here. Thus, the theorem is
completely proved. ¯

Theorem 4.3.4 Let

g G C([O, T], L~(~)) 
o

¢ e c([0, T]), g(x, t) . x(x) _>g0>0,

Then there exists a solution of the inverse problem (4.3.18)-(4.3.21), this
solution is unique in the indicated class of functions and the estimates hold:

(4.3.25) II f IIc _< ,~4 II ¢ IIc,

(4.3.26)

where m~ and m~ are the constants depending only on the inpul data of the
inverse problem under consideration.
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Proof We rely on the estimate for the operator A2 specified by (4.3.22):

(4.3.27) (A~f)(t) <_ llAx ll=,n . ii v(.,t)ll~,~.
go

Relations (4.3.16) and (4.3.27) together imply the inequality

[[A2 f [[c -< m~ [[ f[[c,(4.3.2S)

where

--II Xxll , sup IIg(,OIl ,s 
7 go t E [0, T]

Arguing as in the proof of Theorem 4.3.2 we conclude that the in-
verse problem (4.3.18)-(4.3.21) has a solution and this solution is unique.
Estimate (4.3.26) follows from (4.1.4) and (4.3.25). 

It is worth noting here that the results set forth in this section can
easily be generalized for the linearized Navier-Stokes equations of rather
general form where the system (4.3.2) will be replaced 

(4.3.:29)
vt- t, Av+ ~ B~(x,t)vx~ +A(x,t)v = -Vp+f(t) g(z,t),

k=l

div v = O, (x, t) e QT 

where Bk and A are given (n x n)-matrices with entries b~j and aij , re-

spectively. Once again, the initial and boundary conditions as well as the
overdetermination condition are prescribed by (4.3.3)-(4.3.5). As an 
ample we cite here the theorem proved by Vasin (1992a).

Theorem 4.3.5 Let bf, aij ¯ C([0, T],L4(f2)), bij ¯ J(Qr), oJ 
o o

W~(~) [~1 w~l(~-~) N J (~), ¢/~ ¯ el(J0, ~o(0)= 0, g¯ C([0,T]
and let the inequality

/ g(x,t)w(x) > go >0 (go :const), 0<t <T,

hold. Then a solution

W2, 1 {{-1 ]v¯ ~,o~) ~ (Q~), Vp ¯ G(Q~), f¯C([O,T])
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of the inverse problem (4.3.29), (4.3.3)-(4.3.5) exists, is unique and has

A similar result is still valid in the case where the overdetermination
condition is of the form (4.3.21). Here ij refers to thevector with com-

ponents b~j (k = 1,2 or k = 1,2,3). The symbol:~(Qr) stands for 
subspace of L2(Qr) consisting of all vector functions belonging to J(ft) 
almost all t ¯ [0, T]. The space J(f~) contains the L2(f~)-vectors being

o

orthogonal to all vectors like V¢ for ¢ ¯ W~(f~).

4.4 Nonstationary nonlinear system of Navier-Stokes equations:
three-dimensional flow

We begin by placing the statement of the inverse problem for the system
(4.1.8) assuming that the vector function F~ involved in (4.1.8) i~ repre-
sentable by

F2 = f(x) g(x, t),

where g(x, t) is a given scalar function and f(x) is an unknown vector
function.

The inverse problem here is to find a triple of the vector functions
{v, Vp, f}, which satisfy in Qr the nonstationary nonlinear Navier-
Stokes system

vt - ~’Av + (v, V)v = -Vp+ f(x) g(x, t),
(4.4.1)

div v = 0, (x, t) ¯ QT 

the initial condition

(4.4.2) v (x, 0) = a(x), x ¯

the boundary condition

(4.4.3) v (x, t) = (x, t) ¯ ST,

and the final overdetermination conditions

(4.4.4) v(x, T) = ~p(x), Vp(x, T) = V¢(x), x ¯

provided that the functions a, ~o, V ¢, g and the coefficient u are given. By
a solution of the inverse problem (4.4.1)-(4.4.4) we mean a triple {v, Vp, 
such that

0
2,1v ¯ W2,o(QT) NJ (Qr) , f ¯ L2(a),
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for any t E [0, T] and it continuously depends on t in the L2(f~)-norm
on the segment [0, T] and, in addition, all of the relations (4.4.1)-(4.4.4)
occur.

Throughout Section 4.4, we will assume that the dilnension of the
domain of spatial variables f~ is equal to 3, that is, f~ C Ra. First, we
are going to derive some stability estimates for the solutions of the system
(4.1.8)-(4.1.10). Let v’ = v’(z, t) v" =v"(z, t) be thesolutio ns of
the system (4.1.8)-(4.1.10) corresponding to the initial velocities a~, a~’ 
the external forces F~, F~’, respectively. The function v~ is subject to the
integral identity

i / ,.vt v~~ ¯ = F~ ¯ dx,

o o

where ¢ is an arbitrary function from the space W~(~) ~ 3 (~).
A similar relation remains valid with regard to the function v". There-

fore, by subtracting the first identity fi’om the second we deduce that

(4.4.5) J(v’-v’)t.~dx+~J(v’-v")~.~ dx

+/(¢, v)(¢- ¢’) dz

f (v’-v", V) O dz+

o o

Since v’(., t) and v"(., t) both are located in Wg(a) ~ J (a), it is mean-
ingful to substitute ~ = v~ - v" into (4.4.5). The outcome of this 

1 d "
(4.4.6)

With the aid of the relation

(v’, v)(v’ - v") ̄  (v’ - v") 
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we estimate the first term on the right-hand side of (4.4.6) 

(4.4.7) (,,’-v", V)v". (v’- v") 

~ live"(., t)112,~ ¯ II (v’ - v")(., t)I1:,~.

o
Recall that, being an element of the space W~(f~) (see Ladyzhenskaya

(1970, p. 20)), any function u (if f~ 3)is s ubject to t he foll owing
relation:

(4.4.8) Ilull:,~ _< (4/3)3/211ull~,a. Ilu~ll~,a.

This approach applies equally well to the second factor on the right-hand
side of (4.4.7). As a final result we get

(4.4.9) / ( v’ - v", 7) v". ( v’- v ") dx

_< ~4 3/2[iv~,,(.,t)ll2,a [[(v’-v")(.,t) 

x II(v’- v’%(. t) 3/2

3 g4/3 Vt 2~ ~ I1( - v")~(., t) ll~,a

+~ 5 IIv~"(,011¢,a

- ¯ I1~,~,

where ~ is free to be chosen among positive constants.
In the derivation of the last estimate in (4.4.9) we used Young’s in-

equality

ab ~ m-lgm a m +(m- 1)m -1 ~-m/(m- 1) bm/(m - 1),

which is valid for any positive a, b, e and m > 1. Upon substituting (4.4.9)
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, . 4 we arrive at the chain of relationsinto (4.4.6) withe= (7 g)3/4

1 d
(4.4.10)

_< 7 II (v’ - v")~(., t) I1~,~

2
+~llvx"(-t)ll~,a.ll(v’-v")(.

+
which imply that

1 d
v")(4.4.11) dt

2
¯ II~,~ II(v’ v")(.,t)ll3,a<~llv~"(,t) ~ -

+
By appeal to Gronwall’s lemma we obtain from (4.4.11) the first sta-

bility estimate
t

(4.4.12) II(v’- v") t)ll~,a < exp

t

On the other hand, the integration of (4.4.10) over t from 0 to T allows 
construct the second stability estimate

T

(4.4.13)

0

x /l(v’-v")(., t)llff,~dt

T

× I1(~’-v")(., t) II~,a 
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All this enables us to explore the inverse problem (4.4.1)-(4.4.4) 
deeply by means of a subset D C L2(fl) such that

D= {f ~ L2(f2): []f[[2,~ -< i’

In the sequel we will always assume that a and 9~ belong to W~(f~) 
o o

W~(f~) n 3 (f~) and

and

(4.4.14)

where

Ig(~, T)I _> g~ > 0 for x ~ ~ (gT ~" const),

ml m2 < u3 (4/32)-1,

/3 = (4/3)3/4 (c,(ft))1/4,

-~= II~’zx--(a,V)-ILa+ sup I~(:~,t)l

T

+ sup Ig(x, 0)1 + / sup Ig,(~, t)l dt
x~t x~gt

0

and cl (~) is the constant from the Poincarfi-Friedrjchs inequality (4.2.21).
The system (4.4.1)-(4.4.3) with f ~ D can be viewed as a system 

the type (4.1.8)-(4.1.10). It is clear that for any f lying within D either
of the functions F2 = fg and (F2)t = fgt belongs to the space L2(f~.).
Granted (4.4.14), the function F2 = fg satisfies condition (4.1.11) for 
f from D. Consequently, by Theorem 4.1.4 one can find a unique pair of
the functions {v, Vp} as a solution of the direct problem (4.4.1)-(4.4.3)
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corresponding to a suitably chosen function f E D. In the framework of
Theorems 4.1.4-4.1.5 we refer to the nonlinear operator

A: D H L~(V~)

acting in accordance with the rule

(Af) (x) = , T), x E f~

where v is the function entering the set {v, Vp} and solving the direct
problem (4.4.1)-(4.4.3).

One more nonlinear operator

B: D ~

1
(B f)(x) (Af) (x), .x ~ ~,g(x, 73

complements careful analysis of the nonlinear operator equation of the sec-
ond kind for f:

(4.4.16) f = /3 f + 

where
1 [-u A ~o + (~o, V)+V~b]

x = g(z, T) ~ "

Theorem 4.4.1 Let

aCRa, g,gt~C(Qr), Ig(z,T)I~>0 for x~,

0 0

If (4.4.14) holds, then the operator B is completely continuous on D.

Proof The theorem will be proved if we succeed in showing that the op-
erator A is completely continuous on D. Choosing f in D arbitrarily we

fconsider a sequence { ~}~=t of elements f~ ~ D such that

Let {v~, Vp~} be the solution of the direct problem (4.4.1)-(4.4.3)
corresponding to the external force function f~ g and the initial velocity a

with the values

(4.4.15)
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and let (v, V p) be the solution of the same problem corresponding to the
external force function fg and the initial velocity a. Then the functions
v~ - v and V(p~ - p) satisfy the system

(4.4.17)

(4.4.18)

(4.4.19)

where

( v~ - v)~ - ~ zx ( ,,k - 

= -V(p~ -p) ÷ F~, div(v~ - v) --- 

(v~ - v) (~, o) = o, ~,

(vk - v) (x, t) = 0, (x, 

F~ = (f~ -f)g+ (v~, V)(v-v~)+ (v-v~, 

We note in passing that the norm of F~ can be estimated as follows:

+ II (v- v~, V)v

The Cauchy-Schwarz inequality is involved in the estimation of the second
and third terms on the right-hand side of (4.4.20). The same procedure
works with a great success in establishing the relations

(4.4.21) I] (v~, v)(v - vk)II=,QT
T

0 ~

_< { sup [sup
re[O, T]

and

(4.4.22)

_< 3 II(v~ v)( , t) ~ ~ dt- " II~,a IIv~(,OIl~,~
0
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The estimation of the first factor on the right-hand side of (4.4.21) can

be done using (4.1.15) and the theorem of embedding W~(f~) 
(see Ladyzhenskaya et al. (1968, p. 78)), due to which we thus 

(4.4.23) II (v~, v) (v - v,~) II,,, ~ ~< c* Ms(f~) II (v - v,~)~ 

where

-- 11/2~
× 1 +c*[.~.(f~:)(~(fl:)+ M3(f,~))] 

+ c" [~~_ (fk)(~’~ (ft,)+ M3 (ft,))] 

T

Ml(fk) = Ilall~,~+llf~ll~,~ sup Ig(x, t) l dr,
x(~Ft

0

M~(f~) = II~Aa- (a, V)all~,~ ÷ IIf~ I1~,~ sup Ig(~, 

T

÷ IIf~ I1~,~ / sup
0

M~(f~) = IIf~ll~,~ s~p Ig(z, t)l.
(~,t)~%

The symbol c* denotes the constant depending on T, f~ and v. In what
follows the same symbol c* will stand for different constants. It is to be

hoped that this should~ cause~no confusion.~ It is str~aightforward to verify

that the values of Ms(f~), Ml(fk), M~(f~) and Ma(f~) are bounded 
k --~ oo, since the sequence {f~)~=l converges to f in the L2(a)-norm.

By (4.1.15), (4.2.21) and the theorem of embedding from W~(f~) 

L4(f~) (~2 C R3), we see that (4.4.22) implies the estimate

(4.4.24) II(v-v~,
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T

o

T

where

-J-e" []~l(f)(lW/2(f)-J-J/Z3(f))]312}

T

M~(f) = Ilall.,~ + Ilfll~,~ / sup 19(’~, ~)
o

dt

M2(f) = II~’Aa-(a, V)all.,n+ Ilfll~,n sup g(~, 

T

+ Ilfll2,a J sup
o

I gt(x, t) dt,

M3(f) Il fll2,a sup 19 (x,

Substituting (4.4.23) and (4.4.24)into (4.4.20) 

(4.4.25)

T

o

IIf~ - fll2,a

+ c* (M-~5(f~) + Ms(f)) (v - v~). I1., Q~.
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We now apply the stability estimates (4.4.12)-(4.4.13) with F~ = 
and F = f g standing in place of the functions F~ and F~I, respectively, thus
causing v’ = vk, v" = v and a2 = a2 = a. With these relations in view,
(4.4.12) implies that

2
(4.4.26) II(v~-v)(’,~)ll2,a~exp 

T

and (4.4.13) is followed 

T

sup Ig(x, r)[ d~-1 Ilfk -fll2,a

(4.4.27) II(v~ v)~ 
4 sup IIv~(’,~)ll~,~

-- I]2’QT ~ ~ t(~[0,T]

×llv~-vll~,~÷ sup Ig(~,z)l
(~,t)e%

× IIf~ - fl12,~ :r~/~ IIv~
If one squares both sides of (4.4.26) and integrates the resulting expressions
over t from 0 to T, then

T

(4.4.28) IIv~-~l12,~ ~r exp ~ IIv~(.,~)ll~,ad~
0

T 2

Since the sequence {fk}~=l converges to f in the L2(f~)-norm, inequality
(4.4.28) implies the convergence

(4.4.29) II v~ - v tl2, ~T ---~ 0, ~ ~ ~,

which in combination with (4.4.27) gives

(4.4.30) I1( v~ - v)~ 112, ~T -~ ~ -~ ~.

By successively applying (4.4.28), (4.4.30) and (4.4.25) we arrive 
limit relation
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As F~ E L2(QT), the system (4.4.17)-(4.4.19) can be viewed as a 
of the type (4.1.3)-(4.1.5), for which estimate (4.1.6) is certainly true 

admits an alternative form of writin~

(2, ~) c*IIv~-v ~,Q= % II~II~,Q=.

Whence, due to convergence (4.4.31), it follows that

(4.4.32) II(v~ - v), II,, e~ ~ ~ ~ ~.

We proceed to the estimation of (F~)~ in the L~(Qr)-norm. 
preliminary expressions may be of help in preparation for this:

~ (v~, V) v ~, ~ + ~ (v, V) ~ ~:, 

T

(4.4.33) ~ 3 IIv,(.,t)ll~,a ¯ IIv~(.,011:,ad~
0

+ 3 Iv? Iv,~l~ dxdt
0 ~

T

~ c, 3 [llv~(, t) 2, aj

0

It is worth recalling here that

In just the same way as in the derivation of (4.4.33) we majorize the norm

of (F~)~ as follows:

(4.4.34) II (~k)¢ I1~, Q~ ~ II f~ g~ I1~, Q~ + II fg¢ I1~, QT

+ c* ms(f~)II (v~),= 112, ,,.
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where the explicit formulae for Ms(fk) and Ms(f) are given by (4.4.23) 
(4.4.24), respectively.

In the case where fk 6 D, the norm of (v~)t, can be estimated with

the aid of (4.1.14) as follows:

(4.4.35) [u-~(v-lmlm2) 1/2] II(v~)txll~,QT

_< I1~’ A~-(a, V)all~,~ + IIf~ I1~,~ [sup b(~, 0)1]~

(a,V)all~, a+Hf~[[~,a sup [g(x,O)

sup I~t(~,¢)l d~ 

where ml, m2 and /~ have been introduced in (4.4.14). From such manip-
ulations it seems clear that the first factor on the left-hand side of (4.4.35)
does not depend on k and is strictly positive by virtue of (4.4.14). More-
over, estimate (4.4.35) implies that the norm II (v~)tx I1~, Q~ is bounded 

k ~ 0. With this in mind, we conclude on the basis of estimate (4.4.34)
that the norm II (Fk)t 112,QT is also bounded as k ~ 

Being concerned with F~ and (F~h from the space L2(Q~) we can
treat the system (4.4.17)-(4.4.19) as a system of the type (4.1.3)-(4.1.5).
Just for this reason all the assertions of Theorem 4.2.2 remain valid when

expression (4.2.19) is considered in terms of the solutions of (4.4.17)-
(4.4.19):

(4.4.36) v~ - vh (., t)113,~ + ~ II (v~ - v)¢~ (., t)II~,rOdt

O<e<T.

Relation (4.4.36) implies that

T

T

_</ H(F/~)t(’, t)[l~,a’ tt(v~-v)~(.,t)]]~,adt, O<~_<T,
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yielding
1

1
+ ~ II(v~ -v),(.,

Because lt(vk -vh(, t)II=,~ is continuous on the segment [0, T], we
are able to pass in the preceding inequality to the limit as ¢ ~ 0 and, as a
final result, get the estimate(4.4.37) [~(v~-v)t(’,T)U~,a5~](Fk)tU:,Q ~ ¯ [~ (v~ - v)t ~,O~ 

assuming that the boundary condition (4.4.18) is homogeneous.
As stated above, the norm ~ (F~)t U:, Qv is bounded ~ k ~ ~. Ap-

plying estimate (4.4.37), relation (4.4.32) and the definition of the operator
A we establish

This provides support for the view that the nonlinear operator A is con-
tinuous on D.

Let us show that any bounded subset of the-~et D is carried by the
operator A into ~ set being compact in the space L~(~). To that end, 
rewrite the system (4.4.1)-(4.4.3) 

(4.4.38) vt-u~v=-Vp+F~, divv=0, (z,t) GQ~,

(4.4.39) v(x, 0)=a(x), xE~, v(x,t)=0, (x,t) 

where

~1 = f(x) g(x, t) - (v, 
As in the derivation of (4.4.25) and (4.4.34) we make use of the esti-

mates

+ c* M~(f)II v~ II~,

(4.4.40)

sup Ig~(:~, t)l ~ dt Ilfl12,~

+ c* M~(f)II v~ 112, Q~,
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where Ms(f) has been introduced in (4.4.24).
Further treatment of (4.4.38)-(4.4.39) as a system of the type (4.1.3)-

(4.1.4) with reference to the proof of Theorem 4.2.3 permits us to deduce,

keeping vt(., T) E ~¢~(f~) R ~ (~) and holding e from the interval 
fixed, that (4.2.34) yields

(4.4.41) IIv~(’ ~)ll~,~ II I(F~)~II~,~ ÷ 1’ - ~ ~(T- e)

3 T2

]
x [[ u Aa - (a, ~) a + F(., O)[[~, a + T [I (Fz)t QT "

Finally, we get from (4.1.14), (4.4.40) and (4.4.41) the estimate for 
nonlinear operator A

(4.4.42) II(Af).llg,~<2 [1_+ = ]
- u 2u(T-¢)

3c* M~(f)~ 2 ]
x 1+ u3--~----~x/~Tj"

+llfll~,8 sup I~(~, o)12).

Let an arbitrary bounded subset D1 of the set D be given. Recall
that

D = {f E L~(~): llflt~,a _< 

is referred to as the range of the operator A.
Estimate (4.4.42) implies that the nonlinear operator A acts from

o

D C L~(~) into W~(f~) and maps D~ into a certain set /)~ being bounded

in the space W~(~).
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On account of Rellich’s theorem, the set /~1 is compact in the space
L~(~) and, therefore, the operator A is continuous on D and carries any
bounded subset of D into a set being compact in the space L2(~). From
such reasoning it seems clear that A is completely continuous on D and the
operator B specified by (4.4.15) is completely continuous as the composition
of a nonlinear completely continuous operator and a linear bounded one.
This proves the desired assertion. ¯

In the following theorem we try to establish an interconnection be-
tween the nonlinear equation (4.4.16) and the inverse problem (4.4.1)-
(4.4.4).

Theorem 4.4.2 Let

flCR 3, g, gtEC((~r), Ig(x,T)l_>g~>0 for ze~,

o o

a, ~o e W~(ft) n w~(f~) n j (~), ~7¢ E 

One assumes, in addition, that inequality (4.4.14) is valid and

where ~ = (4/3)3/4c~/4(~) and ca(Q) is the constant (4.2. 21). If
equation (4.4.16) has a solution lying within D, then there exists a solution
of the inverse problem (4.4.1)-(4.4.4).

Proof By assumption, the nonlinear equation (4.4.16) has a solution lying
within D, say f. As stated above, inequality (4.4.16) implies that the
function F = fg admits estimate (4.1.11). When treating (4.4.1)-(4.4.3)
as a system of the type (4.1.8)-(4.1.10), we look for a set {v, ~Tp} as 
unique solution of the direct problem associated with the external force
function F = f g and the initial velocity a in complete agreement with
Theorem 4.1.4.

In order to prove that v and U p satisfy the overdetermination condi-
tion (4.4.4) we agree to consider v(x, T) = ~ and p(x, T) = V¢~. It i
evident that the new functions ~* = ¢p- ~ol and U ¢* = U(¢- ¢~) satisfy
the system of equations

(4.4.44)
-~ ~* + (~*, v) ~ + (~,, v) ~* 

div 9~* = 0, x ~ ~,
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supplied by the boundary condition

(4.4.45) ~* = 0, x E 0ft.

Furthermore, we multiply both sides of the first equation by ~p* sca-
larly in L2(ft). Integrating by parts yields

(4.4.46) u IIG II~,a = -/(~*, v)~ ̄  ~* dx,

since

/(qol, V) 9~* " qo* dx = O.

In view of (4.4.8), relation (4.4.46) assures us of the validity of the estimate

(4.4.47)

with fl = (4/3) a/4 c~/4(ft). Here we used also the inequality

When ~ is recovered from (4.4.43), ~ol = qo and V ¢1 = V ¢, valid almost
everywhere in ft, are ensured by estimate (4.4.47). Eventually, we deduce
that the collection of the functions {v, Vp, f} satisfies (4.4.1)-(4.4.4), 
is, there exists a solution of the inverse problem (4.4.1)-(4.4.4), thereby
justifying the assertion of the theorem. ̄

In the next theorem we establish sufficient conditions under which the
inverse problem under consideration will be solvable. It is worth noting here
¯ that all of the restrictions imposed above are formulated in terms of the
input data.

Theorem 4.4.3 Let

for ~,

V~ e G(ft)
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and relations (4.4.14) and (4.4.43) occur. One assumes, in addition, that
the estimate

(4.4.48)

is valid with

m~---[inf [g(x,T)[]-~([,=ca ll~Aa- (a, V) all~,n

+supx~ g(x’ O)I exp -  2 c1LtT(~*~) ]]

sup [gt(x, t) l exp - dt
x~ 2 cl (~)

and
1 [-UAcp+(~,V) +V¢]x = g(x, T) ~ ¯

Then there exists a solution of the inverse problem (4.4.1)-(4.4.4).

Proof We proceed to derive an a priori estimate for the nonlinear operator
B on D. The energy identity (see Ladyzhenskaya (1970) p. 184) suits 
perfectly after rewriting it in terms of (4.4.1):

ld
(4.4.49) , t) IIg, ~ + ~’ II v,=(., t) IIg, 

=-f(v,, V)v .v, dx +/(fg,). v, 

We are led by evaluating the first term on the right-hand side of (4.4.49)
with the aid of (4.2.21) and (4.4.8) 

(4.4.50) (v,, x7)v .v, d~ ]_< Ilv,(., t) 112,~ ¯ tlv=(., t) 112,~

_< (4/3)~/4 c~/~(~)II ~,~(-, t)lig,~

× II v~(., t)II~,~.
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Upon substituting (4.4.49) into (4.4.50) we can estimate the second 
on the right by the Cauchy-Schwarz inequality and then apply (4.1.12).
As a final result we get

(4.4.51)
1 d
2 dt Ilvt("t) ll~’a+vllvtx("t)ll~’a

< IIf()g,(, t) 112,a ¯ IIv,(., t) 

+ ~ (/2- lml m2)112 II v,x(, t)II~, 

with f E D incorporated.
Provided that (4.4.14) holds and the norm I1 vtx(

bounded by (4.2.21), expression (4.4.51)implies 
, t)II~,a has been

d
2c1(f~) IIvt("t) ll2’a -< IIf()gt("t)ll~,a’ fED.

Whence by Gronwall’s lemma it follows that

live(., T)II~,~ ~ live(., O)ll~,a vT

2 c~ (~)

T

0

fED,

With this relation established, it is plain to show that the nonlinear oper-
ator B admits the estimate

[IBfll~,a_< m~ forany fED.

Further, we refer to a nonlinear operator B1 acting in D in accordance
with the rule

B~f=Bf+x,

where

1[
It is clear that (4.4.16) takes now the form

(4.4.52) f = B~ f, f. E D.
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Because of (4.4.48), the operator B1 admits the estimate

and, consequently, maps the set D onto itself.
Theorem 4.4.1 implies that B1 is completely continuous on D C

L~(f~). In conformity with Schauder’s fixed-point principle, valid for non-
linear operators, equation (4.4.52) has a solution lying within D. Hence
there exists a solution to equation (4.4.16) and this solution also belongs 
D. Finally, by Theorem 4.4.2 we deduce that there exists a solution of the
inverse problem (4.4.1)-(4.4.4), thereby justifying the desired assertion. 

As pos£ible illustrations we give several remarks.

Remark 4.4.1 Let in the conditions of Theorem 4.4.3 a = 0 and the
function g will be independent of x. If g E C1([0, T]), g(t) >_ O, g’(t) > 0
and g(T) ¢ O, then inequality (4.4.14) is valid as long 

2g~(T) < ua(4/3~)-1.

Note that ra~ < 1 for any T, 0 < T < cx~. We Choose the functions ~ and
V ¢ so as to satisfy (4.4.43) and provide the validity of the estimate

II -uzx o+ 5 (1- m3) a(T).

Then there exists a solution of the inverse problem (4.4.1)-(4.4.4) 
these input data and the final moment t = T with the bounds

0 < T < u3 8

Remark 4.4.2 In the study of the inverse problem (4.4.1)-(4.4.4) we 
follow proper guidelines of Remark 4.2.1. The relevant results are available
in Prilepko and Vasin (1991).

4.5 Nonstaionary nonlinear system of Navier-Stokes equations:
two-dimensional flow

We now focus the reader’s attention on the inverse problem (4.4.1)-(4.4.4)
when the fluid flow is plane-parallel, that is, f~ C R~. The main feature of
the two-dimensional case is that Theorem 4.1.6 on solvability of the corre-
sponding nonlinear direct problem (4.1.8)-(4.1.10) is of global character 
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contrast to Theorem 4.1.4 with regard to fl C R3. The basic trends and
tools of research rely essentially on the arguments similar to those adopted
earlier in the three-dimensionM case.

Let us derive a nonlinear operator equation associated with the func-
tion f. Holding f from the space L2(S~) fixed and arguing as in Section 4.4,
we refer to the nonlinear operator

B: L2(~) ~ L2(~)

with the values

1
(4.5.1) (B f)(x) vt(x, T),

T)

where the function v is determined as a unique generalized solution of
the direct problem (4.4.1)-(4.4.3), which exists and possesses the required
smoothness in accordance with Theorems 4.1.6 and 4.1.7, respectively.

Unlike the three-dimensional case the nonlinear operator B is usually
defined on the entire space L2(f~).

Consider the nonlinear equation of the second kind for the function f
over the space L2(~):

(4.5.2) f = B f + x,

where
1 [-uA~+ (~, V)~o+ V¢] x - g(., T)

Theorem 4.5.1 Let

aeR2, g,~,cc(O~), I~(~,r)l>~>0 fo~ ~efi,

Then the nonlinear operator B is completely continuous on the space L~(f~).

Arguing as in the proof of Theorem 4.4.1 we can arrive at the assertion
of the theorem. More specifically, in this case the norms II vd., 0112, a and

live(’, t)l12,~ should be majorized with the aid of (4.1.18) and (4.1.17)
rather than of (4.1.13) and (4.1.12) (for more detail see Prilepko and 
(1989b)).
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Theorem 4.5.2 Let
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~,g~C(~), ig(~,T)l>9~>o for

o o

~, ~ ~ w~(~) f~ w~(~) f~ J (~), ~ ~ 

]1/4
(4.5.3) 11~’11~,~ 2c,(~) <.,

where cl(f~) is the constant from (4.2.21). If equation (4.5.2) is solvable,
then so is the inverse problem (4.4.1)-(4.4.4).

Proof In establishing this result we approve the scheme of proving Theorem
4.4.2 with minor changes. In particular, (4.4.46) should be estimated 
follows:

] 1/4
* 2_< ~c~(~) 1l~’ll4,~ I1~11~,~ 

o

This is due to the fact that any function u 6 W~(Q), f~ C 2, i s subject
to the relation

(4.5.4)

Theorem 4.5.3 Let

~CR~, g,g,~C(Q~), Ig(x,T)l>_g~>O for

o o

a, ~o 6 W~(fl) nw~(~) n a 

and let estimate (4.5.3) be true. If

(4.5.5) rn6 = m~ + II X 112,~ < 1,
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where

r
-I-sup Ig(x, O) lexp |--

~ L 2c~(~)

+ exp 2c~(f2) |g,(x, 

o

1 3 sup I~(x, T)[ dtxe×p ~ Ilall~,~+~ ~ ,

c1(~) is the same constant as in (4.2.21) and

1

then there ezists a solution of *he inverse problem (4.4.1)-(4.4.4).

Proof For the same reason as in proving Theorem 4.4.3 we employ identity
(4.4.49). With the aid of (4.5.3) the first term on the right-hand side 
(4.4.49) can be estimated as follows:

(4.5.6) _< IIv,(’, t) IIg, a ̄  live(., t)ll~,~

_< v~ II v,~(., t) II~,a

x IIv,(’, z) ll;,a ̄  II~,(’,

Substituting (4.5.6) into (4.4.49) yields

(4.5.7)
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In rearranging the right-hand side of (4.5.7) we need the inequality

2ab < 6a2+6-1b2,

which is valid for arbitrary 6 > 0 and yields

We substitute (4.~.8) with 6 = u/~ into (4.~.7) and take into account
(4.2.21). As a final result we get

d

1

Multiplying both sides of (4.5.9) by exp [- ~2q(n) ] and introducing 

new %nctions

1 fly,( , *)ll~,a,o~(~) = 

ct~(t) = exp

one can rewrite (4.5.9) 

dy(t)
(4.5.10)

dt

. (T - t) /
~c~(~)J llf(.

oh(t) y(t) q- o~(t) 

~,(’, t) ll~,a,

It is easily seen that (4.5.10) satisfies Gronwall’s lemma. In the pre-
ceding notations,

(4.5.11) ]]vt(. ,t) ll~,n_<exp [~ ]]v~ll~,Qr]

x IIv,(,, O)G,n exp 2 cl(a)

’ [
0
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Because of (4.1.17), inequality (4.5.11) assures us of the validity of 
estimate

{1[(4.5.12)l]vt(.,T)[[~,~- ~_<exp 7 ]la]]~’a

+ ~a ~easup [g(x, t)[ dt II fll~,a

+sup 19(*, 0)111f ll~, a] exp[
~’T

¯ ~a 2 c~ (~)

T

/8uplgt(x’t)lexp p(T-t)x~a
2c1(f~)

o

Relation (4.5.12) serves to motivate that the nonlinear operator B specified
by (4.5.1) admits the estimate

(4.5.13) lIB fll~,a_< m~, f~D,

where

D = { f e L~(f2): Ilfll~,a _< 1 }.

We refer to the nonlinear operator

with the values

(4.5.14) B1 f = B f + X,

where

x - g(~, ~) ~, .

Theorem 4.5.1 guarantees that the operator B is completely continuous on
L~(V/). Then so is the operator B1 on L:(~). From (4.5.5) and (4.5.13) 
follows that

(4.5.15) [1 B~ fll~,a _< m~ ÷ II x I1~,~ = m~ < 1
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for arbitrary f E D.
This provides enough reason to conclude that the nonlinear operator

B1 is completely continuous and carries the closed bounded set D into
itself. Schauder’s fixed-point principle implies that B1 has a fixed point
lying within D. In the language of operator equations, this means that the
equation

(4.5.16) f = B1 f

possesses a solution and this solution belongs to D. True, it is to be shown
that the same remains valid for equation (4.5.2). Then Theorem 4.5.2 yields
that there exists a solution of the inverse problem (4.4.1)-(4:4.4), thereby
completing the proof of the theorem. ̄

Remark 4.5.1 Of special interest is one possible application to a =
0 and g(x,t) = 1. In that case ml < 1 for any T from the interval
(0, -3/[3 c~(f~)]). The functions ~o and V ¢can be so chosen as to satisfy
(4.5.3) and the inequality

thereby providing the validity of estimate (4.5.5). Therefore, Theorem 4.5.3
yields that there exists a solution of the inverse problem (4.4.1)-(4.4.4) 
these input data once we take the final moment t = T from the interval
( 0, ~3/[8 el(a)]).

4.6 Nonstationary nonlinear system of Navier-Stokes equations:
the integral overdetermination

Given a bounded domain Ft in the plane R2 with boundary 0~ of class C2,

the system consisting of the nonstationary nonlinear Navier-$tokes
equations and the ineompressibility equation

(4.6.1)
divv = O,

will be of special investigations for (z, t)
provided that the vector external force function F is representable by

(4.6.2) F = f(t) g(x,t),
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where the vector g is known in advance, while the unknown scalar coeffi-
cient f is sought.

The nonlinear inverse problem consists of finding a set of the functions
{v, Vp, f}, which satisfy the system (4.6.1)=(4.6.2) and the function 
involved complies also with the initial condition

(4.6.3) v(x, 0) = a(x), x ¯ a,

the boundary condition

(4.6.4) v(x, t) = (x, t) ¯ r =cqf~ x [0, T] ,

and the condition of integral overdetermination

(4.6.5) f v(x,t) . co(x) dx = ~(t), 0 < t <T,

when operating with the functions g, w, a, ~ and the coefficient ~,.

Definition 4.6.1 A pair of the functions {v, f} is said to be a weak
generalized solution of the nonlinear inverse problem concerned if

0 0 0

,, ¯ c([0, T]; J (a))N L2([o,

v(x,t) ¯ ,~(x) dx ¯ W~(0, T), ’v’,I’ 4¢~(a)N] (~) ; ¯ L2(o, T),

0 0

and they satisfy for any ~ ¯ W~(~) V~ 3 (~) the integral identity

d f v(x, t) ¯ V(~) (4.6.6) d-~

+ ~ / v.(.,t) ¯ ¢~(.) 

+ / (~(~, t), v)~(~, t) ¯ e(x) 

= f f(t)g(a:,t) . ~(z) 



256 4. Inverse Problems in Dynamics of Viscous Incompressible Fluid

along with the initial condition (4.6.3) and the overdetermination condition
(4.6.5).

It is worth emphasizing here the incompressibility of the fluid and
the boundary condition (4.6.4) are taken into account in Definition 4.6.1

o o

in the sense that the function v(., t) belongs to the space W~(f])
for almost all t ¯ [0, T].

Later discussions of the inverse problem at hand are based on the
paper by Vasin (1993). In the sequel we will assume that the domain ~ 
space variables is plane and the input data functions meet the requirements

o o o

¯ J(a), ¯ w (a) w (a) (a),g ¯ C([0, T], L2(~)) 

~,¯W~(0, T), /g(x,t) ¯ w(x) dx >_go >0, O<t<T (go =-const).

With these assumptions, we proceed to derive an operator equ.ation
of the second kind for the scalar function f. This amounts to holding
an arbitrary function f from the space L2(0, T) fixed and substituting 
into the system (4.6.1) and identity (4.6.6) both. Combination of identity
(4.6.6) written above and the initial condition (4.6.3) constitutes what 
called a weak statement of the direct problem (4.6.1)-(4.6.4) of finding 
function v.

0

Since F = fg ¯ L2(Qr), a ¯ J(~) and ~ 2,ther e exis ts a un ique
function v satisfying identity (4.6.6) with the coefficient f fixed and the
initial condition (4.6.3). In every such case the function v should belong
to the desired spaces of functions (see Temam (1979)) and any function 
from the space L2(0, T) can uniquely be put in correspondence with the
vector function

o 0 o

v ¯ C ([0, T]; J (Ft)) f~ L2 ([0, T]; W~(Q)g~ 

The traditional way of covering this is to refer to the nonlinear operator

A: L2(O, T) ~ L~(O, 

acting in accordance with the rule
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where v has been already found as a weak solution of the system (4.6.1)-
(4.6.4) and

/ g(x,t) ¯ w(x)gl(t)

We proceed to study the operator equation of the second kind over the
space L~([O, T]):

(4.6.8) f = Af.

An interrelation between the inverse problem (4.6.1)-(4.6.5) and the 
linear equation (4.6.8) from the viewpoint of their solvability is revealed 
the following assertion.

0

Theorem 4.6.1 Let ~ C R2, g ¯ C([0, T], L2(~)), a ¯ J(~),

,,., ¯ w~(a) n ~’(r~) n J (r~) ̄  w’~(o,T),

(4.6.9)

g(z, t) ¯ co(z) >_ 90 > dz 0 < t < T.

Then the following assertions are valid:

(a) if the inverse problem (4.6.11-(4.6.51 is solvable, then so is equation
(4.6.8);

(b) if equation (4.6.8) has a solution and the compatibility condition

/~(~)¯ .,(~) = ~(o)dz

holds, then there exists a solution of the inverse problem (4.6.11-
(4.6.5).

Proof We proceed to prove item (a). Let the inverse problem (4.6.1)-
(4.6.5) have a solution, say {v, f). By Definition 4.6.1 the pair {v, 

satisfies (4.6.6) with any ¢ from W~(~) R ~¢~(~) R J (~). By 

setting ,~(x) co(x) weobtain

d /v(x,t).w(x)dx+u /vx(z,t).w~(x)dx
(4’6’10/ 

+ / (v(x,t),V)v(x,t) ¯ co(x) dx = f(t) 
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where

gl(t) = / g(x,t) dz.

From definition (4.6.7) of the operator A and the overdetermination con-
dition (4.6.5) it follows that the left-hand side of relation (4.6.10) is equal
to g~(t)(Af)(t), leading by (4.6.10) 

Af=f.

This means that the function f solves equation (4.6.8) and thereby item
(a) is completely proved.

We proceed to item (b). Let equation (4.6.8) have a solution belong-
ing to the space L~(0, T). We denote this solution by f and substitute 
into (4.6.1)-(4.6.2). After minor manipulations the system (4.6.1)-(4.6.4)
may be treated in the context of Theorems 4.1.6-4.1.7 and a function v is
obtained as a unique weak solution of the direct problem for the nonlinear
nonstationary Navier-Stokes equations in the case when the domain f2 of
space variables is plane. The system (4.6.1) is satisfied by the function 
in the sense of identity (4.6.6). Under such an approach we have found
the functions v and f, which belong to the class of functions from Defini-
tion 4.6.1 and satisfy relations (4.6.6) and (4.6.3) both. Let us show 
the function v meets the integral overdetermination (4.6.5) as well. 
inserting ~(z) -- w(z) in (4.6.6) we arrive 

d f
f(4.6.11) 

+ f (v(x,t),~)v(z,t) . w(x) dx = f(t)gl(t).

On the other hand, the function f being a solution to equation (4.6.8)
implies that

~’(~) + ~ [ vx(~,t) ¯ ~(~) (4.6.12)

f (v(x,t),U)v(x,t) ¯ w(x) f(t )g~(t).+

Subtracting (4.6.12) from (4.6.11) yields

ddt f v(x,t) ¯ w(x) dx- p’(x) 
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If, with the compatibility condition (4.6.91 in view, one integrates the pre-
ceding relation from 0 to t, then from the resulting expression, it seems clear
that the function v does follow the integral overdetermination (4.6.5). Be-
cause of this, the collection {v, f} is just a weak solution of the inverse
problem (4.6.1)-(4.6.5) and this proves the assertion of the theorem. 

We should raise the question of the solvability of the inverse problem
(4.6.1)-(4.6.5). For this, we have occasion to use a closed ball O in 
space L2(O, T) with center 9’/91 such that

(4.6.13) 73= { f e L2(O, T): Il f - p’/gl ll2,(O,T) <_ r 

where

g~(t) = / g(x,t) - w(x) dx.

In what follows the symbol A~ will stand for the kth degree of the operator
Afor k6N.

0
Theorem 4.6.2 Let

o o
w ̄  W~(a) fflW~(a) VI J (a), x ¯L~(Q), ~ ¯ W~(O, T)and

g(x,t) ¯ w(x) dx > go >0 (go---const), 0<t <T.

One assumes, in additidn, that the nonlinear operator A carries the ball 73
into itself. Then there exists a positive integer k such that the operator A~

is a contraction mapping in the ball 73.

Proof Let either of the functions f~ and f~ belong to the ball 73. By the
definition of the operator A,

t

(4.6.14) II A f~ - A f~ lie, (0,,) 
0

t

v )x.

dx 2-~- (v2, V)(v 1 -- V2) ¯ 03(~)]
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where the functions vl and v~ are associated with the coefficients fl and
f~, respectively.

The absolute value on the right-hand side of (4.6.14) can be estimated
as follows:

(4.6.15) /[~ (vl -v2)x ̄ ~x(x) + (~ - ~,V)v~ ¯ 

+ (v~,V) (v, - v~) ¯ w(x)] dz

2

k=l

where vl~ and v2~ are the components of the vector functions vl and v~,
respectively. We substitute (4.6.15) into (4.6.14) and, by ,)bvious 
rangements, led to

t

(4.6.16) liar1 -Af= 112,(o,¢)~< 1 /ll(vl- v~)(.., T)ll~,~
go ’

0

× [~IIAwll=,~+esssup Iw~l
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In subsequent calculations we shall need as yet the estimate

t

(4.6.17) II (vl - v2)(., t)II~,~ -< /II fa(r)g(., r) -- f2(r) g( 

0

0

0<t<T,

which can be derived in just the same way as we obtained estimate (4.4.12).
The only difference here lies in the presence of (4.5.4) instead of (4.5.8).

From (4.6.16) and (4.6.17) it follows 

(4.6.18)

t

IIAfl Af~ll~,(o,,)~< m~ /llf,-f~ dr- II~,¢o,T) 
0

where

T

go
sup

tE[0, T] (2 )Ilg(,~)tl~,~ exp ~ II(v~)~ll~,~

x [~[IA~lG,~+es~sup I~1( ~up IIv,(’,t) lG,~
zE~ t~[O,T]

q- sup ]]v2(.,t) ll~,~t)]2\]

te[0,T] /J

The quantity m~ can be bounded by

(4.6.19) m~ <
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Here we used also the following estimates with reference to (4.1.16)-(4.1.17):

t

(4.6.20) sup [[ v( . , t) [[2,a _< llalt~,a+/[[f(t)g(.,t)ll2, 
te[O,T]

0

(4.6.21) 2u[[v~[[2, Qr _< 211a[[:,a+3 [[f(t)g(’,t)l[~,adv 

Since either of the functions fl and f~ lies within the ball Z~, the combina-
tion of inequalities (4.6.18) and (4.6.19) gives the estimate

(4.6.22)

0

0<t<T,

where

m2 =-- IIA*oll2,a+esssup
go

tE[0, T]SUp [[g(’,~)[[2,~/]

= "+
and r is the radius of the ball

It is worth noting here that m~ is expressed only in terms of input
data and does not depend on t.

By assumption, the operator A carries the ball ~D into itself that makes
it possible to define for any positive integer k the kth degree of the operator
A. In what follows this operator will be denoted by the symbol A~. Via the
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mathematical induction on k inequality (4.6.22) assures us of the validity
of the estimate

(4.6.23) IIAk fl-A~ f~ll2’(°’T)-< ( m~Tkk!

It is clear that
(m~r~)/k!-+ 

)
1/2

as k -+ oo and, therefore, there exists a positive integer k0 such that

Due to estimate (4.6.23) the operator ~° i s acontracting mapping inthe
ball 79. This proves the assertion of the theorem. ̄

Sufficient conditions under which the operator A will carry the closed
ball 79 into itself are established in the following theorem.

Theorem 4.6.3 Let

fig(x,t).w(x) _> go> (go--const), 0<t<T.dx 0

if

(4.6.24)

where

m3 < r~

m3=-- ~tl/X~oll~,~ Ilall2,a+v~ sup IIg(’,t)]l~,~
go t e [o, T]

+esssupxea I~1 (211all~,~-~T~~ ,~t0,Tlsup IIg(’,t) ll:,~)],

~ = r+ I1~’/~, II~,(0,r)
and r is the radius of the ball 79, then the operator A carries the closed ball
l) into itself.
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Proof We proceed as usual. This amounts to fixing an arbitrary function
f from D and stating, by definition (4.6.13) of the ball D, that

(4.6.25) IIf 112,(0,7") < ~.

The norm of the function A f - ~’/ga can be estimate’d as follows:

(4.6.26) IIAf-~,o’/gl ll2,(0,r) = IAf-~’/~a 12 dt

go

+ ess~sup I~o~ I II v(¯, t) 1[2, a) 2 2 dt] 1/2

By appeal to (4.6.20) and (4.6.25) one can readily see that (4.6.26) 

(4.6.27) IIA f -q~’/g, 112,(o,r) < m~,

where rna is the same as before.
By virtue of (4.6.24), we have ma < r. With this relation in view,

estimate (4.6.27) immediately implies that the nonlineair operator A carries
the ball D into itself, thereby completing the proof of the theorem. ̄

Regarding the unique solvability of the inverse problem concerned, we
obtain the following result.

Theorem 4.6.4 Let
~ ̄  w~(a) ~ ~(a) ~ ~ (a), ~ ̄  ~(a), ~ ̄  w~(0, 

g(x, dx >0 (go -- const ) , 0<t<T.t) go

If the compatibility condition (4.6.9) and estimate (4.6.24) hold, then the
following assertions are valid:

(a) the inverse problem (4.6.1)-(4.6.5) has a solution {v, I} with
f ¯ D incorporated;

(b) there are no two distinct solutions {vi, fi}, i = l, 2, of the inverse
problem (4.6.1)-(4.6.5) such that both satisfy the condition f~ ¯ D.
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Proof In proving item (a) we begin by placing the operator equation (4.6.8)
and note in passing that within the input assumptions the nonlinear op-
erator A carries the closed ball D into itself on account of Theorem 4.6.3,
whose use is justified. Consequently, the operator A does follow the condi-
tions of Theorem 4.6.2 and there exists a positive integer k such that the
operator Ak is a contraction on 7?. By the well-known generalization of the
principle of contracting mappings we conclude that A has a unique fixed
point in D. In the language of operator equations, the nonlinear equation
(4.6.8) possesses a solution lying within the ball 7? and, moreover, this
solution is unique in D. In this framework Theorem 4.6.1 implies the ex-
istence of a solution of the inverse problem (4.6.1)-(4.6.5) and item (a) 
completely proved.

We proceed to item (b). Assume to the contrary that there were two
distinct solutions {vl, fl} and {v2, f2 } of the inverse problem such that fl
and f2 both lie within the ball D.

It is necessary to emphasize that under the present agreement fa can-
not coincide with f2 almost everywhere on [0, T]. Indeed, if fl is equal to f~
almost everywhere on [0, T], then vl coincide with v2 in Qr in accordance
with the uniqueness theorem for the direct problem solution.

Initially, look at the first pair {vl, fa}. Arguing as in the proof of
item (a) from Theorem 4.6.1 we draw the conclusion that the function 
represents a solution to equation (4.6.8). Similar arguments serve to moti-
vate that the function f~ solves the same equation (4.6.8). But we have just
established that equation (4.6.8) possesses in D only one solution. Thus,
we have shown that the assumption about the existence of two distinct
solutions {vi, fi}, i = 1, 2, fails to be true, thereby completing the proof
of the theorem. ̄

Before concluding this section, we demonstrate that. the class of func-
tions satisfying the conditions of Theorem 4.6.4 is not empty.

Example 4.6.1 Let f~ C R2, g = g(x), 

J (a), w~ ̄  L~(f2), a ¯ J (f2) 

g(z) - w~z) = g0 dx O.

If we agree to consider

-- f &,
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that is, T -- const and set r = 1, it is easily seen that ~ = 1 and inequality
(4.6.24) takes the form

Awll2,a (]lall2, a + V~ Ilgll2,a)

+esssup, ea ]w*l(211all~’a+2T]lgtl~’~t)] 1.

Obviously, the left-hand side of (4.6.28) approaches zero as T -~ 0+. Con-
sequently, there exists a time T* such that for any T from the half-open
interval (0, T*] estimate (4.6.28) will be true. From such reasoning 
seems worthwhile to consider the inverse problem (4.6.1)-(4.6.5), keep-
ingT E (0, T*] and taking r = 1, the radius of the ballD. It is easily
comprehended that the inverse problem with these input data satisfies the
conditions of Theorem 4.6.4.

4.7 Nonstationary linearized system of Navier-Stokes equations:
adopting a linearlzation via recovering a coei~icient

The main object of investigation is the system consisting of the nonsta-
tionary linearized Navier-Stokes equations in the general form and the
incompressibility equation

vt -uAv+ ~ B~(x,t)v,: k +A(x,t)v = -Vp+F(x,t),
k=l

div v = O, (x,t) E QT,

where B~ and A are given (n x n)-matrices with entries b~j and aij , n = 2, 3,
the function F is known in advance and the velocity v meets the initial
condition

v(x,O) = a(x), x ~ a,

and the boundary condition

v(x,t)=0, (x,t) 

In the present problem statement with the available functions a and F it
is interesting to ask whether the choice of a special type is possible within
the general class of linearizations (4.7.1) that enables the fluid flow 
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satisfy certain conditions in addition to the initial and boundary data. One
needs to exercise good judgment in deciding which to consider. When more
information is available, there arises a problem of adopting a linearization
and recovering the corresponding coefficients on the left-hand side of the
first equation (4.7.1).

We offer one of the approaches to adopting a linearization through a
common setting with further careful analysis ’of the corresponding coeffi-
cient inverse problem. Here the subsidiary information about the flow is of
the integral overdetermination form

/ v(~, t),,,(~) d~ ~(t), O<t<T,

where the functions ~o and ~ are known in advance. In that case one might
expect the unique recovery only of a single scalar function depending on t.

There are many ingredients necessary for the well-posedness of the
initial problem. One should make a number of assumptions in achieving
this property. Let A be a diagonal matrix, whose elements aij of the
main diagonal are independent of ~ and coincide. Consequently, we might
attempt the matrix A in the form

A(z,t) = ~(t) 

where I is the unit matrix of the appropriate size and a(t) is a scalar
coefficient. This provides support for an alternative form of writing

A(~:, t) v =_ ,~(t) 
where the unknown coefficient a(t) is sought. In order to simplify some of
the subsequent manipulations we set Bk(x,t) =-- flk(x,t)I, where fi~(x,t)
is a scalar function. It follows from the foregoing that

B~(x,t) v~:~ .~ fl~(x,t) 0--~-~ v _= (/3(x,t),V)v,
k:l k:l

where ¢t stands for a vector function with the components ~.
Being concerned with the coefficients u and ~ and the functions a,

F, w and ~ we are now in a position to set up the nonlinear inverse prob-
lem of finding the velocity v(x, t), the pressure gradient Vp(x, t) and the
coefficient ct(t) from the system of equations

(4.7.2)
Vt

- ~, zx v + (Z(~, t), v) ,, + ~(t) v = -v ~ + v(~, 

div v = O, (:c, t) G QT,
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the initial condition

(4.7.3) v(x,0) = a(x),

the boundary condition

(4.7.4) v(x, t) = (x, t)

and the condition of integral overdetermination

(4.7.5)

In the sequel a solution of the inverse problem (4.7.2)-(4.7.5) is sought
in the class of functions

2,1w2,0 (QT), e C([0,
where C([0, T]) is the space of all continuous on [0, T] functions. Recall
that the norm of the space C([0, T]) is defined 

(4.7.6) II~llc = sup [a(t) exp{-Tt)[,

where a proper choice of the constant 7 will be justified below. While
studying the inverse problem at hand we employ once again certain devices
for deriving several a priori estimates for the norms of the functions sought
in terms of input data and follow Prilepko and Vasin (1993).

0 0

Assuming F ~ L2(QT),/3 E C([0, T,]; L4(~2)) and a ~ W~(f2) fqJ 
we choose an arbitrary function a from C(0, T) and substitute it into
(4.7.2). Being concerned with the functions/3, a and F we involve the sys-

tem for finding a set of the vector functions {v, ~7p}. The corresponding
theorem on existence and uniqueness of the solution of the direct prob-
lem (4.7.2)-(4.7.4) asserts that the pair {v, ~Zp}, which interests us 
Ladyzhenskaya (1967) and Solonnikov (1973)), can uniquely be recovered.

Upon receipt of the function v we can refer to the nonlinear operator

A: C([O, T]) H C([O, 

with the values

(4.7.7) (A~)(t)= { /[uv. A~-(/3, ~Z)v. o~+F.~] dx

O~t~T,
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where the new functions w and ~o obey the restrictions

¢oeW~(ft), ~ECI(0, T), I~(t) l>-~r >0, =c° nst’

Common practice involves the nonlinear operator equation of the second
kind for the function c~(t) over the space C([0, T]):

(4.7.8)

The result we present below establishes an interrelation between the solv-
ability of the inverse problem (4.7.2)-(4.7.5) and solvability of the operator
equation (4.7.8).

Theorem 4.7.1 Let F
0 0 0 0

W~(f~) N J (f~),

~T > 0 (~’T = const), 0 < t < T. Then the following assertions are valid:
(a) iS the inverse problem (4.7.2)-(4.7.3) has a solution {v, V’p, ,),

then the function c~ involved satisfies equation (4.7.8);
(b) if equation (4.7.8) is solvable and the compatibility condition

(4.7.9)
I a(x) w(x) dx = ~(0)

holds, then the inverse problem (4.7.2)-(4.7.5) is solvable.

Proof We proceed to prove item (a). Let the inverse problem (4.7.2)-
(4.7.5) possess a solution, say {v, Vp, 4}. Multiplying the first equation
(4.7.2) by the function ¢o scalarly in L2(f~) and making a standard 
arrangement, we arrive at the identity

d /v(x,t).w(x)dx-u /v(x,t).Aw(x)dx
(4.7.10)

d-~

+ f(13(~:,t),~) ,¢(~,t). 

+ ~(t) f v(~,t). ,,,(~) 

=/F(x,t) .w(x) dx, O<t<T.
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Substituting (4.7.5) into (4.7.10) and taking into account (4.7.7), we 
lish the relation

a= Aa,

meaning that a gives a solution to equation (4.7.8). Thus, the assertion 
item (a) is completely proved.

We proceed to item (b). Let (4.7.8) have a solution belonging to 
space C([0, T]). We denote it by a and substitute into (4.7.2). Having
resolved the system (4.7.2)-(4.7.4) one can find a pair of the functions
(v, ~7p} as a unique solution of the direct problem. It is necessary.to prove
that the function v thus obtained satisfies the overdetermination condition
(4.7.5) as well. For further motivations it is convenient to deal with

f v(x,t) ̄ .,(x) dx = ~,l(t),

From (4.7.3) it follows that

(4.7.11) /a(x). w(x) dx = ~(01.

By the same reasoning as in the derivation of (4.7.10) we establish the
relation

(4.7.12) /~ + (~, v) v ̄  ~ ] 

+ ~(t) ~1 (t) = j r ¯ ~ 0<t<T,

showing the notation ~l(t) to be a sensible one. The function ~(t) being 
solution of (4.7.8) implies that

(4.7.13) ~’(t)- u J[v ~o + (~, v) v ̄  ~ ] 

+ o~(t) ~(t) = / r. 0<t<T,

Subtracting (4.7.12) from (4.7.13) yields the differential equation

( ~ - ~,~)’ + ~ (t) (~ - ~ol) 
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whose general solution is of the form

From (4.7.9) and (4.7.11) we deduce 

- 0,

leading by formula (4.7.14) 

- -- 0.

C -~ const .

This means that the function v satisfies (4.7.5 and thereby the triple
{v, Up, a} with these members is just a solution of the inverse problem
(4.7.2)-(4.7.5). Thus, the theorem is completely proved. 

Remark 4.7.1 One circumstance involved should be taken into account
with regard to the inverse problem (4.7.2)-(4.7.5). If the functions a and 
both are equal to zero almost everywhere in f~ and Qr, respectively, then,
in complete agreement with the corresponding theorem, the direct problem
(4.7.2)-(4.7.4) has only a trivial solution for any fl and a from the indicated
classes. For this reason it would be impossible to recover the coefficient a.
However, the presence of relation (4.7.5) in the input conditions and the
inequality [~(t) [ _~ ~’r > 0 in the assumptions of Theorem 4.7.1 excludes
that case from further consideration in the present statement of the inverse
problem.

At the next stage we examine the properties of the nonlinear operator
A, whose use permits us to justify a possibility of applying the contraction
mapping principle. In preparation for this, we consider in the space
C([0, T]) the closed ball

Dr = { a e C([0, T]): It c~ I[c _< r 

Lemma 4.7.1 Le!

"~(a) n ] (a),
~r > 0 (~r ~ const), 0 < t < T. If the radius of D~ is Caken to be

(4.7.15) r= (2T) -~ exp{-Tt},

then the nonlinear opera,or A admits ~he estimate

(4.7.16)
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× (~’ 11~ll2,a+ sup I1~(., OIh,~ I1~114,~).
tE[0, T]

Proof Let al and a2 be arbitrary distinct elements of D~.. By the definition
of the operator A,

(4.7.17) Aa~ - Aa2 

- (~, v)(v, - v2) ̄  ~] 

×ll(v~-v~)(.,t)ll~,~, O<~<T,
where v1 and v~ are the solutions of the direct problems (4.7.2)-(4.7.4)
with the coefficients a~ and 0/~, respectively.

Let us estimate the last factor on the right-hand side of (4.7.17).
Obviously, the function va - v~ gives a solution of the direct problem

(4.7.18) (v~ v2)t - IJA (Vl - v2) -~ - (~ , V) (Vl

0/2(¥1 -- Y2) "~- (0/1 -- 0/2) ~rl = --V (~01 -- 

div(v, - v~) = O, (x,t)

(4.7.19) (v, -v~)(x,O) = O, x 

(4.7.20) (v, -v~)(x,t) = (x, t) ~ S

Let us write the corresponding energy identity

1 d
(4.7.21) ~ll (v~ - v=)(., ~)II~,a ÷ ~11 (v~ - v~),~(., t)

+ 0/~(t)II (v, - v~)(., t)II~,a

= (~2 - 0/~) fv~ ̄  (v, - v~) 
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with reference to the relation

f (fi, v) (vl - v2) ̄ (vl - v21 dx 

which is valid for any fit 6 J(Qr).
Combination of identity (4.7.21) and the Poincar4-Friedrichs inequal-

ity (1.2.21) gives the estimate

(4.7.22) ~-~ II (vl - v2)(., t)ll2,a + ~ II (vl - v2)(. 

~-ItVl(", t)112,~l 1(0~1 -- O/2)(t)l 

0<t<T,

with constant c~(~) arising from (4.2.21).
Estimate (4.7.21), in turn, leads 

(4.7.23) II (v~ - v2)(., ~-)I1=,~ ~ ? I ~(~)1 II (v~ - v~)(., ~)II~,a 
0

+ ? II (v~)(., ~)112,a I(o~ - ~=)(~)1 
0

0<r<t<T,

yielding

(4.7.24)

_< sup
~[o,t]

t

II (v~ - v~.)(., ~)II=,a / I <4~) 
0

t

I1,’,(., ~)112,a / I(~1 - ~)(~)1 
0

O<r<t<T.
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From (4.7.24) it follows that

(4.7.25) sup
Tel0, t]

x I1~ Ib T exp {TT}

+ sup II v,(., ~)I1~,~
r~[o, t]

t

X / I(~1 - ~)(~)1
0

dr, 0<t<T.

Since a2 6 Dr, having stipulated (4.7.25), the estimate becomes valid:

(4.7.26)
sap II(v,-v~)(.,~)ll~,~_<~ sup

T~[o, t] ~[o, ~]

O<t<T.

Here we used also the relation

rT exp{TT}= ½

as an immediate implication of (4.7.15).
If the system (4.7.2)-(4.7.4) is written for a~ and v~, then by a similar

reasoning as before we derive the estimate

(4.7.27) sup
r~[O, t]

< sup tire(., ~’)II~,~II~,IIcTexp{vT}
~-~[o, ~]

+/IIF(., ~)lt~,n d~ + Ilalk~,
0

O<t<T.
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Since al E Dr, we might have

(4.7.28) sup Ilvl(., r)ll2,a<2(llalka+ll~ll2,1,Q~),
re[0, ~]

Substituting (4.7.28) into (4.7.26) yields the estimate

(4.7.29)

O<t~T.

sup II (v~ - v2)( ̄ , r) IIs,a _~ 4 (11 a IIs,a ÷ II F 112, 
r(~[0, t]

t

0

0<t<T,

which is valid for any ot1 and as taken from the ball Dr.
From (4.7.17) and (4.7.29) it follows 

t

(4.7.30) (Aa~-Aa~)(t) <_ m/l(a~-a:)(r)ldr, 
0

where m is the same as in (4.7.16). In the light of definition (4.7.6) 
establish from (4.7.30) the desired estimate

(4.7.31) I1A a~ - A a~ IIc

_~ rn sup
t6[0,T]

t

0

[ / ]sup exp {-vt} ~xp {-~r} dr
te[0,’r]

o

m
Vo~, as E Dr,

thereby completing the proof of the lemma. ̄

Corollary 4.7.1 Let all the conditions of Lemma 4.7.1 hold. One assumes,
in addition, that the constant 7 involved in definition (4.7.6) of the norm
is of the form

(4.7.32) 3’ = m + ¢,
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where ¢ is any positive number, Then the operator A is a contraction in
the ball D~ of radius

r ---- (2T)-1 exp {-(m ÷ g) 

and the corresponding contraction coefficient is equal to m/(rn

Proof The proof amounts to substituting relation (4.7.32) into (4.7.15)
and (4.7.16) both. 

Let us find out under what assumptions the operator A carries the
ball Dr into itself. In the following lemma we try to give a definite answer.

Lemma 4.7.2 Let F 6 L2(QT), ~ 6 C([0, T];L4(D))
0 0 0 0
w~(~) na (n), .~ e w~(~)n w~(n) na (~), ~ ~ ~([0, aad
~T > 0 (~ ~ const), 0 ~ t ~ T. If the radius of Dr is taken from
(4.7.15), then

(4.7.33)
where

f
f(t) = / F(x,t) ¯ w(x)dx

and m is the same as in (4.7.16).

Proof Because of (4.7.7),

(4.7.34) [Ao~l _~ ~1 [(u [[ A~ 1]2,

÷ sup tl~(’,t)ll4,~
t~[0, T]

V~ 6 D~ ,

where

× II v(., ,)112,~ ÷ If(t) - Y~’(*)l] 

f
f(t) : / F(x,t) ¯ w(x) dx.

On the other hand, any solution of (4.7.2)-(4.7.4) admits the estimate

(4.7.35) sup IIv(., ,-)112,~ <2(llall~,~÷

which can be derived in the same manner as we did in the consideration of
(4.7.28) by appeal to the coefficient a from the ball D~.

Estimating the right-hand side of (4.7.34) by means of (4.7.35) 
substituting the result into (4.7.6), we obtMn (4.7.33) and this proves 
lemma. ¯
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For the sake of definiteness, we accept 7 = m + 1 in subsequent
arguments. Joint use of Lemmas 4.7.1-4.7.2 and Theorem 4.7.1 makes
it possible to establish sufficient conditions under which a solution of the
inverse problem at hand exists and is unique.

Theorem 4.7.2 Let F ¯ L2(QT), f} ¯ C([0,’T];L4({2)) N 

a ̄  ~(a)N ] (a), ~ ̄  Wi(a)~ ~(a)~ ] (a), ~ ̄  c’([o, 
]~,o(t) l _> T > 0 (~r = const), 0 <t < T.One assumes, in ad dit ion,
that the compatibility condition (4.7.9) holds and the radius of the ball Dr
is equal to

(4.7.36) r = (2T) -~ exp{-(m + 1)T}.

ff the input data of the inverse problem satisfy the inequality

(4.7.37)

’where

Z (m -t- 2~; 111f- ~’ IIc) -< exp {-(m + 1)T},

/
?’rt = 4 99~"1 (11 a

+ sup
t~[O,T] /

f(t) = f F(x,t) dx,

then the following assertions are valid:

(~) ~ i~e~,~ V~o6~e~ (4.r2)-(4.r.8) ~ a ~o~;~ion {v, VV, ~} ~i~
~ ~ Dr;

(b) there are no two distinc* solutions {vi, VPi, ~i}, i = 1, 2, of the
inverse problem (4.7.1)-(4.7.5) such lha* both satisfy the condition
~i~D~, i= 1,2.

Proof First, we are going to show that the nonlinear operator A speci-
fied by (4.7.7) can be considered in the context of the contraction map-
ping principle. Indeed, by Corollary 4.7.1 the operator A appears to be
a contraction in the closed ball Dr of radius (4.7.36) and the contraction
coefficient therewith is equal to m/(m + 1) (recall that 7 = m + 1).

On the other hand, since 3’ = m+ 1, Lemma 4.7.2 and estimate (4.7.37)
together imply that the operator A carries Dr into itself and, therefore,
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A has a unique fixed point in the ball Dr. To put it differently, we have
proved that (4.7.8) has in the same ball Dr a unique solution, say c~. Under
the compatibility condition (4.7.9) Theorem 4.7.1 implies that there exists
a solution {v, Vp, a) of the inverse problem (4.7.2)-(4.7.5), where 
exactly the same function which solves (4..7.8) and belongs to Dr. Item (a)
is proved.

We proceed to item (b). Assume to the contrary that "t, here were two
distinct solutions

(4.7.38) {vl, Vpl, al} and {v2, Up2, ct~}

of the inverse problem (4.7.2)-(4.7.5) such that o~1 and a2 both lie within
the ball Dr. As noted above, if the collections in (4.7.38) are different,
then so are the functions c~1 and as. Indeed, if c~1 = c~2 then, due to the
uniqueness theorem for the direct problem (4.7.2)-(4.7.4), the functions 
and Vpl coincide almost everywhere in Qr with v2 and Vp~, respectively.

The collection { vl, Vp~, c~}, whose functions obey (4.7.2)-(4.7.5),
comes first. By Theorem 4.7.1 the function ~1 is just a solution to equation
(4.7.8). A similar remark shows that c~2 also satisfies (4.7.8). At the 
beginning both functions c~1 and c~2 were taken from the ball Dr. Therefore,
we have found in Dr two distinct functions satisfying one and the same
equation (4.7.8). But this disagrees with the uniqueness property of the
fixed point of the operator A in the ball Dr that has been proved earlier.

Consequently, the assertion of item (b) is true and this completes the
proof of the theorem. ̄

Let us consider an example illustrating the result obtained.

Example 4.7.1 Let F =- 0 and /3 _-- 0. The functions a and ,o are
arbitrarily chosen in the corresponding classes so that

If we agree to consider

then V’r -- ~(t) = const > O, the compatibility condition (4.7.9) holds and
inequality (4.7.37) takes now the form

(4.7.39) Trn _< exp {-(m + 1)T},
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where

dx>O

Obviously, for any m > 0 the left-hand side of (45(.39) tends to 0 as T 
0+, while the right-hand side has 1 as its limit. Consequently, there exists
a time T1, for which (4.7.39) becomes true. For T = T1 and the input
data we have imposed above it makes sense to turn to the inverse problem
(4.7.2)-(4.7.5), which, by Theorem 4.7.2, possesses a solution {v, Up, 
with a ¯ D~ and

r = (2T1)-I exp {-(m + 1)T~).

Moreover, there are no two distinct solutions {vi, Vpi, c~i}, i = 1, 2, such
that both satisfy the condition c~i ¯ D~.

The example cited permits us to recognize that Theorem 4.7.2 is,
generally speaking, of local character. The uniqueness in item (b) was
proved as a corollary to the principle of contracting mapping. However, by
another reasoning we obtain the following global uniqueness result.

o o

Theorem 4.7.3 Lel
~o ̄  C([0, T]) and ]~(t) l _> ~T > 0 (~T =- const), 0 < t < T. Then the
inverse problem (4.7.2)-(4.7.5) can have at most one solution.

Proof Let us prove this assertion by reducing to a contradiction. Assume
that there were two distinct solutions

{ Vl, Vpl, O~1 }

and

{ v~, Vp~, ~ }

of the inverse problem (4.7.2)-(4.7.5). As noted above, if these are different,
then so are the functions aa and c~ involved.

Let us subtract the system (4.7.2)-(4.7.5) written for {Va, 
from the same system but written for {v~, Vp~, a~}. By introducing the
new functions u = va - v~, Vq = Vpl - Vp~ and ~(t) = c~l(t) - a~(~) 
is plain to show that the members of the collection {u, Vq, #} solve the
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linear inverse problem

(4.7.40) u, - ~zx u + (~, v) u + ~1 u = -Vq + ~(t) v2(x, 

divu = O, (x,t) 

(~i.7.41) u(x, O) = O, 

(4.7.42) u(x, t) -- 0, (x, t)

(4.7.43) / u(x,t)w(x) dx = O, t E [0, T].

Obviously, it has at least the trivial solution u = 0, Vq -= 0, # =- 0. To
decide for yourself whether the solution thus obtained is the unique solution
of (4.7.40)-(4.7.43), a first step is to appeal to Theorem 4.3.5. Indeed, 
restrictions on the smoothness of input data are satisfied" for the linear
inverse problem at hand. and so it remains to analyze the situation with
condition (4.3.30) taking now the form

(4.7.44) / v:(x,t)~o(~) > ~o > o, t E [0, T].

Recall that the function v~ is involved in the solution { v~, Vp~, a2} of
the inverse problem (4.7.2)-(4.7.5) and, consequently, satisfies the integral
overdetermination (4.7.5), what means that

o o

v~ e C([0, T];W~(a) ~lJ (f~))

and

By assumption,

/ v~(x,t)w(x) dx = ~(t), [0 , T].

I s~(t)l >_ s~- > 
for any t E [0, T] and inequality (4.7.44) holds-true. Thus, the inverse
problem (4.7.40)-(4.7.43) meets all the requirements of Theorem 4.3.5 
which another conclusion can be drawn saying that there are no solutions
other than the trivial solution of (4.7.40)-(4.7.43). Consequently, the 
sumption about the existence of two distinct solutions of the inverse prob-
lem (4.7.2)-(4.7.5) fails to be true, thereby completing the proof of 
theorem. ¯
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4.8 Nonstationary linearized system of Navier-Stokes equations:
the combined recovery of two coefficients

This section is devoted once again to the linearized Navier-Stokes equations
of the general form (4.7.1). For the moment, the set of unknowns contains
not only the differential operator on the left-hand side of (4.7.1), for which
at least one coefficient needs recovery, but also the vector function of the
external force by means of which the motion of a viscous incompressible
fluid is produced.

For more a detailed exploration we deal with the system of equations

(4.8.1)
v~ -. zx v + ~(t) .. = -vp + r(x, 

divv = 0, (x,t) E Q~. = ft x (0,T),

where ft is a bounded domain in the space R~, n = 2,3, with boundary
Oft of class C2.

Let the function F admit the representation

F = f(t)g(x,t),

where g is a given vector function and f is an unknown coefficient. As-
sume that the coefficient c~ is also unknown and is sought along with the
coefficient f, the velocity v.and the pressure gradient Vp.

A common setting of the inverse problem concerned necessitates im-
posing more information on the solution in addition to the initial and
boundary conditions. On the other hand, in trying to treat the inverse
problem at hand as a well-posed one it is worth bearing in mind that,
since the total number of unknown coefficients is equal to 2, the number of
available overdeterminations should be the same.

For example, one is to measure the velocity and the pressure gradient
by the data units making a certain averaging with weights over the domain
of space variables x. In such a case the conditions of integral overdeter-
mination as a mathematical description.of such measurements are good
enough for the purposes of the present section.

So, the nonlinear inverse problem of the combined recovery of the evo-
lution of the coefficients a and f amounts to recovering the vector functions
v and Vp and the scalar coefficients a and f from the system of equations

(4.8.~)
vt - uAv + c~(t) v = -Vp+ f(t)g(x,t),

divv = 0, (x,t) E Qr,
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the initial condition

(4.8.3) v(x, O) ---- a(x),

the boundary condition

(4.8.4) v(x,t) = 0, (x,t) ¯ ST -- 0Q x [0, T],

and the conditions of integral overdeterminations

(4.8.5) / v(x,t) - wl(x) dx = ~(t), t [0, T] ,

(4.8.6) / Vp(x,t) -w2(x) dx = ¢(t), t e [0, T],

where the functions g, a, wl, w2, ~o, ¢ and the coefficient u are known in
advance.

Definition 4.8.1 A collection of the functions { v, ~Tp, (~, f) is said to 
a generalized solution of the inverse problem (4.8.2)-(4.8.6) if

o

~,o~ (Qr) 13 J (Q~.), ¯ c. ([0, T]),

f ¯ c([0, T]), vp 

the integral

/VV(x,t). ~(x)

o
is continuous with respect to t on the segment [0, T] for any ¢ ¯ W~(~) 
(~(~) and all of the relalions (4.8.2)-(4.8.6) occur.

o

It is worth recalling here that the spaces J (Qr) and G(Qr) comprise
o

all the vectors of the space L2(Qr) belonging, respectively, to J (Ft) 
G(~) for almost all t ¯ [0, T] and that the space C([0, T]) = C([0, 
C([0, T]) is equipped with the norm

where u~ and u~ are the components of the vector u and

t~[0, T]



4.8. Navier-Stokes equations: the combined recovery

Taking the input data from the classes

283

o o

(4.8.7) g E C([0, T], L2(~t)),

0 o o

~1 e w~(a)NW~(a)NJ(a), ~2 e w~(a)NW~(a)NG(a),

~ e C1([0, T]), %b ~ C([0, T]), /g(z,t) ¯ w2(z) dz _> gr > 0,

I~(t)l >_ >0, t E [0 , T] (gr ,~r -= const),

and keeping the notations

X : {~(t), f(t)},

g~(t) ---- / g(x,t) Wl(X) dx ,

~(t) = f g(~,t) ̄  ~(~) 

we begin the study of the inverse problem concerned by deriving a system
of two operator equations of the second kind for the coefficients a(t) and
f(t). To that end, we choose an arbitrary vector. {a(t), f(t)} from 
space C([0, T]) and. substitute then a and f into (4.8.2). Since other
input functions involved in (4.8.2)-(4.8.4) meet (4.8:7), the velocity 

0
2,1

W2,0(Qr) ~ (QT) and th e pressure gradient Vpe G(QT) aredetermined
as a unique solution of the direct problem (4.8.2)-(4.8.4). As such, it 
will be useful to refer the nonlinear operator

A: C([O, T]) ~ C([O, 

acting on every vector X = {a(t), f(t)} as follows:

(4.8.8) [t(x)](t) {[ A~(~,f)](t), [A 2(~,f)](t)}, t [0 , T],
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where

[Al(c~, f)](t) : [~1(c~, f)](t) gl(t__~)

¢(t) ~ ~’(t)× [~(~,/)](t)+g--~j ~(t)’

[A2(c~, f)] (t) = [.~(c~, f)] (t) 
g2(t) 

[~1(c~, f)](t)= 

[~2(~, f)](t) - g2~t) "a ¯

Let us consider a nonlinear operator equation of the second kind over
the space C([O, T]):

(4.8.9) X = AX,

which, obviously, is equivalent to the system of two nonlinear equations
related to the two unknowns functions

(4.8.10)
a = -~l(a, f) + ~- A2(c~, f) 

¢
f ~2(c~, f) + g--~ 

gl ¢ )9~

Theorem 4.8.1 Let the input data of the inverse problem (4.8.2)-(4.8.6)
comply with (4.8.7). Then the following assertions are valid:

(a) if the inverse problem (4.8.2)-(4.8.6) has a solution {v, Vp, a, f},
then the vector X = {ct, f} gives a solution to equdtion (4.8.9);

(b) /f equation "(4.8.9) is solvable and the compatibility condition

(4.8.11) p(0) = J a(x).. ~o~(x) dx

holds, then the inverse problem (4.8.2)-(4.8.6) is solvable.
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Proof We proceed to prove item (a). Let {v, Vp, ct, f) constitute a solu-
tion of problem (4.8.2)-(4.8.6). Taking the scalar product of both~sides 

the first equation (4.8.2) and the function col
from the space L2(f~), we arrive 

(4.8.12) ~-~ v ’wl dx-u v ¯ Awl dx

Via a similar transform with

O

.~ e G(a) NW~(a) Nw~(a)

we obtain the identity

(4.8.13)-~, f v . ~X,,~ d~: = - / Vp . ,o~ d~: +.f(t) f g . ,~ d~.

Provided the overdetermination conditions (4.8.5)-(4.8.6) hold, we deduce
from (4.8.12)-(4.8.13) 

(4.8.14)

1
a(t) = ~l(a,f) + -~ [f(t)g~ T’(t)] ,

¢(t)f(t) = ~(~, f) + ~(t--Z 

where ~(a, f) and J,2(c~, f) take the same values as in (4.8.8).
Upon substituting the second equation (4.8.14) into the first it 

easily seen that the functions a(t) and f(t) solve the system (4.8.10) and,
consequently, the vector X = {a, f} satisfies the operator equation (4.8.9).

We proceed to item (b). Let X be a solution to equation (4.8.9).
For later use, we denote by a(t) and f(t) its first and second components,
respectively. So, in what follows we operate with X = {a, f}.

Let us substitute ct and f into (4.8.2) and look for v e W~:~(Qr) r~

2~ (Q~)and Vp e G(Q~) as a unique solution of the direct problem (4.8.2)-
(4.8.4). It is easy to verify that for the above function Vp(x, t) the integral

/ vp(~, ~). ~(.) 
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is continuous with respect to t on the segment [0, T] for any ~ 6 G(f~) 
o

W~(~2). Indeed, the first equation (4.8.2) implies the identity

dz=-u / vz . q~x(z) dx + / g . ¢ dx,

yielding

f

+ [f(t + At)

II,~x( .t + ±t) - ,,.~(. ,t)112,~

II ~ tl~,a ̄ II g(, t + At) - g(., t)II~,a

+lf(t + At) - f(t)l II g( , t)II~, a " II tt2. ~,

whence the desired property follows immediately.
Let us find out whether the abov.e functions v and Vp satisfy the

overdetermination conditions (4.8.5)-(4.8.6). For later use, 

(4.8.15) / v(x,t) w,(x) dx = ~,( t), t e [0, T],

(4.8.16) / Vp(z,t) ¯ w~(x) = ~bl (t), t ~ [0, T].

Since v satisfies the initial condition (4.8.3), we thus have

(4.8.17) 91(0) / a( x) ¯ w~(x) dx

By exactly the same reasoning as in the derivation of (4.8.12)-(4.8.13) 
arrive at

(4.8.18) a(t)~(t) = u / v ¯ Aw~(x) dx + f(t)g~(t) ~,’l(t)

and

(4.8.19) f(t)= g-~ -u v ¯ A~o2(~e) dx+~b~(t) 
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where

g,(t) = f g(x,t) ̄  ,,,(x) d~, g~(t) 

Substitution of (4.8.19)into (4.8.18) yields

f ~,(t)(4.8.20) a(t) ~91(t) --/2 y ̄  AO.~l(X) dx -~- g2(t--~

g(x,t) ¯ w2(x) dx.

A,,,(~) dx + ¢~(t)] ~’~(t),

](4.8.21) f(t) = -- -~, v ¯ Aw~(x) dx + ¢~(t) g2(t) 

showing the notations ~ (t) and ¢, (t) to be sensible ones.
On the other hand, since the vector X = {c~, f} gives a solution to

equation (4.8.9), both functions c~ and f satisfy the system

(4.8.22) a(t) ~(t) = u f v ¯ Awa(x) 
(t~gl

~(t)J

zx,52(x) d, + ¢(t)] ~’(t),

(4.8.23) f(t)- g2(t)

Subtracting (4.8.22) and (4.8.23) from (4.8.20) and (4.8.23), 
tively, leads to the system

(4.8.24) ~(t) [~o~(t) - ~o(t)] gl(t) [~b~(t) -
g~(t)

- [<(t) - ¢(t)],
(4.8.25) ¢,(t) = ¢(t), t ~ [0, T],

followed by the differential equation

d [~o(t) - ~o,(t)] + a(t) [~,(t) - ~o,(t)] 
t e [0, T]

dt ’
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having the general solution in the form

t

From (4.8.11), (4.8.17) and (4.8.26) we find 

(4.8.27) ~l(t) = ~(t), Vt E [0, 

With relations (4.8.25) and (4.8.27) in view, it is straightforward to 
ify that the functions v and Vp satisfy the overdetermination conditions
(4.8.5)-(4.8.6), respectively. This provides support for decision-making
that the collection {v, Vp, a, f} gives a solution of the inverse problem
(4.8.2)-(4.8.6), thereby completing the proof of the theorem. 

Before proceeding to deeper study, it is reasonable to touch upon
the properties of the nonlinear operator A, which complements special
investigations. Let Dr be a closed ball in the space C([0, T]) such that

Dr = { X E C([0, T]): ]" X Tc([o,Tl) < r }.

Lemma 4.8.1 Let the input data of the inverse problem’(4.8.2)-(4.8.6)
comply with (4.8.7). If the radius of the ball Dr is taken to be

(4.8.28) r = (2 T)-I exp {’-3’ T},

then the nonlinear operator A admits in the ball Dr the estimate

(4.8.29) T AX1 - AX2 ]’c([O,Tl)_< ")’-1 m T X~ - x2 Tc([o,T]),

where the constanl 7 arose from lhe definition of the norm of the space

C([0, T]) and

m=2u[sup IIg(.,t) ll,,a÷2l[all~,a]
Lt e [o, T]

x [ G1 II zx , II ,a + gG1 (1 + ~1

x sup Ig~(t)l)
¢~[0,T]

g,(t) = / g(x,t) . w~(x) dx.
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Proof For more clear understanding of relation (4.8.29) we first derive
some auxiliary estimates for the system (4.8.2) solutions. In particular, 
are going to show that

(4.8.30) sup IIv(-, r)ll2,~
~-~[o,t]

_< sup IIg(.,~-)l12,~÷211,~ll~,a, t~[0, T],
~6[o,

if X = {c~(t), f(t)} lies within the ball Dr of re{dius r specified by (4.8.28).
Taking the scalar product of both sides of the first equation (4.8.2) and the
function v from the space L~(fl), we get

d
(4.8.31)

d-~

+ ~(t)II v(., ~)II~,a

= f(t) g(x,t) ¯ v( ~c,t) dx , t e[O,T].

Identity (4.8.31) implies that

(4.8.32) IIv( ~-)ll~,a_<? Io4~)111v(.,~)ll~,~ 
0

By the same token,

(4.8.33) II v(

+] I f(~)l IIg(,~)ll~,a d~+ Ilall~,a.
0

t

sup IIv(’,4) 115,~/1~(,~)1 
~e[o,t]

0

t

sup Ilg(’,~)ll=,a /If(~)l +
~-e[o, t] J

0

+llal12,a,
Estimate (4.8.33) allows us to derive the inequality

(4.8.34) sup llv(, ~-)I1~,~ < sup IIv(, ~-)II~,a 
~e[0, t] ~[o,t]

+ sup llg(.,r) U~,a llfllc Texp {TT}
re[0,

+ II~ll~,a, ~ e [0, T].
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If the vector X = {a(t), f(t)} lies within the ball Dr of radius r specifi&d
by (4.8.28), then (4.8.34) immediately implies the first auxiliary estimate
(4.8.30).

The second auxiliary estimate for the solutions of (4.8.2) is as follows:

(4.8.35) sup

where

and

_< 2 7-~ [exp {Tt}- 1] ’

¯E[0, t]

x, = I1}

both lie within the ball Dr of radius r specified by (4.8.28). Here vl and
v~ are the solutions of the direct problems

(4.8.36) (v~)t - uAvl + a~(t) v~ = -Vp~ f~(t)g(x,t),

div v~ = 0, (x, t) E QT 

V1 (X, 0) ~- a(;~) , ¯ ~ a 1 (~, t) = O, (~ , t )e S T ;(4.8.37)

and

(4.8.38)

(4.8.39)

where the coefficients

and

A}
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are suitably chosen in the space C([0, T]) subject to condition (4.8.35).
A simple observation may be of help in establishing estimate (4.8.35)

saying that (4.8.36)-(4.8.39) lead to the system

(4.8.40) (vl - v2)t - r, A(vl - 

+ [~(t) - ~2(t)] v, + ~2(~)(,,1 

= -V(pa - p,) + [f~ (t) fz (t)] g(~,t),

div (Vm ~ vz) = 0, (x, t) 

supplied by the initial and boundary conditions

(4.8.41) (v~ - v~)(x,0) = 0, z 

(4.8.42) (v~ - v~)(x, t) = O, (x, t) T.

The first equation of the system (4.8.40) implies the energy identity

1 d
- ¯ I1=,~ + ~ll(v,- ~)=(’

+ ~(t)It (~, - ~)(, t)I1~,~

+ [~,(t) dx

- ~(t)] [g ̄  (~, - [f,(t)

te[o,~],
which assures us the validity of the estimate for t ~ [0, T]

t

(4.s.43) II (v, - v=)(., t)I1=,~ ~ / I~=(~)1 II (v, - v=)(., 
0

t

0

t

+ ~ I f~(~)-f=(~)] IIg(., ~) 11=,~ 
0
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Here the initial condition (4.8.41) was taken into account as well.

It follows from (4.8.43) that

(4.8.44) sup
r~[o, t]

II (vl - v2)(’, ~-)112,a

sup II(v~-v~)(., ~-)lt~,all~;ll~Texp{TT)
~-~[o,t]

T

-I-/exp{TT} dr[ sup
~-e[o, ~]

0

+,-~to,,lsuP IIg(’, ~-)II~,~IlYl - f~llc] 

Recalling that the pairs

and

x2 = { ~, f2)

belong to the ball D~, whose radius r is specified by (4.8.28), we place
estimate (4.8.30) in (4.8.40) as we did for the function va, thereby justifying
the inequality

t

sup II(vl -v~)(., ~’)ll~,a -< ~ / exp{TT) 
re[0, t] o

x [sup
Te[o,t]

x (]]o~a-o~;]]c+[[f~-f~]]c),

t e [o,

which immediately implies the second auxiliary estimate (4.8.35).



4.8. Navier-Stokes equations: the combined recovery

Returning to the proof of estimate (4.8.29) we find that

(4.8.45)

and, in turn,

(4.8.46)

and

(4.8.47) II A~(ct~, f~) - A~(ct~, f~)IIc

sup [exp {-Tt} II (vl - v~)(., t) 112,a] 
t~[O,T]
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is positive, since

Remark 4.8.1 Let us show that m :~ 0 because of (4.8.7). At first glance,
the value

sup [[ g( ̄ , t) [[~,a + 2 [1 a [l~,ate[o,T]

I / g(x,t) ’ ~:(z) dx ] >_ g~ 

Recall that the functions A1, A2, A~ and A~2 were introduced earlier in
(4.8.8) and help motivate what is done.

Having involved (4.8.35) in estimation of the right-hand sides 
(4.8.46)-(4.8.47) and substituted the final result into (4.8.45) we 
pretty sure that the operator A acts on D~ by the governing rule (4.8.29),
thereby completing the proof of the lemma. ̄
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for any t 6 [0, T]. A similar remark is still valid for the second multiplier in
the formula for m (see (4.8.29)). This is due to the fact that zx ,1112,a # 0
in the context of (4.8.7). Indeed, having preassumed the contrary we obtain
wl(x) = 0 almost everywhere in f~ as a corollary to the basic restriction

o
on the input data ¢ol 6 W~(a) 71W~(a) and the maximum principle 
regard to the components of the function w~. In this line,

~O(t) = / V(~’,t)’ O.JI(~C ) dx --: 0,

which disagrees with the constraint I~(t)l _> ~’r > 0 imposed at the very
beginning for any t G [0, T].

Corollary 4.8.1 Let the conditions of Lemma 4.8.1 hold. If 7 is repre-
sentable by

(4.8.48) ") = m + c,

where ~ is an arbitrary positive number, then the operator A is a contraction
in the ball Dr of radius

r = (2T)-~ exp {-(m + e) 

and lhe relevant contraclion coefficient is equal to m/(m

Proof The proof reduces to inserting (4.8.48) in (4.8.28)-(4.8.29). After
that, the statement we must prove is simple to follow. ¯

The next step is to find out under what sufficient conditions the oper-
ator A carries the ball Dr into itself. We are in receipt of the answer from
the following lemma.

Lemma 4.8.2 Let lhe input data of the inverse problem (4.8.2).-(4.8.6)
satisfy (4.8.7). If the radius of D,. is given, by formula (4.8.28), thenthe
operator A admits the estimate

(4.8.49)

where X 6 D~ and m is of the same form as we approved in Lemma 4.8.1.



4.8. Navier-Stokes equations: the combined recovery 295

Proof In conformity with (4.8.8) we write down

(4.8.50) ~" AX Tc([o,T]) = II Al(a, f)lie ÷ II A~(a, f)lie

_< [[ ~l(a, f) [[c + (1 + 

× sup Igl(t) l) 11~2(o~,f)llc
te[O,T]

÷ (~flT gT)-1 II gl ¢ IIc
and, in turn,

(4.8.51) l~l~,f)l<~c~’ll~llIc.llvl.,t)ll2,~, t ~ [0, El,

(4.8.52) ]~e(a,f)I~g~l]~w~tlc ¯ liv(.,t)[I~,~, tG[0, T].

Estimating the right-hand sides of inequalities (4.8.51)-(4.8.52) on 
sis of (4.8.30) and substituting the resulting expressions into (4.8.50), 
obtain (4.8.49) and the lemma is completely proved. 

The principal result of this section is the following.

Theorem 4.8.2 Let g @ C([0, T], L~(D)), a e W~(~) ~ J(D), 
0 o o

w~(~)nw~(~)nJ (~), ~ ~ w~(~)nw~(~)nG(~), ~ ~ C~([0, 
c([0, ~]), ~ f~ ~(~, t) ¯ ~(~) d~ ~ ~ ~ > 0, I~(t) l.~ (g~,
const) fort ~ [0, T] and let the compatibility condition (4.8.11 hold. With
respect to the ball Dr of radius

(4.8.~3) ~ = (~ ~)-~ Cx~ {-(~ + 1)~},

where

= Ila, t)ll , + llall , 
tt e [o, T] J

x sup ]g~(t)])]IAw~]12,aJ,
t~[O,T]

g,(t) = / g(~,t) ̄  ,~(~) 
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the estimate

(4.8.54) 2T

< exp {-(m + 1)T)

is supposed to be true. Then:

(a) the inverse problem (4.8.2)-(4.8.6) tias a solution

{v, Vp, ~, f)

and the vector X : {~, f} lies within Dr;
(b) there are no two distinct solutions {vi, VPi,al, f~}, i = 1,2, of the

inverse problem (4.8.2)-(4.8.6) such that both satisfy the condition

Xi = {ai,k} 6 Dr, i = 1,2.

Proof First, we are going to show that the principle of contracting mapping
is acceptable for the nonlinear operator A specified by (4.8.8) on account
of Corollary 4.8.1 with e = 1 and, consequently, 7 = m + 1 (see (4.8.48)).
Having this remark done, it is straightforward to verify that the operator
A is a contraction on the closed ball Dr of radius r specified by (4.8.53).
If so, the contraction coefficient equals m/(m + 1).

On the other hand, since 7 = m+l, Lemma4.8.2 and estimate (4.8.54)
together imply that the operator A carries the ball D,. into itself. Therefore,
the operator A has a unique fixed point in D,.. To put it differently, we
have established earlier that the nonlinear equation (4.8.9) has in Dr 
unique solution, say X, whose first and second components will be denoted
by a(t) and f(t), respectively, that is,

x --- b, f].

Since the compatibility condition (4.8.11) holds, Theorem 4.8.1 yields
that there exists a solution {v, Vp, a, f} of the inverse problem (4.8.2)-
(4.8.6). The location of the vector = {c~, f} in theball Dr was estab-
lished before. Thus, item (a) is completely proved.

We proceed to item (b). Assume to the contrary that there were two
distinct solutions

{vl, Vp,, oq, f,}

and
{v:, VV2, o~2, f~)
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of the inverse problem (4.8.2)-(4.8.6) such that both vectors

and

x~ = { ~, Y~)
lie within the ball Dr.

We claim that if the collections

{ vl, Vpl, ~, f~ }

and
{ v2, Vp2, a~, f~}

are different, then so are the vectors X~ and X-~. Indeed, let Xx -- X~-
Then al = as and f~ = f~. Consequently, by the uniqueness theorem for
the direct problem (4.8.2)-(4.8.4) the functions v~ and Vpl should coincide
almost everywhere in Qr with v~ and Vp~, respectively.

Consider the first collection {v~, Vp~, ctl, fl}: By assumption, these
satisfy the system (4.8.2)-(4.8.6). Then the first assertion of Theorem 4.8.1
ensures that the vector

X~ = {oq, fa}

gives a solution to equation (4.8.9). A similar reasoning shows that the
vector

X2 = { a2, f~ }

satisfies the same equation (4.8.9).
On the other hand, we preassumed that both vectors X1 and X~ lie

within the ball D~, thus causing the appearance of two distinct solutions to
equation (4.8.9) that belong to Dr. But this disagrees with the uniqueness
of the fixed point of the operator A in Dr that has.been established before.
Consequently, an assumption violating the assertion of item (b) fails 
true and thereby the theorem is completely proved. ¯

In conclusion we give an example illustrating the result obtained.

Example 4.8.1 We are concerned with functions g, a, ~ol and w2 suitably
chosen in the appropriate classes in such a way that

g(x,t) ¯ w~(z) >gr>0, / a(.’/~) ¯ GOl(X ) dx ~> 0.
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Accepting ~(t) _= fa a(x) ¯ wl dx and ¢(t) _~ 0 we obtai n ~(t) = const
and check that the compatibility condition (4.8.11) is satisfied. Estimate
(4.8.54) is rewritten 

(4.8.55) Tm< exp {-(m + I)T},

where m is of the form (4.8.53). Obviously, as T --~ 0+, the left-hand
side of (4.8.53) tends to 0, while the right-hand side has 1 as its limit.
Consequently, for any m > 0 there exists a time moment T1, at which
estimate (4.8.55) becomes true. We consider (4.8.2)-(4.8.6) with 
and the input data being still subject to the conditions imposed above.
In such a setting Theorem 4.8.2 asserts that the inverse problem (4.8.2)-
(4.8.6) possesses a solution

{v, Vp, c~, f}

with {a, f} E Dr, where

’t" = (2 T1)-1 exp {--(rn + 1) T1].

What is more, there are no two distinct solutions {vl, Vpi, o~i, fi }, i = 1,2,
such that both satisfy the condition {c~i, fi } E D,., i = 1,2.



Chapter 5

Some Topics from Functional

and Operator Theory

Analysis

5.1 The basic notions of functional analysis
and operator theory

Contemporary methods for solving inverse problems are gaining the in-
creasing popularity. They are being used more and more in solving applied
problems not only by professional mathematicians but also by investigators
working in other branches of science. In order to make this book accessible
not only to specialists but also to graduate and post-graduate students, we
give a complete account of notions and definitions which will be used in
the sequel. The concepts and theorems presented below are of an auxiliary
nature and are included for references rather than for primary study. For
this reason the majority of statements are quoted without proofs. We will
also cite bibliographical sources for further, more detailed, information.

A set V is called a vector space over the field of real numbers R or
complex numbers C if

(A) the sum x + y E V is defined for any pair of elements x, y ~ V;

(B) the operation of multiplication ax ~ V is defined for any element

299
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x E V and any number a ~ R;

(C) the operations of addition and multiplication just introduced are
subject to the following conditions:

(1) x+y=y+xforanyx, y~V;
(2) (xq-y)+z =-x+(y+z) foranyx, y, z 
(3) in V there exists a zero element 0 such ~ha~ ~ + 0 = x for any

x~X;
(4) every element x E V h~ a negative element (-x) E V such that

x + (-~) o;
(5) 1 ¯ x = x for any x ~ V;
(6) a (fix) = (a~) x for any x ~ V and any ~, ~ 
(7) (a + 3) x = ax + 3x for any x ~ V and any a, 3 ~ 
(8) a(x + y) = ax +,2x for any x, y ~ V and any a ~ 

In this context, let us stress that in any vector space the zero and
negative elements are unique. Also, by the difference x - y we mean the
sum of elements x and (-y). An element y is called a linear combination
of elements xl, x~, ..., x~ with coefficients ~1, ~2, ..., (~,~ if

Any subset V~ of the vector space V is termed a subspace of this space if
it can be treated as a vector space once equipped with the usual operations
of addition and multiplication by a number. For any subset V~ of the
vector space V a linear span L(V~) is defined as the set of all linear
combinations of elements from V1. It is clear that the span L(V1) is always
a linear subspace of the space V.

Elements x~, x2, ... , x~ from the space V are said to be linearly
dependent if some linear combination with at least one non-zero coefficient
gives a zero element of this space. A system of elements xl, x~, ... , xn
is said to be linearly independent if there is no linear combination of this
type. Likewise, a subset VI of the vector space V is said to be linearly
independent if each finite system of its elements is linearly independent.
A subset V~ of the space V is called complete if L(VI) = V. Any linearly
independent and complete subset is termed a Hamel or an algebraic
basis. Cardinalities of various basises of one and the same space coincide.
By the choice axiom the existence of an algebraic basis is established in
any vector space. If such a basis contains only a finite number of elements,
the basic space is said to be finite-dimensional. Otherwise, it turns out to
be infinite-dimensional.

Banach spaces, being the most general ones, are given first. A space V
is called normed if with each element x ~ V one can associate a real-valued
function II ¯ I1 with the following properties:
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(1) I] x [I -> for any x ~ V and ]] x [ [ = 0if and only if x = O;

(2) for any x, y ~ V the triangle inequality [[ x + y’[[ _< ][ z [[ + [[ y [[
holds;

(3) I1~ II = ~1 ̄ I1~ I I fo~any ~ ~ W a,d any number ~ ~ ~.

Any such function is called a norm on the space V. The number

II x 1t with the indicated properties refers to the norm of an element x. The
proximity between elements of a normed space V is’ well-characterized by
means of the function

= I1 - 11,
possessing the standard three properties of the distance p:

(1) p(x, > 0rot a11 ~, ~~ Va,d p(x, ~) = 0ira , d only ir ~ = ~

(2) p(x, y) = p(y, x) for any x, 

(3) p(x, y) + p(y, z) >_ p(x, z) for any x, y, 

In any normed space the convergence of a sequence { x~ } to an ele-
ment x amounts to the convergence in norm: x = lim,~ x~ if

lim = 0.

This limit is always unique (if it exists). What is more, any convergent
sequence { x~ } is bounded, that is, there exists a constant M > 0 such that
II II _< M for all n = 1, 2,.... All linear operations and the associated
norm are continuous in the sense that

xn --~ x , yn --~ y ~ Xn q- yn -’-~ x -b y ;

A sequence { x~ } is termed a Cauchy sequence if the convergence
p(xn, xm) --* 0 occurs as n, rn --, oz. Any normed space in which ev-
ery Cauchy sequence has a limit is referred to as a Banach space.

In a normed space V the next object of investigation is a series

(5.1.1) x = ~ x~.
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We say that the series in (5.1.1) converges to an element x if z is a limit 
the sequence of partial sums s~ = xl ÷ x2 +. ¯ ¯ + z,~. In the case of Banach
spaces the convergence of the series

implies the convergence of the series in (5.1.1). Using the notion of series
it will be sensible to introduce the concept of topological basis known in
the modern literature as Shauder’s basis. A sequence of elements { x,~ }
of the space V constitutes what is called a topological or Shauder basis if
any element x E V can uniquely be representable by

X ---- L O/n Zn ¯

The availability of Shauder’s basis is one of the principal peculiarities of
Banach spaces. Common practice involves a Shauder basis when working
in Banach spaces. A necessary condition for the existence of Shauder’s
basis is the separability of the Banach space V, that is, the existence of
a countable and everywhere dense set in the space V. Due to Shauder
it is interesting to learn whether any separable Banach space possesses
a topological (Shauder) basis. This question has been open for a long
time. The negative answer is now known. It was shown that there exists a
separable Banach space without Shauder basis.

Subsequent studies need as yet the notion of Euclidean space. A real
vector space V becomes an Euclidean space upon receipt of a function (x, y)
of two variables. This function known as an inner product possesses the
following properties:

(1) (x, y) = (y, x) for any x, y 

(2) (ax + ~3y, z) = a(x, ~) + ~(y, z) for any x, y, z ~ V and 
numbers a, ~;

(3) (z, z) >_ for any z ~ V and (x, x) = 0if and only if x = O.

When operating in a complex vector space V, the equality in con-
dition (1) should be replaced by (x, y) = (y, z), where over-bar denotes
conjunction. Being elements of an Euclidean space, x, y ~ V are subject
to the Cauchy-Sehwartz inequality:

I( ~, Y)I < ~/(~, x) ~(~,~).

The function II x II = (X/~, x) complies with the properties of the norm 
have mentioned above. In view of this, it is always presupposed that any
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Euclidean space is normed with respect to that norm. When an Euclidean
space becomes a Banach space, we call it a Hilbert space. Any inner
product is continuous in the sense of the following relation: (x,, y,~) 
(x, y) as x, --~ x and y, -~ 

It is worth noting here that for any normed space V there exists a
Banach space V1, containing V as a subspace and relating to a eompletion
of the space V. In turn, the space V is everywhere dense in V1 and the
norms of each element in the spaces V and V1 coincide. Since any normed
space has a completion, such a trick permits the reader to confine yourself
to Banach spaces only. In what follows by a normed space we shall mean a
Banach space and by an Euclidean space - a Hilbert space. The notion of
orthogonal decompo.sition in a Hilbert space is aimed at constructing
orthogonal projections. Twb elements z and y of a Hilbert space V are
said to be orthogonal if (x, y) V 0. Let V1 be a closed subspace of V. 
initiate the construction of the set of elements from the space V that are
orthogonal to all of the elements of the space V1. Such a set is also a closed
subspace of V and is called the orthogonal complement to V1 in the
space V. With the orthogonal complement V~ introduced, we may attempt
the Hilbert space V in the form

The meaning of direct sum is that each element z E V can uniquely be
decomposed as

x=y÷z,

where y E V1, z ~ Vs. These members are orthogonal and are called the
orthogonal projections of the element x on the subspaces V1 and V:, re-
spectively.

Separable Hilbert spaces will appear in later discussions. Unlike Ba-
nach spaces, any separable Hilbert space possesses a Shauder basis. More-
over, in any separable Hilbert space there exists an orthonormal basis,
that is, a basis in which all of the elements have the unit norm and are
orthogonal as couples. This profound result serves as a background for
some analogy between separable Hilbert spaces and finite-dimensional Eu-
clidean spaces as further developments occur. With this aim, let us fix an
orthogonal basis ( x~ }, that is, a basis in which all of the elements, being
arranged in pairs, are orthogonal. Then each element can be represented
in the Fourier series as follows:

~" -~" E Cn

with Fourier coefficients

Cn --
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giving

II x II2 ; I cn 12 II xn II2.
n=l

We now turn to the concept of linear operator. Recall that an
operator A from X into Y is said to be linear if

A(c~x+~y) = c~Ax+~Ay

for any elements x, y E X and all numbers a,/?. In the case of normed
spaces X and Y we say that a linear operator A: X ~-~ Y is bounded if
there is a constant C _> 0 such that the inequality

holds for each x E X and adopt the value

(5.1.2) IIAII = sup

as the norm of the linear operator A. Once equipped with norm (5.1.2)
the space of all linear bounded operators acting from X into Y becomes
a normed vector space and will be denoted by the symbol L;(X, Y). 
Y is a Banach space, then so is the space £(X, Y). We write, as usual,
£(X) for the space £(X,X). If A e £(X,Y) and B ~ £(Y,Z), then
B A ~ £(X, Z), so that the estimate

IIBAII_<IIBII’IIAII
i8 valid.

The symbol Ker A designates the kernel of a linear operator A, that
is, tile set of all elements on which the operator A equals the zero element.
In the case of a bounded operator the kernel is always closed. By Im A we
denote the image of an operator A, that i8, the set of it8 possible vMues.

An operator A is said to be continuous at a point ~ if A xn -~ A ~
as ~:n ---* x. Recall that any linear operator defined on an entire normed
space X with values in a normed space Y is continuous at a certain fixed
point if and only if this operator is continuous at each point. Furthermore,
the continuity of such a linear operator is equivalent to being bounded.

The following results are related to linear operators and find a w, ide
range of applications in functional analysis.

Theorem 5.1.1 (the Banaeh-Steinha.us theorem) Let a sequence of
linear operators An ~ /:(X, Y) be bounded in/:(X, Y) and a subset X1 
be dense. One assumes, in addition, that the limit A,~ x exists for each
x C X1. Then the limit A x =limn--,c~ An x exists for each x ~ X and the
inclusion A ~ £(X, Y) occurs.
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Theorem 5.1.2 (the principle of uniform boundedness) Let
,4 C £(X, Y) be such ~hat for any x E X the set { Ax: A ~ .4 } is bounded
in the space Y. Then A is bounded in the space £( X,

The property that an operator A is invertible means not only the
existence of the inverse A-1 in a sense of mappings, but also the bound-
edness of the operator A-I on the entire space Y. If the operator A-~ is
invertible and the inequalit~

holds, then the operator B is invertible, too. Moreover, the representation

= a (a 
n~0

takes place. The series on the right-hand side of (~.l.g) converges in the
space £(Y, X).

Being concerned with a linear operator A ~ C(X), we call p(A) the
resolvent set of the operator A if p(A) contains all of the complex num-
bers I for which the operator I I-A is invertible. In that case the operator
R(I,A) = (II A)-1 is cal led the resolvent of t he operator A. H ere
I stands, as usual, for the identity operator in the space X. The com-
plement of the resolvent set p(A) is referred to as the spectrum of the
operator A and is denoted in the sequel by ~(A). The spectrum of the
operator A lies within a closed circle with center at ~ero and radius II
We agree to consider

R(A,A) = ~ A-n-~ 

as long as ]k] > ]~A~]. As can readily be observed, the resolvent set is
always open. More specifically, if the inclusion A ~ p(A) occurs, then
a circle with center at the point A and radius ~ R(£, A)}~-~ is completely
covered by the resolvent set and for ~ny ~ from that circle the representation

n(,,A) = 
~0

can be established without difficulty. This provides enoug~ reason to con-
clude that the spectrum of each bounded operator A is closed and its re-
solvent set is not empty. It is easy to show that its spectrum is not empty,
too.. The value

r(A) = sup
~e~(A)
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is called the spectral radius of the operator A. The spectral radius of
any linear bounded operator A is given by the formula

(5.1.5) r(A) = lim II Atoll

It is worth noting here that it is possible to split up the spectrum of the
operator A into three nonintersecting parts: the point spectrum, the con-
tinuous spectrum and the residual spectrum. The point spectrum is
formed by all the eigenvalues of the operator A. In the case of a finite-
dimensional space the spectrum of the operator A coincides with its point
spectrum. But this property may be violated in an arbitrary Banach space
and so the remaining part of the spectrum can be separated once again
into two nonintersecting parts: the continuous spectrum ~rc(A) and the
residual spectrum (rr(A). In so doing the continuous spectrum ~c(A) 
formed by all of the points A for which the range of the operator A I - A is
dense in the space X.

It is fairly common to call linear operators from a normed space X
into real numbers R or complex numbers C linear functionals. The
collection of all linear continuous functionals over the space X with norm
(5.1.2) is called the dual space and is denoted by the symbol X*. It 
worth mentioning here that the dual space X* is always a Banach space
even if the basic normed space X does not fall within the category of
Banach spaces.

Let now A E £(X) and f E X*. A linear operator A* is defined by
the relation

(A’f) (x) = f(Ax).

It is straightforward to verify that the functional A*f ~ X*. The operator
so defined is called the adjoint of A. It is plain to show that for any linear
continuous operator A its own adjoint A* is continuous with II A* tl = II AII-
Moreover, the spectrums of the operators A* and A coincide.

In the case of a Hilbert space for any element f ~ X the functional

(5.1.6) ](x) = (x, 

belongs to the space X* and II/II = II f II. The converse is established in
the following theorem.

Theorem 5.1.3 (the Riesz theorem) Let X be a Hilbert space and
a functional f ~ X*. Then there exists an element f ~ X such that
equality (5.1.6) holds for each x ~ X. Moreover, this element is unique and
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In agreement with the Riesz theorem formula (5.1.6) describes a gen-
eral form of any linear continuous functional in a Hilbert space. Just for
this reason the functional ] in the Hilbert space X is associated with the
element f given by formula (5.1.6). Because of this fact, the space X* 
identified with X and the adjoint A* acts in the space X as well. With
this in mind, the operator A* can be defined by the relation

(Ax, f) = (x,A*S),

which is valid for all z, f e X. In this case the equality II A II = II A* II
continues to hold, but the spectrum of the operator A* becomes complex
conjugate to the spectrum of the operator A.

Under such an approach it is possible to introduce a notion of self-
adjoint operator. An operator A is said to be self-adjoint if A* = A. The
spectrum of any self-adjoint operator lies on the real line, while its residual
spectrum is empty.

In the space L:(X) of all linear bounded operators in a Banach space 
it will be sensible to distinguish a subspace of compact operators. A linear
operator A E £(X) is said to be compact or completely continuous if
any bounded subset of the space X contains a sequence which is carried by
the operator A into a converging one. The subspace of compact operators
is closed in the space £.(X). By multiplying a compact operator from the
left as well as from the right by a bounded operator belonging to the space
£(X) we obtain once again a compact operator. The last properties of
compact operators are often formulated as follows: the set of all compact
operators forms in the space £(X) a closed two-sided ideal. If the
operator A is compact, then so is the operator A*. The structure of the
spectrum of a compact operator is known from the following assertion.

Theorem 5.1.4 When an operator A from the space £(X) is compact,
its spectrum is at most countable and does not have any non-zero limiting
points. Furthermore, each number ~ ~ (r(A), )~ ¢ O, falls within eigenvalues
of finite multiplicity for the operator A and is one of the eigenvalues of the
same multiplicity for the operator A*. If the basic space X is infinite-
dimensional, then the inclusion 0 ~ e(A) occurs.

One thing is worth noting in this context. As a matter of fact, when
X becomes a Hilbert space, the dual X* will be identified with X. The out-
come of this is that the operator A* acts in the space X and its spectrum
passes through a procedure of complex conjugation, in this connection the
second item of Theorem 5.1.4 should be restated as follows: each number
A ~ o-(A), A ¢ O, is one of the eigenvalues offinite multiplicity for the oper-
ator A and the number ~ is one of the eigenvalues of the same multiplicity
for the operator A*.
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The theories of compact, self-adjoint operators in a Hilbert space X
and of symmetric operators in a finite-dimensional space reveal some anal-
ogy. If the space X is separable, then the collection of eigenvectors of any
self-adjoint compact operator constitutes an orthonormal basis in the space
X. But sometimes the space X is not separable, thus causing difficulties.
This issue can be resolved following established practice. Let A be a lin-
ear self-adjoint operator. Then the orthogonal complement to its kernel
coincides with the closure of its image. If one assumes, in addition, that
the operator A is compact, then the closure of its image will be separable.
That is why the subspace generated by all the eigenvectors associated with
non-zero eigenvalues of any compact self-adjoint operator A will be also
separable and may be endowed with an orthonormal basis consisting of its
eigenvectors. At the same time the orthogonal complement to the subspace
includes all of its eigenvectors relating to the zero eigenvalue. The facts we
have outlined above can be formulated in many ways. We cite below one
possible statement known as the Hilbert-Schmidt theorem.

Theorem 5.1.5 (the Hilbert-Schmidt theorem) Let A be a compact
self-adjoint operator in a Hilbert space X. Then for each x E X the ele-
ment A x is representable by a convergent Fourier series with respect to an
orthonormal system formed by eigenvectors of the operator A.

The Hilbert-Schmidt theorem can serve as a basis for solving the
following equation by the Fourier method:

(5.1.7) Ax = y.

Equation (5.1.7) as well as the integral equation

b

A(t, s) x(s)

a

ds =

fall within the category of equations the first kind. Observe that a
solution to equation (5.1.7) can be found up to elements from the kernel
Ker A of the operator A. So, the requirement Ker A = 0 is necessary for
this solution to be unique. If the operator A is compact and self-adjoint
and its kernel consists of a single zero point only, then the space X can be
equipped with the orthonormal basis { e. } formed by eigenvectors of the
operator A, that is,
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Involving such a basis we turn to (5.1.4) and write down the Fourier
expansions for the elements x and y:

(5.1.8) x = ~Xnen, Xn=(X, en),
n----1

(5.1.9)

All this enables us to accept the decomposition

Ax = ~ x,~en.

From (5.1.7) we deduce by the uniqueness of the Fourier series that An Xn =
y,~ for any element y and, therefore,

Yn
(5.1.10) xn = ~--~

For the series in (5.1.8) to be convergent in the space X it is necessary and

sufficient that the series ~ I xn I S is convergent. Summarizing, we obtain

the following result.

Theorem 5.1.6 Let an operator A in a Hilbert space X be compact and
self-adjoint with zero kernel and expansion (5.1.9) hold. Then equation
(5.1.7) has a solution if and only if

Moreover, this solution is unique and is given by formulae (5.1.8) and
(5.1.1o).

Any equationof the form

(5.1.11) x-Ax = y

falls within the category of equations of the second kind. If A E £(X)
and II A It < 1, then the operator B = I - A is invertible, so that

(5.1.12) (I-A)-1 = An ’
n----0
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thereby justifying that a solution to equation (5.1.11) exists and is unique
for any y E X. Furthermore, this solution is given by the formula

(5.1.13) x = ~ n y.

Both series from expansions (5.1.12) and (5.1.13) are called the Neumann
series.

The method of successive approximations may be of help in study-
ing equation (5.1.11) with the aid of a sequence

(5.1.14) Xn+l = Ax,~ +y, n = 0, 1, 2, ....

The essence of the matter would be clear from the following assertion.

Theorem 5.1.7 Let A ~ £(X) and [IA[[ < 1. Then a solution to equation
(5.1.11) exists and is unique for any y ~ X. Moreover, for any initial data
y ~ X the successive approximations specified by (5.1.14) converge to an
exact solution x to equation (5.1.11) and the estimate is valid:

(5.1.15) IIx~-xll _< I_IIA]

Observe that the partial sums of the Neumann series in (5.1.13) will
coincide with the successive approximations specified by (5.1.14) for the
case x0 = y. In some cases it is possible to weaken the condition [[ AII < 1.
This is due to the fact from the following proposition.

Theorem 5.1.8 Let an operator A ~ £(X) and there exist a positive
integer k such that [[Ak[[ < 1. Then a solution to equation (5.1.11) exists
and is unique for any y ~ X. Furthermore, for any initial data Xo ~ X the
successive approximations

k-1

x~+l = A~x~+ ~ Asy , n=O, 1,2,...,

converge to an exact solution x of equation (5.1.11) and the estimate is
valid:

The method of successive approximations being used in solving equa-
tion (5.1.11) applies equally well to equations with a nonlinear operator
A. Let an operator A (generally speaking, nonlinear) map a Banach space
X into itself. We say that the operator A is a contraction on a set Y if
there exists a number q ~ (0, 1) such that the inequality

(5.1.16) [[Ax- Ay[[ <_ q

holds true for any x, y ~ Y.



5.1. The basic notions 311

Theorem 5.1.9 (the contraction mapping principle) Let Y be a closed
subset of the Banach space X, the inclusion Ax + y ¯ Y occur for any
x ¯ Y and an operator A be a contraction on the space Y. Then a solution
x to equation (5.1.11) that lies within Y exists and is unique. Moreover,
the successive approximations specified by (5.1.14) converge to x and the
estimate

qn

1-q

is valid with constant 9 arising from (5.1.16).

Equation (5.1.11) is an abstract counterpart of the Fredholm inte-
gral equation of the second kind

b

(5.1.17) x(t)- / A(t,s) x(s) ds = 
a

Fredholm’s theory of integral equations of the type (5.1.17) is based 
the fact that the integral operator in (5.1.17) is compact in an appropriate
functional space. F. Riesz and J. Schauder have extended the results of
Fredholm’s theory to cover the abstract equation (5.1.11) with a compact
operator A ̄  £(X) involved. Along with (5.1.11) we shall need as yet the
following equations:

(5.1.18) x- Ax = O,

(5.1.19) x- A* x = y,

(5.1.20) x- A* x = 0.

Some basic results concerning Fredholm’s theory of operator equations of
the second kind are quoted in the following proposition.

Theorem 5.1.10 Let an operator A ¯ £(X) be compact. Then the fol-
lowing assertions are true:

(1) equation (5.1.11) is solvable for any y ¯ X if and only if equation
(5.1.18) has a trivial solution only;

(2) the spaces of solutions to equations (5.1.18) and (5.1.20) have the
same finite dimension;

(3) for a given element y ¯ ~X equation (5.1.11) is solvable if and only
if each solution to equation (5.1.20) equals zero at the element y on
the right-hand side of(5.1.11).
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Theorem 5.1.10 implies that the solvability of equation (5.1.11) for
any right-hand side element is equivalent to being unique for its solution.
Because of this fact, the problem of existence of a solution amounts to the
problem of its uniqueness and could be useful in applications. As we have
mentioned above, if the operator A is compact, then so is the operator A*.
In view of this, the solvability of equation (5.1.11) for any right-hand side
element is equivalent not only to being unique for a solution to equation
(5.1.11), but also to being solvable for each right-hand side y E X* 
equation (5.1.19).

In addition to Theorem 5.1.10 we might indicate when equation
(5.1.19) has a solution. For a given element y E X* equation (5.1.19) 
solvable if and only if this element equals zero at each solution of equation
(5.1.18).

In the case of a Hilbert space X the dual X*will be identified with

X under the inner product structure (a:, f), where (x, f) is the value 
at an element x if f is treated aa a functional. With this in mind, one can
restate assertion (3) of Theorem 5.1.10 by imposing the requirement for
the element y to be orthogonal to each solution of equation (5.1.20). When
the operator A happens to be self-adjoint, some procedures with equations
(5.1.11) and (5.1.18) become much more simpler, making it possible 
reformulate Theorem 5.1.10 in simplified form.

Theorem 5.1.11 Let X be a Hilbert space and a linear operator A be
compac~ and self-adjoint. Then the following assertions are true:

(1) equation (5.1.11) is solvable for any y ~ X if and only ff equation
(5.1.18) has a trivial solution only;

(2) the space of solutions to equation (5.1.18) is of finite dimension;

(3) for a given element y ~ X equation (5.1.11) is solvable if and only
if this element is orthogonal to each solution of equation (5.1.18).

From the viewpoint of applications, differential operators are of great
importance. When these operators are considered within the framework of
the theory of Banach spaces, they may be unbounded and their domains
do not necessarily coincide with the entire space. In mastering difficulties
connected with unbounded operators, some notions we have introduced
above need generalization. With this aim, consider a linear operator A in
a Banach space X. The symbol "D(A) stands, as usual, for the domain 
A. It is supposed that 7)(A) is a linear subspace of X and for all numbers
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c~, ~5 and all elements x, y E 7)(A) the equality

A(a x ÷ 1~ y) = o~ Ax ÷ ~ 

holds. Also, we would be agreeable with the assumption that the subspace
T~(A) is always dense in the space X. In this case the operator A is said
to be densely defined. The sum A ÷ B of operators A and B is defined by
means of the relation

(A + B) (~) = A~ 

and the domain here is

V(A + B) =/)(A) N 

The product B A of operators A and B is defined by the equality

(B A)(~) 

and the domain of this operator consists of all elements x E /)(A) such
that A x ¢ O(B). It should be taken into account that the domains of the
operators A + B and B A may coincide with the zero subspace even if the
domains of the operators A and B are dense in the space X.

Let an operator A, whose domain is dense, be hounded. In this case
there is a constant C such that II A x II -< C ]] x ]1 for all x e ~(g). There-
fore, the operator A can uniquely be extended up to the operator ~, which
is defined on the entire space X and belongs to the space/:(X). The op-
erator ~ so constructed is called a continuous extension of the operator

A.
Furthermore, the concept of closed operator takes the central place

in the theory of linear unbounded operators. An operator A is said to
be closed if x ~ /)(A) and y = Ax for a sequence x,~ ~ I?(A) such 
x,~ -~ x and A x,~ ~ y. As can readily be observed, the concept of closeness
permits one to give the extended concept of continuity in a certain sense.
It is worth noting here that each operator A from the space £(X) is closed.
As such, it also will be useful to give an equivalent definition of the operator
closeness which will be used in the sequel. With this aim, let us consider
the Cartesian product X x X. That space equipped with the norm

I1(~,y)ll;llxll + I[YII
becomes a Banach space. A manifold F(A) regards to the graph of 
operator A if, we set, by definition,

= {(x, leX×X:
Then the operator A is closed if and only if the graph F(A) is closed in the
space X x X.

The theory of linear unbounded operators is based on several well-
known results given below as the closed graph theorem, the open mapping
theorem and the Banach theorem on the inverse operator.
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Theorem 5.1.12 (the closed graph theorem) Let A be a linear operator
in a Banach space X. If the operalor A is closed and lhe domain D(A) 
X, then A is bounded.

Theorem 5.1.13 (the open mapping theorem) If A E £(X,Y) and
the range of the operator A is the entire Banach space X, then for any
open subset of the Banach space X its image obtained by the operator A is
open in the space Y.

Theorem 5.1.14 (the Banach theorem on inverse) If a one-to-one
correspondence between Banach spaces X and Y was established by means
of an operator A so that the range of the operator A coincides with
space Y, then the inverse A-1 ~ £(Y, X).

Some spectral properties of closed operators need investigation. Let
A be a closed operator in a Banach space X. By definition, the resolvent
set p(A) of the operator A consists of all complex numbers ,~ such that

(AI-A) -1 e £(X). Recall that the operator R(A,A) = (AI-A)-1

is known as the resolvent of the operator A and establishes a one-to-one
correspondence between the space X and the domain of the operator A.
The complement of the resolvent set is called the spectrum of the operator
A and denoted by ~r(A). It may happen that the resolvent set or spectrum
of an unbounded operator is empty. Nevertheless, its resolvent set is open,
while the spectrum is closed. If A ~ p(A), then the resolvent set contains
the entire circle with radius II R(A, A)I1-1 and center A. Moreover, for any
point # from that circle the series in (5.1.4) converges in the space £(X) 
the resolvent R(#, A). Note that for all A, # ~ p(A) the resolvent identity

(5.1.21) R(A, A) - R(#, A) = (# - A) R(A, A) 

holds true.
In the case of an unbounded operator it is possible to split up its

spectrum again into three parts. By definition, the point spectrum of an
operator A is formed by all of its eigenvalues and is denoted by ap(A). The
remaining part of the spectrum can be divided into two nonintersecting
parts: the continuous spectrum at(A) and the residual spectrum ~rr(A),
where the continuous spectrum (re(A) consists of all points A, for which 
range of the operator A I - A is dense in the space X.

As we will see later, it will be sensible to introduce the notion of
adjoint operator in the case of an unbounded operator. In preparation for
this, let A be a linear operator, whose domain D(A) is dense in a Banach
space X. The domain of the adjoint is composed by such elements f ~ X*



5.1. The basic notions 315

that there exists an element f* ¯ X* satisfying for each x ¯ 7:)(A) 
relation

f(Ax) = f*(z)..

Since the domain/)(A) is dense in the space X, the unknown element 
can uniquely be found. Set, by definition,

A’f =f*.

The adjoint A* will always be linear. Moreover, A* is closed even if the
operator A is not closed. It is plain to explain when the operator A has a
closure by means of its own adjoint. An operator .~ is called the closure
of the operator A if ~ is a minimal (in a sense of closing domains) closed
operator being an extension of the operator A. The operator A has the
closure if and only if its own adjoint A* is densely defined in the above
sense.

In the case of a Hilbert space X the spaces X and X* will be identified
as usual and the adjoint acts in the space X. If the domain of A* is dense,
then a new operator A** = (A*)* coincides with the closure ~ of the
operator A. We say that the operator A is self-adjoint if A* = A. Some
things are worth noting here:

each self-adjoint operator is densely defined and closed;

the spectrum of any self-adjoint operator lies on the real line;

the residual spectrum of any self-adjoint operator is empty;

each self-adjoint operator is associated with a certain operator func-
tion E(A) defined for all A ̄  R with values in the space £(X). This
function known £s the spectral family or the spectral resolution of
unity is subject to the following conditions:

(1) E*(~) : E(~) rot each ~, ¯ a;

(2) E(~) E(,) = E(min(t, ,)) all I,, ~ R;

(3) lim E(fl) x = E(A)xForanyAeRandeachzeX;
~X+O

Fo~ ~ny z, ~ ~ ~ ~he function ~(%) = (~(%) z, ~) being of bounded
variation s~s~es the re~t~on

/ :Y)
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where the integral on the right-hand side is of Stieltjes’ type. The domain
of the operator A consists of all elements x ¯ X, for which

f <

If x ¯ 7?(A), then for each y ¯ 

(Ax, y) = / Id(E(~)z,y).(5.1.22)

By formula (5.1.22) an alternative symbolic form of writing the operator
A looks like this:

(5.1.23) A = / A dE(A).
--IX)

For each resolution of unity there exists a unique self-adjoint operator A
satisfying (5.1.22). In turn, any self-adjoint operator A specifies uniquely
the corresponding resolution of unity. Formula (5.1.23) is called the spec-
tral decomposition of the operator A. It is plain to show that items (1)
and (2) of the above definition of the function E(A) imply the existence
of the strong one-sided limits of E(A) i~rom the right and from the left for
any ~. Therefore, item (3) has a sense of scaling and is needed for further
support of a one-to-one correspondence between self-adjoint operators and
resolutions of the identity. Let us stregs that item (3) can be replaced 
the condition for the function to be continuous from the left.

The function E(),) may be of help in deeper study of the spectrum 
the operator A. The inclusion l0 ¯ p(A) occurs if and only if the function
E(A) is constant in some neighborhood of the point ~0. A number ~0 
one of the eigenvalues of the operator A if and only if ,~o is a discontinuity
point of the function E(A).

The next step is to touch upon the functions of one real variable with
values in a Banach space. As known, this notion is much applicable in
functional analysis. Being concerned Jith a function f: [a, b] ~ X, we
call an element A of a Banach space X a limit of the function f as t ---* to
and write this fact as

A =.lim f(t)
t~t0

if for any sequence t,~ ¯ [a, hi, t,~ ¢ to, ¢~ --~ t0, the sequence f(~,~) con-
verges to A in the space X. The function f is continuous at a point

t0 ¯ [a, b] if
lim f(t) = f(t).

t~t0
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The function f is said to be continuous on the segment [a, b] if it is con-
tinuous at each point of this segment. Any continuous function f on the
segment [a, b] is bounded thereon, that is, there exists a constant M > 0
such that II f(t)ll <- for al l t ¯ [a, b] . The collection of all functions with
values in a Banach space X that are continuous on the segment [a, b] is
denoted by C([a,b]; X ). The set C([a,b]; X ) with the usual operations of
addition and multiplication by a number forms a vector space. Under the
norm structure

= sup IIf(t)llIl f llc([ ,¢x 

the space C([a, b]; X ) becomes a Banach space. In what follows it is always
preassumed that the norm on the space C([a, b]; X) is defined by means
of relation (5.1.24).

Let A be a closed linear operator in a Banach space X. When the
subspace 7?(A) is equipped with the graph norm

Ilxllr = Ilxli + IIA~II,
we operate in a Banach space. Further t?eatment of D(A) as a Banach space
necessitates imposing the graph norm on that subspace. In particular, just
this norm is presupposed in the notation C([a, b]; T~(A)). The presence 

a function f in the space C([a, b]; T~(A)) means that for each t ¯ [a, b] the
value f(t) belongs to T~(A) and f, A f ¯ C([a, b]; X).

Riemann integral is defined as a limit in the space X of the corre-
sponding Riemann sums

b

If(t) dt = ~li~rn~ E (tk - tk_l ) f((~).

If the function f is continuous on the segment [a, b], then it is integrable
thereon and

b b

(5.1.25) /S(t) dt <_ /llf(~)ll ~.

Having at our disposal f ¯ C([a, b]; X) and A ¯ £(X) we arrive at 
relation

b b

(5.1.26) A
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This property can be generalized to cover closed linear operators as well.
Let an operator A be closed and linear. If f E C([a, b]; D(A)), then

and

b

i f(t) 

a

b b

We say that ~e function f

f’(to)
t~to

which is to be understood
has a derivative ~t ~ point t0, then it is continuous at this point. ~ach
function, whose deriwtive is continuous on the segment
continuously differenti~ble on the segment [~, hi. ~he set of ~ll continuously
differentiable on [e, b] functions with v~lues in the space X forms a vector
sp~ce which is denoted by the symbol C~ ([a, hi; X). This space equipped
with Che norm

becomes ~ Banach space.
By analogy, the symbol O~ ([a, hi; X) is used for the space of all func-

tions wi~ v~iues in ~ke sp~ce ~, whose aeriva~ives of ~ke ~rst ~ oraer exist
and are continuous on ~he segment {a, ~}. The space C~ ({a, ~]; X ) becomes
a Banach sp~ce upon receip~ of the norm

k

It is known tha~ ~De New,on-Leibnitz formul~
b

(~.1.7~)

is wiia for ~ny function f ~ f~([~,b]; Z). If ~e func~io~ f is aiTeren-
~iable, ~ha~ is, h~s ~ aeriv~ive ~t any point of the segmen~ [~, b], then ~e
mean value formula reduces
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Let a E (0, 1). We say that a function f with values in the space 
satisfies on the segment [a, b] H61der’s condition with exponent a if there
exists a constant C such that

(5.1.30) II f(t) f(s)[I. < C It - sIs

for all t, s E [a, b]. If the function f satisfies on the segment [a, b] HSlder’s
condition with exponent a, then it is continuous thereon. The set of all
functions satisfying on [a, b] H61der’s condition with exponent a forms a
vector space C~([a, b]; X ). The norm on that space is defined by

[[ f(t) sup
t,se[a, bl,*e~ It - sl~

thus causing a Banach space. Any function f with values in the space X
falls within the category of Lipschitz functions if it satisfies relation (5.1.30)
with exponent a = 1. The set of all Lipschitz functions on the segment
[a, b] forms a vector space Lip ([a, b]; X ). The space Lip([a, b]; X ) becomes
a Banach space once equipped with the norm

IlfllLip([a,b];x) ---- sup

Of special interest is the concept of strongly continuous operator func-
tion. Let us consider on the segment [a, b] an operator function A(t) with
values in the space £(X, Y). The function A(t) is said to be stfongly 
tinuous at a point to ~ [a,b] if for each x e X the function A(t)z 
continuous in the norm of the space Y at this point t0. We say that the
function A(t) is strongly continuous on the segment [a, b] if it is strongly
continuous at any point of this segment, that is, for each x ~ X the func-
tion A(t) is continuous on thesegment [a, b] i n t he normof th e spaceY.
Theorem 5.1.2 implies that if the function A(t) is strongly continuous 
the segment [a, b], then it is bounded in the space £(X, Y). Therefore,
there exists a constant M > 0 such that II A(t)ll <- for al l t e [a, b] . For
any strongly continuous function A the integral

b

.4 = /A(t) 
a

is well-defined. In this line we set, by definition,

b

Am = /A(t) x 
a
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for each x ¯ X. The operator A so constructed is called the strong integral
or the integral in a strong sense. If the function A(t) with values in the
space L:(X, Y) is strongly continuous on the segment [a, b] and the inclusion
f ¯C([a, hi; X) occurs, then the function A(t)f(t) is continuous on the
segment [a, b] in the norm of the space Y.

If the derivative of the function A(t) exists fo r each x ¯ X,then an
operator function A’(t) acting in accordance with the rule

A’(t) x = (A(t) 

is called the strong derivative of A(t). Suppose now that the operator
function A(t) with values in the space X has a strong derivative A’(to) 
some point to ¯ [a, b]. Due to Theorems 5.1.1-5.1.2 the derivative A’(to)
belongs to the space £(X,Y). The function A(t) is said to be strongly
continuously differentiable on the segment In, b] if the strong derivative of
the function A(t) exists for all t ¯ [a, b] and is strongly continuous theron.
If the function A(t) is strongly continuously differentiable on the segment
In, b], then it is strongly continuous thereon.

In subsequent chapters we shall need, among other things, the follow-
ing assertions.

Theorem 5.1.15 Let a function A(t) with values in the space £(X, Y) 
strongly continuously differentiable on the segment In, b] and

f ¯ Cl( [a ,b];X).

Then the function A(t) f(t) ¯ C~([a, b]; Y) and

(5.1.31) (A(t) f(t))’ = A’(t) f(t) + A(t) 

Theorem 5.1.16 If a function A(t) with values in the space £(X,Y)
be strongly continuously differentiable on the segment [a, b] and for each
t ¯ [a, b] the inclusion A-l(t) £(Y,X) occurs and th e function A- i(t)
is strongly continuous on the segment [a, b], then the function A-l(t) is
strongly continuously differentiable on the segment [a, b] and

(5.1.32) ( A-~(t)) ’ = -A-*(t) A’(t) A-l(t) 
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In this context, it is worth noting that Theorem 5.1.15 implies the
formula of integratihg by parts

(5.1.33)

b b

/ A(t) f’(t) dt= A(b) f(b) - A(a) f(a) - J A’(t) 

which is valid for any strong continuously differentiable on [a, b] oper-
ator function A(t) with values in the space £(X,Y) and any function
f ¯ Cl([a, hi; X).

We are now interested in learning more about Volterra integral equa-
tions. Let X be a Banach space. Consider a function A(t, s) defined in the
triangle

(5.1.34) A = {(t,s) eR2: a<t<b,a<s<t}

with values in the space £,(X). The eqtmtions

t

(5.1.35) / A(t,s) f(s) ds = g(t),
a

a<t<b,

and

(5.1.36) f(t) - / A(t,s) f(s) ds = a < t < b,

with the operator kernel A(t, s) are called the Volterra integral equa-
tions of the first and second kind, respectively. In what follows we restrict
ourselves only to continuous solutions of these equations. That is to say,
the function f is always sought in the class of functions C([a, hi; X).

We first consider equation (5.1.36) of the second kind under the agree-
ment that the kernel A(t, s) is strongly continuous in the triangle A. This
means that for each x ¯ X the function A(t, s)x is continuous on the tri-
angle A in the norm of the space X. In other words, for any sequence
(t,~, s,~) ¯ A converging to (t, s) ¯ A as n --~ cx~ the sequence A(t~, s~)x
would converge to A(t, s) inthenormof th e spaceX. It shouldbe taken
into account that the properties of strongly continuous functions of two
variables are similar to those of one variable. In particular, if the function
A(t, s) is strongly continuous on the triangle A, then it is bounded thereon
in the norm of the space £(X).

If the operator kernel A(t, s) is strongly continuous on tl~e triangle A,
then for any function f ¯ C([a, b]; X) the left part of equation (5.1.36) 
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continuous. Therefore, the requirement g E C([a, b]; X) is necessary for 
solution of equation (5.1.36) to exist in the class of continuous functions.
It is plain to show that the same condition is sufficient, too. Approach to
solving equation (5.1.36) in the case of operator kernels is similar to that
in the scalar case. In the Banach space

(5.1.37) x = C([a,b]; X)

we consider the integral operator

(5.1.38) (Af)(t) --/A(t, s)f(s) ds.

The operator ,4 is bounded in the space A’. However, unlike the scalar
case, this operator may be noncompact. Because of (5.1.38), the integral
equation (5.1.36) acquires the form of a second kind operator equation over
the Banach space X:

(5.1.39) f - ‘4 f : g.

Each power of the operator ‘4 can be written as

t

(A ~ f)(t) = 

and regards again to an integral operator whose kernel A~(t, s) is strongly
continuous. Each such kernel A~(t,s) can be defined by the recurrence
relations

t

A~(t,s) = / A(t,r)Ak_l(r,s) dr, Al(t,s) = A(t,s).

These functions Ak(t, s) are called iterated kernels.
Since the kernel A(t, s) is strongly continuous, the value

M= sup [[A(t,s)l[

is finite and the iterated kernels Ak(t, s) satisfy the estimate

IlA~(t,s)l I <_ M~ (t - s)~-~ /(k- 1)!,
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yielding

(5.1.40) II ‘4~ II -< Mr: (b - a)~ /

From inequality (5.1.40) we deduce that there exists some k such that

II A~ II < 1. So, according to T. heore.m 5.1.8 equation (5.1.36) has a solu-
tion for any function g E C([a,b]; X) and this solution is unique in the
class of functions C([a, b]; X). Moreover, one can show that the successive
approximations

(5.1.41) f~+l(t) 

t

A(t, ’s) f,~(s) ds + 

a

converge in the space X’ to a solution of equation (5.1.36) for any initial
data f0 E X.

The series

(5.1.42) B(t,s) = ~ A~(t,s)
k=l

composed by the iterated kernels converges in the space £(X) uniformly
with respect to (t,s) ~ A. The sum of the series in (5.1.42) will 
strongly continuous function with values in the space X and a solution to
equation (5.1.36) can be written 

(5.1.43)

t

f(t) = g(t) +/.B(t, s) g(s) 
a

Estimate (5.1.40) and formula (5.1.5) indicate that the spectrum of 
operator .4 consists of the single point ,~ = 0 only. Consider in the space
X one more integral operator

t

(5.1.44) (B f) (t) = /B(t,s) f(s) 
a

As can readily be observed, for each ,~ # 0 the resolvent of the operator
is defined with the aid of the relation

(5.1.45)
1

n(a,,4) = ~ x + 
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The next object of investigation is equation (5.1.35) of the first kind under
the natural premise that the kernel A(t,s) of this equation is strongly
continuous. Because of this, we are led to an operator equation of the first
kind

(5.1.46) A f = g

in the Banach space 2( defined by (5.1.37). The operator A involved 
(5.1.46) acts in accordance with rule (5.1.38) and is bounded. The number
A = 0 belongs to the spectrum of the operator ,4, thus causing some dif-
ficulties in solving equation (5.1.46). It should be noted that the solution
of equation (5.1.35) with an arbitrary strongly continuous kernel is one 
the most difficult problems in functional analysis.

The situation becomes much more simpler if the operator kernel A(t, s)
is strongly continuously differentiable’in t. Due to this property the left
part of (5.1.35) is continuously differentiable for each continuous function

f and

(5.1.47) d(t,s)f(s) ds = A(t,t)f(t)+ dt(t,s)f(s) 

a

where At(t, s) denotes the strong derivative of the operator kernel A(t, s)
with respect to t. This fact implies that the conditions

(5.1.48) g E Cl([a,b]; X), g(a) = 

are necessary for equation (5.1.35) to be solvable in the class of continuous
functions.

Assume that the function A(t, t) -~ with values in the space £(X) is
strongly continuous on the segment [a, hi. Therefore, with the aid of rela-
tions (5.1.47)-(5.1.48) equation (5.1..35) reduces to the operator equation
of the second kind

t

f(t) + / A(t,t) -~ At(t,s) f(s) ds = 
a

which is equivalent to (5.1.35). Thus, we have occasion to use the preceding
results. Summarizing, we formulate the following assertions.

Theorem 5.1.17 Let a function A(t, s) with values in the space £(X) 
strongly continuous on the specified triangle A and g ~ C([a, b]; X ). Then
a solution to equation (5.1.36) exists and is unique in the class of func-
tions f e C([a, b]; X ). Moreover, the successive approximations (5.1.41)
converge in the norm oI the space C([a,b]; X) to a solution oI equation
(5.1.36) for any initial data foe C([a, b]; X).
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Theorem 5.1.18 Let a function A(t., s) with values in the space £.(X) 
strongly continuous and strongly continuously differentiable with respect to
t on the specified triangle A. If for each t E [a, b]

A(t,t) -1 ~ £(X),

the operator function A(t, t) -1 is strongly continuous on the segment [a, b]
and the function g is in line with (5.1.48), then a solution to equation
(5.1.35) exists, is unique in the class of functions f ¯ C([a, b]; X) and the
successive approximations

t

fn+l(t) =-/A(t,t)-iAt(t,s)f,~(s) ds + A(t,t)-l g’(t)
a

converge in the norm of the space C([a,b]; X) to a solution of equation
(5.1.35) for any initial data fo ¯ C([a, b]; X ).

The results concerning the solvability of the 1,inear equation (5.1.36)
can be generalized to cover the nonlinear Volterra equation

(5.1.49) f(t)-/A(t,s)F(s, f(s)) ds a <t < b.

However, we have to realize that equation (5.1.49) has some peculiarities. 
particular, for each solution of equation (5.1.49) the point (t, f(t)) should
belong to the domain of the function F for all t ~ Is, hi. Moreover, even
if the function F is defined on the entire manifold [a, b] x X equation
(5.1.49) may not possess a continuous solution defined on the whole segment
[a, hi. Therefore, one of the principal issues related to equation (5.1.49)
is concerned with its local solvability. It is necessary to establish some
conditions under which the existence of a continuous solution to equation
(5.1.49) is ensured on the segment Is, a + h], h > 0, if a number h is small
enough. Denote by oO(y,R) = {x ¯ X: IIx- Yll _< ~} a closed ball of
radius R with center y.

The following assertions are true.

Theorem 5.1.19 Let a function A(t,s) with values in the space £(X)
by strongly continuous on the specifie’d triangle A and g ~ C([a, b]; X).
If there is a number R > 0 such that the function F is continuous on
the manifold U = [a, b] x ~(g(a), R) and satisfies thereon the Lipschitz
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condition with respect to lhe second variable, that is, there is a constant
L > 0 such ~hat for all (t,u), (l,v) 

lhen lhere exisl a number h > 0 and a function f ~ C([a,a+ h]; X) such
tha~ f soZves equation (5.~.49) o. ~ ~.~ [a, a + hi. Mo~ov~r, if~wo
functions f, and f~ give solulions ~o equation (5.1.49) on a segmen~ [a, c],
then lhey coincide on this segment. F~rlhermode, if a conlinuous function
saliCes equalion (5.1.49) on a segmenl [a, d] and cannol be exlended up
a continuous solution lo equation (5.1.49) on any segment [a, e] such that
[a, d] c [a, 4, t~n ~ ~oi.t (d, f(d)) ~i~ on ~ ~o..~a~u of ~ ~v~ci~
set U.

A study of properties of solutions of abstract differential equations is
b~ed on the notion of distribution with values in a Banach space. Let
be an open set on the real line R and D(~) denote the collection 
infinite differentiable functions whose supports are contained in ~. Recall
that the support of any continuous function is defined as the closure of the
set of all points at which this function does not equal zero. With regard
convergence on D(~) we say that a sequence { ~ } converges to a function
~ if the following conditions hold:

(1) there exists a compact set K C ~ such that it contains the supports
of MI functions ~ ;

(2) for each k the sequence of the kth derivatives ~) converges as
n ~ ~ to the k~h derivative of ~he function ~ uniformly in k.

A linear operator f acting from D(~) into a Banach space X is called
a distribution with values in the space X if this opera,or is continuous in
the ~¢n~ that f(~.) ~ f(~) as ~ ~ ~ i~ t~ sp~¢ X for 
~ ~ ~ in D(~). The set of all distributions with values in the space 
will be denoted by D’(~; X). Any function f ~ C([a,b]; X) c~n be put in
correspondence with a linear operator from D((a, b)) into X

(5.1.50) ](~) = / ¢(t) f(t) 

which falls within the distributions with values in the space X. Formula
(5.1.50) could be useful in specifying a distribution even if the function 
is not continuous. A distribution is said to be regular if we can attempt it
in the form (5.1.50). Note that for any regular distribution f the function
f involved in formula (5.1.50) can uniquely be recovered up to its values
on a set of zero measure. 3ust for this reason the distribution f and the
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function f related to each other by (5.1.50) will be identified in the sequel.
Under the approved identification the symbol f(t) is in common usage to
denote formally any distribution f (even if it is not regular), where t refers
to the argument of test functions ~, which constitute the domain T)(f/) 
the operator f.

We give below one possible example of singular distributions in which
the well-known Dirac delta function 5(t-t0) x is specified by a point to ¯ 
and an element x ¯ X. By definition, the aforementioned function does
follow the governing rule 5(t - to) x(~) = ~(t0) 

Every distribution f ¯ ~’(f~; X) and its generalized derivative
f’ ¯ T)’( ~; X ) are related by f’(~) = -f(~’). If a distribution f is 
lar and continuously differentiable, then the above definition is consistent
with the definition of standard derivative.

We now consider two Banach spaces X and X1 equipped with norms

II ’ [I and I[ ’ II1, respectively. The space 2"1. is supposed to be continuously
embedded into the space X; meaning X1 C X and that there is a constant
c > 0 such that the inequality

holds for any x ¯ X1. In each such case any distribution with values in the
space X1 falls within the category of distributions with values in the space
X. In dealing with an operator A ̄  £(X, Y) related to the Banach spaces
X and Y, the operator A f is a distribution with values in the space Y for
every distribution f with values in the space X.

Let X be a Banach space and A be a linear closed operator in X.
When X is equipped with the norm

IIxllp = Ilxll+llA~ll,

the domain ~{A) becomes a Banach space embedded continuously into the
space X. In so doing,

.A ¯ C(T)(A); 

which justifies that for every distribution f with values in T)(A) the oper-
ator A f is a distribution with values in X. Under such an approach the
generalized derivative f’ is treated "as a distribution with values in ~P(A)
and a distribution with values in X simultaneously.

Being concerned with a sequence of elements c,~ ¯ X, we begin by
investigating the power series

(5.1.51) f(t) = E c,~ (~ - ’~,
rt----O
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where t and to are real or complex numbers. By definition, the domain of
convergence of the series in (5.1.51) contains all of those points t at which
the series in (5.1.51) is convergent, and will be denoted by the symbol 
The value

R = sup IIt-tol]
tED

is referred to as the radius of convergence of the series in (5.1.51).
When the space X is considered over the field of complex numbers, the
power series in (5.1.51) is meaningful for real and complex values oft with
a common radius of convergence. Also, formula (5.1.51) gives one natural
way of extending the function f from the real axis onto the complex plane.
By the Cauchy-Hadamard formula,

1
(5.1.52) R =

If the radius of convergence of the series in (5.1.51) differs from zero, then
the sum f is infinite differentiable in the open circle (or interval) t- tol < R,
so that

f(k)(t) = E n(n-1)... (n-k+l)cn(t-t0)n-k.

In particular, this yields

1

We say that the function f is analytic at point to if there is a neighborhood
of this point within which f coincides with the sum of the power series from
(5.1.51) with a nonzero radius of convergence. By definition, the function
f is analytic on a set ft if it is analytic at every point of this set.

We have occasion to use an operator A C £(X), by means of which
the exponential function is defined to be

~ A~
(5.1.53) e At = -- t’~.

Observe that the series in (5.1.53) is convergent for every t regardless 
the choice of a complex or a real value. For the exponential function we
thus have

~A t ~A s ~ ~A t+s
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which serves to motivate the following expansion in power series:

~ An eAto
(5.1.54) = (t-t0p

with any to incorporated. Since the ser, ies in (5.1.54) converges for any 
the exponent function is analytic everywhere in the complex plane.

In concluding this section we refer to a closed linear operator A acting
in a Banach space. If the resolvent set of the operator A is nonempty, the
resolvent of the operator ~

~(t,A) = 

arranges itself into a power series

(5.1.55) R(t,A) = E(-1)’~R(to, A)n+~(t-to)n,

whose radius of convergence is no less than II R(t0, A)I1-1. Because of this
fact, the resolvent of any closed linear operator is analytic on the corre-
sponding resolvent set.

5.2 Linear differential equations of the first order
in Banach spaces

This section is devoted to abstract differential equations of the first order.
There is plenty of fine books in this theory such as Arendt et al. (1986),
Babin and Vishik (1989), Balakrishnan (1976), Belleni-Morante (1979),
Cldment et al. (1987), Davies (1980), Fattorini (1969a,b, 1983), Gajewski 
al. (1974), Goldstein (1969, 1985), Henry (1981), Hille and Phillips (1957),
Ivanov et al. (1995), Kato (1953, 1956, 1961, 1966), Krein (1967), Krein 
Khazan (1983), Ladas and Laksmihanthan (1972), Lions (1957, 1961), 
zohata (1977), Pazy (1983), Solomyak (1960), Sova (1977), Tanabe 
1979), Trenogin (1980), Vishik and Ladyzhenskaya (1956), Yosida (1956,
1963, 1965).

We now consider in a Banach space X a closed linear operator A,
whose domain T~(A) is dense. With regard to an element u0 ~ X and a func-
tion f: [0, T] ~ X the object of investigation is the abstract Cauchy
problem

u’(t) = A u(t) + [(t) , 0 < 

=
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There seem to be at least two principal approaches to the concept of
the Cauchy problem (5.2.1)-(5.2.2) solution. This is concerned with notions
of strong and weak solutions. One assumes that f is a distribution with
values in the space X. A distribution u with values in the space X is said
to be a weak solution of the Cauchy problem (5.2.1)-(5.2.2) if it satisfies
equation (5.2.1) in the sense of the equality between elements of the space
D’ ((0, T); X ). It is required, in addition, that u is a regular function 
longing to the space C([0, T]; X) and satisfies the initial condition (5.2.2)
as a continuous function with values in the space X. It is worth noting
here that a weak solution of the Cauchy problem (5.2.1)-(5.2.2) as an 
ment only of the space C ([0, T]; X ) does not necessarily possess a standard
derivative or take on the values from D(A).

A function u e C1 ([0, T]; X )¢3C([0, T]; :D(A)) is said to be a 
solution of the Cauchy problem (5.2.1)-(5.2.2) if it satisfies in a pointwise
manner equation (5.2.1) supplied by the initial condition u(0) = u0. 
u is treated as a distribution, each strong solution of the Cauchy problem
at hand turns out to be a weak solution of the same problem. A necessary
condition for a strong solution of the Cauchy problem (5.2.1)-(5.2.2) 
exist amounts to the two inclusions

u0 ̄  :D(A), S ̄  c([o, T]; x).
However, in the general case these conditions are insufficient. In what fol-
lows we deal mainly with strong solutions. Therefore, the term "solution"
will be meaningful for strong solutions unless otherwise is explicitly stated.

In the sequel especial attention is being paid to necessary and sufficient
conditions under which one can determine a unique solution of the Cauchy
problem at hand and find out when.this solution depends continuously on
the input data. In preparation for this, the abstract Cauchy problem for
the homogeneous equation comes first:

(5.2.3) u’(t) = Au(t), 0 < t 

(5.2.4) u(0) = u0.
We say that the Cauchy problem (5.2.3)-(5.2.4) is uniformly well-posed
if the following conditions hold:

(1) there is a dense subspace D of the space X such that for any Uo E D
a strong solution of the Cauchy problem (5.2.3)-(5.2.4) exists and
is unique;

(2) if a sequence of strong solutions u,~(t) to equation (5.2.3) is such
that un(O) --* asn - ~ oo in thenormof th e spaceX, the n
un(t) --~ 0 as n --~ oo in the norm of the space C([0, T]; X).
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Necessary and sufficient conditions for the Cauchy problem concerned
to be uniformly well-posed admit several alternative forms. The Hille-
Phillips-¥osida-Miyadera theorem is in common usage for these con-
ditions. One of the possible statements is as follows.

Theorem 5.2.1 The Cauchy problem (5.2.3)-(5.2.4) is uniformly well-
posed if and only if the resolvent set of the operator A contains a ray A > w
of the real axis and the resolvent

R(A,A) = (~I- -1

of the operator A satisfies for all ~ > w the system of inequalities

M
k=l 2,3/(5.2.5) IIR(A,A)eII < (A-~)~ ’ """

Quite often one can encounter the situations in which the resolvent
R(A, A) obeys for A > w the estimate

1
(5.2.6) II R(.X, A)II ~< .X - ~ ’

which is sufficient for the validity of estimate (5.2.5) with M = 1 for all
numbers k.

With regard to solving the abstiact Cauchy problem (5.2.3)-(5.2.4)
a key role is played by the notion of strongly continuous semigroup of the
linear operator. A family of linear operators V(t) belonging to L;(X) and
defined for all t _> 0 is called a strongly continuous semigroup if the
following conditions are satisfied:

(1) V(0) 

(2) + s) = v(t) v(s) for a11 > 0;
(3) for each x E X the function V(I) x is continuous with respect to 

in the norm of the space X for all t > O.

As we will see later, any solution of the abstract Cauchy problem
(5.2.3)-(5.2.4) can be expressed in terms of strongly continuous semigroups.
For any uniformly well-posed Cauchy .problem of the type (5.2.3)-(5.2.4)
there exists a strongly continuous semigroup V(t) such that we are led 
the formula

= v(t)



332 5. Some Topics from Functional Analysis and Operator Theory

to either a weak solution (if u0 ̄  X) or a strong solution (if u0 ̄  T~(A)) 
problem (5.2.3)-(5.2.4). Observe that for any t _> 0 each operator of 
semigroup V(t) thus obtained and the operator A are commuting. Further-
more, the semigroup V(t) itself is uniquely defined by the operator A. The
converse is certainly true. That is to say, for any strongly continuous semi-
group V(t) there exists a closed linear operator known as the semigroup
generator with a dense domain such that the related Cauchy problem
(5.2.3)-(5.2.4) is uniformly well-posed and its solution is given by formula
(5.2.7). What is more, the generator A can uniquely be recovered.

For the purposes of the present chapter we shall need as yet several
useful formulae expressing the semigroup V(t) via its generator A and vice
versa. The operator and its semigroup V(t) are involved in the following
relationships:

:D(A) = (xEX: 3 lim V(t)x-xtt~0 t ’

A x = lim
~

v(t) -

The semigroup V(t) and its generator A are related by

V(t) = li m exp{ (~ =R(~,A)-~I)t} x.

For any strongly continuous semigroup V(t) there are two constants M and
w such that for all t > 0 the estimate

(5.2.s) II v(t)II _< M exp (w t)
is valid. Since V(0) = I, the bound M _> 1 is attained. However, it may
happen that the constant w is negative. This provides support for the view
that the semigroup V(t) is exponentially decreasing. There is a direct link
between the semigroup V(t) and the resolvent R(,~, A) of its generator A.
True, it is to be shown that for each ,~ > w the relation

R(A,A) = J V(t)e -At dt
0

holds. Here the integral is meant in a strong sense.
Formula (5.2.7) serves as a basis for resolving the uniformly well-posed

Cauchy problem at hand. A weak solution exists for each element u0 ¯ X.
The condition u0 ̄  79(A) is necessary and sufficient for a strong solution 
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exist. It is not difficult to show that for the uniformly well-posed Cauchy
problem a weak solution is unique. Then so is a strong solution.

One thing is worth noting here. When imposing the definition of the
Cauchy problem (5.2.3)-(5.2.4) to ’be uniformly well-posed, it is presup-
posed that its solution is defined on the segment [0, T] only. Nevertheless,
formula (5.2.7) may be of help in givi.ng a unique solution on the entire semi-
axis. This fact is stipulated by the autonomy of equation (5.2.3), meaning
the independence of the operator A on the variable t. If the Cauchy prob-
lem (5.2.3)-(5.2.4) is uniformly well-posed, then the same property will 
true on any segment [a, b] for another problem

u’(t) = Au(t), a < t 

Furthermore, the function

u(t) = v(t - 

solves the Cauchy problem posed above. The solvability of the nonhomo-
geneous Cauchy problem (5.2.1)-(5.2.2) will be of special investigations 
the sequel. This type of situation is covered by the following result.

Theorem 5.2.2 Let the Cauchy problem (5.2.3)-(5.2.4) be uniformly well-
posed. One assumes, in addition, that

 oeX :feC([O,f];X).

Then a weak solution u of the Cauchy problem (5.2.1)-(5.2.2) exists and is
unique. Also, this solution is representable by

(5.2.9) u(t) = V(t) Uo + f V(Z - s) f(s) 
0

where V(t) refers to the semigroup generated by the operator 

One might expect that formula (5.2.9) should specify a strong solution
too, because any strong solution is, at the same time, a weak one. Indeed, as
we have established above, the inclusions u0 E D(A) and f E C([0, T]; X 
are necessary for a strong solution to exist. It is interesting to derive suffi-
cient conditions acceptable for this case. Recall that for Uo G D(A) formula
(5.2.7) gives a strong solution to the homogeneous equation (5.2.3). To 
cide for yourself whether or not a strong solution to equation (5.2.1) exists,
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a first step is to check the continuous differentiability of the integral term
on the right-hand side of formula (5.2.9). On the other hand, there are
examples showing that the unique restriction on the function f to be con-
tinuous would not be sufficient in that case. The following result confirms
this statement and allows to formulate some conditions under which one
can find a unique strong solution to a nonhomogeneous equation.

Theorem 5.2.3 Let the Cauchy problem (5.2.3)-(5.2.4) be uniformly well-
posed. One assumes, in addition, that Uo E T)(A) 

f e C1([0, T]; X) + C([0, T];/)(A)) 

Then a strong solution of the Cauchy problem (5.2.1)-(5.2.2~ exists and is
unique. Moreover, this solution u is given by formula (5.2.9).

We note in passing that for a strong solution u(t) of the Cauchy
problem (5.2.1)-(5.2.2) the functions u’(t) and A u(t) are continuous. This
property may be of help in deriving their simple expressions in terms of the
input data. Via the decomposition f = f~ + f2, where f~ ~ 61 ([0, T]; X 
and f2 e (:([0, T]; 79(A)), we finally, 

(5.2.10) u’(t) = V(t) uo+fl(0)] +J V(t-s) [ f ;( s)+A f2( s)] ds+f2(t)

0

and
(5.2.11)

t

An(t) = Y(t) [ Auo fl (0)] +’ /_ V(t - s)[f; (s) + Aft (s)] ds- f~(t
0

Let us stress that representations (5.2.’10)-(5.2.11) permit us to improve
the solution smoothness. Let f e C1([0, T]; X). By merely inserting
v = u’ we rewrite (5.2.10) 

t

v(t) = vo + - s) g(s)
0

where vo = A Uo + f(0) and g(t) = f’(t). The resulting expr, ession shows
that the function v gives a weak solution of the Cauchy problem

f v’(t) = Av(t)+g(t), 0<tKT,
(5.2.12)

v(0) = v0.
Applying the condition of the existence of a strong solution to the Cauchy
problem (5.2.12) yields a test for a solution of the original Cuuchy problem
(5.2.1)-(5.2.2) to be twice continuously differentiable.
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Theorem 5.2.4 Let the Cauchy problem (5.2.3)-(5.2.4) be uniformly well-
posed. One assumes, in addition, that the inclusions

u0 ¯ D(A), f ¯ C~([0, T]; X)

and A Uo + f(O) ¯ D(A) occur. Then a solution u of the Cauchy problem
(5.2.1)-(5.2.2) satisfies the condition

u ̄  c ([0, T]; x).

It is worth noting here that following this procedure in just the same
way as we did before, it is possible to achieve the desired smoothness of the
solution. Such an approach may be of help in establishing some conditions
known as the "spatial" smoothness. This terminology reflects a link
between abstract differential equations and partial differential equations
and is used to indicate when the solution obtained belongs to the domain
for some power of the operator A. Let f ¯ C([0, T]; D(A)). The meaning
of this is that both functions f and A f are continuous in the norm of the
space X. With regard to the function w(t) Au(t) werecast (5. 2.11) wit
regard to Wo = A u0 and h(t) = A f(t) as

t

w(t) : V(t) wo + / - s)h(s) ds,
0

which means that the function w is a weak solution of the Cauchy problem

f w’(t)=Aw(t)+h(t), O<t 
(5.2.13)

w(0) = w0.

As far as the functions w0 ̄  D(A) and h ¯ C([0, r]; D(A)) are concerned,
the function w becomes a strong solution of the Cauchy problem (5.2.13),
thereby justifying the following assertion.

Theorem 5.2.5 Let the Cauchy problem (5.2.3)-(5.2.4) be uniformly well-
posed and let

Uo ̄  D(A2) f ¯ C([0, T];

Then a solution u of the Cauchy problem (5.2.1)-(5.2.2) satisfies the con-
dition

u ¯ C([0, T]; D(A~)).
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The same procedure leads to the gain of the "spatial" smoothness of
a solution as high as necessary. Combination of both directions provides
proper guidelines for the derivation of conditions of the so-called "mixed"
smoothness.

The nonlinear Cauchy problem helps motivate what is done and
is completely posed as follows:

(5.2.14) u’(t) = Au(t)+f(t,u(t)), 0<t<T,

(5.2.15) u(0) = u0.

A peculiarity of this problem is connected with the obstacle that, as a rule,
its solution will not be defined on the whole segment [0, T]. The interval
within which a solution exists depends on the operator A, the function f
and the initial element u0. In this regard, some modification of the concept
of solution is needed to require the existence of a real number T* > 0 such
that a solution exists on the segment [0, T*] only.

When a generalized solution is considered in this context, one more
problem arises naturally.

Since equation (5.2.14) contains the substitution operator, the
properties of the function f need investigation. Let ~(y, R) be a closed
ball in the space X of radius R > 0 with center y and

U = [0, T] x ~(u0, R).

We confine ourselves to the classical case only. For the reader’s convenience
this restriction is labeled by (5.2.16). Summarizing,

the function f is continuous on the set U with respect
to the totality of variables and satisfies thereon the
Lipschitz condition with respect to the second vari-
able, thereby providing that there is a constant L > 0
such that for a11 (t, u), (t, v) 

II f(t, u) - f(t, v)ll _< L II u - v 
There are several ingredients necessary for further successful develop-

ment. Denote by u an arbitrary function from the class of continuous on
[0, T*] functions. We assume also that the graph of u belongs to the set
U. As far as the function f is continuous on the set U, the superposition
f(t, u(t)) is continuous on the segment [0, T*]. All this enables us to carry
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over without any difficulty the concepts of weak and strong solutions to
the Cauchy problem (5.2.14)-(5.2.15) with continuous nonlinearity.

The first stage is devoted to weak solutions of the nonlinear Cauchy
problem under the agreement that the homogeneous Cauchy problem
(5.2.3)-(5.2.4) is uniformly well-posed. By appeal to formula (5.2.9) 
not difficult to show that the Cauchy problem (5.2.3)-(5.2.4) is equivalent
to the integral equation

t

,,(t) = v(t) ,,o - ds,
0

where V(t) refers to the semigroup generated by the operator A. By ap-
plying Theorem 5.1.19 to equation (5.2.17) we obtain the following result.

Theorem 5.2.6 Let the Cauchy problem (5.2.3)-(5.2.4) be uniformly well-
posed, Uo ~ X and the function f comply with condition (5.2.16). Then
there exists a number T* > 0 such that the nonlinear Cauchy problem
(5.2.14)-(5.2.15) has a weak solution u on the segment [0, T*]. Also, if
there is no way of extending this solution on a more wide segment, then
the point ( T*, u(T*)) belongs to the boundary of the se~ U. Moreover, 
two weak solutions of problem (5.2.14)-(5.2.15) will coincide on a common
part of the segments of their existence.

The question of existence of a strong solution of the Cauchy problem
(5.2.14)-(5.2.15) amounts to the problem of differentiabilityof a solution
to the integral equation (5.2.17). With~his in mind, we may assume that
the function f is Frechet differentiable. By definition, the function f(t, u)
is said to be Frechet differentiable at point (to, u0) if the increment 
the function f can be split up as follows:

f(t,u)-f(to,Uo) = ft(t-to) W f~(u-uo)+c~(t,u) (lt-tol W 

where ft E X, f~ E/2(X) and a(t, u) -~ 0 as (t, u) --~ (to, u0). In this 
the element f~ and the operator fu are known as the partial derivatives
of the function f at the point (to, u0). We say that the function f 
Frechet differentiable on the set U if it is differentiable at each point
of this set. The restrictions on the partial derivatives are imposed in just
the same way as we did in the consideration of the functions themselves
and are labeled by (5.2.18) for the reader’s convenience. When done with
this sense of purpose,

the function f is Frechet differentiable on the set

(5.2.18)
U; its partial derivative~ ft and fi, are continuous on
this set and satisfy thereon U the Lipschitz condition
with respect to the second argument.
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If the function f is Frechet differentiable and the function u(t) is differen-
tiable in t, then the superposition f(t, u(t)) is differentiable in t, so that

d
d-5 f(t, = + u’.

Exploiting this fact and allowing u0 E 73(A), one can formally differentiate
equation (5.2.17) with the aid of formula (5.2.10). As a final.result we 
the equation related to the function v = u~:

(5.2.19)

t

v(t) = V(t) Vo + / Vit- s) ft(s, u(s)) 
0

+f v(t- s)/.(s, u(s))v(s) 
0

where v0 = Auo + f(0, no). When the function u is kept fixed, equa-
tion (5.2.19) may be viewed as the linear Volterra integral equation of the
second kind for the function v. Moreover, the segment on which equa-
tion (5.2.19) has a continuous solution coincides with the same segment
for equation (5.2.17). In this case one succeeds in showing without any
difficulty that the solution to equation (5.2.19) is just the derivative of the
solution to equation (5.2.17), thereby revealing the local solvability of the
Cauchy problem (5.2.14)-(5.2.15) in the class of strong solutions. Thus,
we arrive at the following result.

Theorem 5.2.7 Let the Cauchy problem (5.2.3)-(5.2.4) be uniformly well-
posed, Uo G 7)(A) and the function f comply with conditions (5.2.16) and
(5.2.18). Then lhere exisls a humberT* > 0 such that the nonlinear Cauchy
problem (5.2.14)-(5.2.15) has a strong solution u on the segment [0, T*].
Also, if there is no way of extending this solution on a more wide segment,
then the point ( T*, u(T*)) belongs to lhe boundary of the set U. Moreover,
any two slrong solutions of problem (5.2.14)-(5.2.15) will coincide on a
common part of lhe segments of their existence.

Our next step is to consider on the semi-axis t _> 0 the Cauchy problem
for the nonhomogeneous equation

(5.2.20) u’(t) = A u(t) + f(t) 

(5.2.21) u(O) = Uo,

t>O,
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and the related Cauchy problem for the homogeneous equation

(5.2.22) ~’(t) = A~(~), t ~ O,

(5.2.23) u(0) = Uo,

A continuous function u defined for ~11 t > 0 is said to be a weak so-
lution of problem (5.2.20)-(5.2.21) if for any.T > 0 this function gives 
weak solution of problem (5.2.1)-(5.2.2). We say that a function is a strong
solution of problem (5.2.20)-(5.2.21) if this function is continuously differ-
entiable on the semi-axis t _> 0 and for any T > 0 satisfies problem (5.2.1)-
(5.2.2) as one possible strong solutidn. The homogeneous Cauchy problem
(5.2.22)-(5.2.23) is said to be uniformly well-posed if the Cauchy prob-
lem (5.2.3)-(5.2.4) is uniformly well-posed for any T > 0. Recall that 
well-posedness of problem (5.2.3)-(5.2.4) will be ensured for all T > 
we succeed in showing this property at least .for one value T > 0. Thus,
in agreement with Theorem 5.2.1 the Cauchy problem (5.2.22)-(5.2.23) 
uniformly well-posed if and only if the operator A generates a strongly
continuous semigroup V(t).

Suppose that for every u0 E X the function f is continuous on the
semi-axis t _> 0. If problem (5.2.22)-(5.2.23) is uniformly well-posed, 
a weak solution u of the Cauchy problem (5.2.20)-(5.2.21) exists, is unique
and is given by formula (5.2.9). Under the additional assumptions that
u0 E 7)(A) and f is a sum of two functions: the first is continuously
differentiable in the norm of the space X for t > 0 and the second is
continuous in the norm of D(A) for t _> 0, a strong solution of problem
(5.2.20)-(5.2.21) is specified by formula (5.2.9). We will not pursue analysis
of this: the ideas needed to do so have been covered.

Among all uniformly well-posed problems it is possible to extract a
class of problems possessing solutions with extra smoothness. It is fairly
common to call the problems of this kind parabolic. Before proceeding to
a rigorous definition of the parabolic equation, it will be sensible to intro-
duce a notion of classical solution. We say that a function u is a classical
solution of the Cauchy problem (5.2.1)-(5.2.2) if this function is continu-
ous on the segment [0, T] in the norm of the space X and is continuously
differentiable on (0, T] in the norm of the space X, the values of u on (0, 
belong to D(A) and equation (5.2.1) is satisfied on (0, T] with the supple-
mentary condition u(0) = u0. Along similar lines, a function u can 
adopted as a classical solution of the Cauchy problem (5.2.20)-(5.2.21) 
the semi-axis t _> 0 if u is a classical solution of problem (5.2.1)-(5.2.2) 
any T > 0. Here the difference between the classical and strong solutions is
connected with the obstacle that the’ classical one may be nondifferentiable
at the point t = 0 and the governing differential equation fails to be true
at the point t = 0.
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When classifying the problem to be parabolic, there ar~ various ap-
proaches to this notion. In some cases problem (5.2.22)-(5.2.~3) is known
as a parabolic one if any weak solution of this problem turns out to be
classical. In what follows this notion will be used in another sense, the
meaning of which is that

(~.2.~4)
any weak solution of the abstract Cauchy problem
(5.2.22)-(5.2.23) is an analytic function on the semi-
axis t > O,

Common practice involves the symbol V(t) for the semigroup gener-
ated by the operator A. Within this notation, it is straightforward to verify
that condition (5.2.24) is equivalent to the property that for each z E 
the function V(t) isanalytic on thesemi-axis t > 0.

Condition (5.2.24) can be formulated in terms of the resolvent of the
operator A. We proceed as usual. Let S(W,w) be a sector of the complex
plane, that is,

(5.2.25) S(~,w) = {AEC: [arg(A-w)[<~,AT~w},

where w is a real number and 0 < p < ~r. As we have mentioned above,
there are various ways of defining the problem to be parabolic. In view of
this, it would be more convenient to involve in subsequent assertions the
notion of analytic semigroup. By this we mean that the semigroup V(t)
generated by the operator A is analytic if and only if condition (5.2.24)
holds true.

Theorem 5.2.8 Let X be a Banach space and A be a closed linear oper-
ator, whose domain is dense in X. If the operator A generates a strongly
continuous analytic semigroup in the. space X, then there are constants
w G R, ~ G (~r/2, ~r) and C > 0 such that the sector specified by (5.2.25) is
contained in the resolvenl set p(A) and the estimate

C(5.2.26) II n(~, A)II _<

is wZid ~o~ ~ch ~ ~ S(~,~). Co~s~ZU, if ~i~a~ (5.~.~6) i~ ~aZid i~
a certain half-plane ~eA > w, then the operator A generates a strongly
continuous analylic semigroup in the space X.

Denoting, as usual, by V(t) the strongly continuous unalytic semi-
group generated by the operator A, we claim that the operator A V(t)
belongs to the space £(X) for each t > 0. Moreover, the estimate

M
(5.~.~) HAV(t)H < t~0
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is valid in some neighborhood of the point t = 0. It is worth noting here
that estimate (5.2.27) may be true with constant M < l/e, where e refers
to the base of natural logarithms. In that case the operator A appears
to be bounded. Let us consider the nonhomogeneous Cauchy problem
(5.2.20)-(5.2.21) and confine ourselves to classical solutions only. Such 
trick allows to involve the concept of analytic semigroup, thereby making
the premises of Theorem 5.2.3 less restrictive. All this enables us to obtain
the following result.

Theorem 5.2.9 Let X be a Banach space and the operator A gener-
ate in X a strongly continuous analytic semigroup V(t). If Uo E X and
f E T]; x), o < < 1, the a classical solution of the Cauc y
problem (5.2.1)-(5.2.2) exists and is unique. Moreover, the function u is
given by formula (5.2.9).

By minor modifications formulae (5.2.10) and (5.2.11 related u’( t)
and A u(t) become

(5.2.28) u’(t) = A V(t) Uo + V(t) 

t

/ A V(t - s) If(s) - f(t)] ds+

0

(5.2.29) A u(t) = A V(t) Uo + (V(t) - 

t

+ / A V(t- s) [f(s) - f(t)] ds

0

which are valid for each u0 E X and any function f satisfying HSlder’s
condition on the segment [0, T]. The integrals in relations (5.2.28)-(5.2.29)
should be regarded as improper ones. Due to estimate (5.2.27) the singular-
tries of the expressions to be integrated in (5.2.28)-(5.2.29) are summable
for s = t as long as the function f is of HSlder’s type. Therefore, the
integral terms in (5.2.28)-(152.29) are continuous in the norm of the space
X on the whole segment [0, T].

When the semigroup V(t) is analytic, one can restate the existence
of strong solutions, thereby making the corresponding assertion less re-
strictive.

Theorem 5.2.10 Let X be a Banach space and the operator A generate a
strongly continuous analytic semigroup V(t) in the space X. If Uo ~ 7)(A)
and f ~ C~([0, T]; X), 0 < a < 1, then a strong solution u of the Cauchy
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problem (5.2.1)-(5.2.2) exists and is unique. Moreover, the function u is
given by formula (5.2.9).

5.3 Linear differential equations of the second order
in Banach spaces

The rapid development of the theory of the Cauchy problem for differential
equations of the second order during the last two decades stems from the
necessity of solving the new scientific and technical problems and is pre-
sented in Fattorini (1969a,b, 1985), Ivanov et al. (1995), Kisynski (1972),
Kurepa (1982), Lutz (1982), Sova (1966, 1975, 1977), Travis and 
(1978), Vasiliev et al. (1990). In this section we consider direct problems
for abstract differential equations of the second order in a Banach space X.
Let A be a closed linear operator in the space X with a dense domain. At
present we have at our disposal two elements u0, Ul E X and a function

f: [0, T] x

and set up the Cauchy problem for an abstract equation in which it is
required to find the function u(t) from the set of relations

u"(t) = Au(t)+f(t), 

u(O) = Uo, u’(O) = 

With regard to problem (5.3.1)-(5.3.2) we confine ourselves to the cases 
weak and strong solutions only. A distribution u with values in the space
7)(A) is said to be a weak solution of the Cauchy problem (5.3.1)-(5.3.2)
if it satisfies (5.3.1) in the sense of the equality between elements of the
space 7)’ ((0, T); X ). Also, it is required that the function u should fall 
the category of regular functions from the space C1 ([0, T];X) and satisfy
the initial conditions (5.3.2) as a continuously differentiable function. 
this context, it is worth noting that the weak solution u as an element only
of the space C1 ([0, T]; X) does not necessarily possess a standard second
derivative or take the values from the space 7)(A). We say that a function
u gives a strong solution of problem (5.3.1)-(5.3.2) when it belongs 
the class

C~([0, T]; X) N C([0, T]; 7)(A))

and is still subject to both relations (5.3.1)-(5.3.2) in a standard sense.
Once treated as a distribution, each strong solution of the Cauchy problem
at hand is always a weak solution of the same problem. The conditions
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u0 ¯ 77(A) and f ¯ C([0, T]; X) are necessary for a strong solution 
exist. However, these conditions are insufficient.

Our subsequent studies are mXinly devoted to strong solutions. For
this reason by a "solution" we meatr in the sequel a strong solution unless
otherwise is explicitly stated.

As preliminaries to the solution of the original problem, the object of
investigation is the Cauchy problem for the homogeneous equation

(5.3.3) u"(t) = Au(t), 0 < t 

(5.3.4) u(O) = u0, u’(O) 

We say that the Cauchy problem (5.3.3)-(5.3.4) is uniformly well-posed
if the following conditions hold:

(1) there exists a dense subspace D of the space X such that for all
elements u0, ul C D a strong solution of problem (5.3.3)-(5.3.4)
exists and is unique;

(2) if a sequence of strong solutions an(t) to equation (5.3.3) is such
that u,~(O) -~ and u~(0) -~ 0 an ~ ee in thenorm ofthe space
X, then u~(t) -~ 0 as n ~ eo in the norm of the space C([0, r]; X).

Necessary and sufficient conditions for the homogeneous Cauchy prob-
lem concerned to be uniformly, well-posed are established jn the following
assertion.

Theorem 5.3.1 The Cauchy problem (5.3.3)-(5.3.4) is uniformly well-
posed if and only if there are constants M and w such that for each )~ > 
the value AS is contained in the resolvent set p(A) of the operator A and
for the same value )~ the estimate is valid:

dn Mn!
(5.3.5) ~ (AR(~ ~,A)) _< (1_w)~+ 1 , n=0, 1,2,....

Before proceeding to the second order equations, it is reasonable to
introduce the concept of strongly continuous cosine function which will be
of crucial importance in the sequel. An operator function C(t) defined for
all real t with values in the space £(X) is called a strongly continuous
cosine funetion if it possesses the following properties:

(1) C(O) = I;

(2) c(t + s) + c(t - s) = 2 c(t) c(s) for 
(3) for any fixed x ¯ X the function C(t) x is continuous with respect

to t in the norm of the space X for all t E R.
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Strongly continuous cosine functions may be of help in the further
derivation of explicit expressions for the Cauchy problem solutions in terms
of the input data. However, the relationships between the Cauchy prob-
lem solutions and the cosine functions for the second order equations are
rather complicated than those for the first order equations and semigroups.
Several new notions are aimed to refine the character of these relationships.

Every strongly continuous cosine function C(t) can be associated with
the corresponding sine function S(t), which is specified by means of the
integral

(5.3.6) s(t) = f c(s) 
0

It is worth noting here that the integral in (5.3.6) is understood in a strong
sense. The very definition implies that the strong derivative of any sine
function coincides with the associated cosine function. We are interested
in learning more about the space

(5.3.7) E : { x e X: C(t) x e C’(R)},

containing all the elements of the space X for which the cosine function is
strongly differentiable. The space E so defined becomes a Banach space
with associated norm

sup II c’(t)x II.
O<t<l

Each uniformly well-posed Cauchy problem of the type (5.3.3)-(5.3.4)
can be put in correspondence with a suitable strongly continuous cosine
function C(t), whose use permits us to write a solution u of problem (5.3.3)-
(5.3.4) as follows:

(5.3.9)

where S(t) refers to the sine function given by formula (5.3.6). In particular,
for u0 E E and ul E X we specify a weak solution by appeal to (5.3.9).
The condition u0 ~ E is necessary and sufficient for the existence of a
weak solution of problem (5.3.3)-(5.3.4). The same problem has a strong
solution if and only if u0 ~ Z~(A) and ul ~ E and, in so doing,

u’(t) = AS(t) Uo + C(t) 

u"(t) = C(t)Auo + AS(t) 
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The operators C(t) and S(t) both are commuting with the operator A for
any real t. The operator S(t) carries X into E and E into T~(A), thus
causing the inclusion

AS(t) ~ Z(E,X).

It is worth bearing in mind here that the cosine function C(t) is uniquely
determined by the operator A known as the generator of the cosine
function. The converse is certainly true. More precisely, for any strongly
continuous cosine function C(t) there exists a closed linear operator A
such that the domain T~(A) is dense in the space X and the related Cauchy
problem (5.3.3)-(5.3.4)is uniformly well-posed. Also, formula (5.3.9) 
valid and the generator A of the cosine function C(t) can .uniquely 
recovered.

One can derive several useful formulae, making it possible to express
the cosine function C(t) via its generator A and vice versa. The operator
A is the strong second order derivative of the cosine function C(t) at zero:

Ax = C(t) 
t=O

with the domain

V(A) = { x e X: C(t)x C;(R)}.

In turn, the cosine function C(t) is representable by

~-~ ~ 7 ~ (~ ~(~’A)~) 

For any strongly continuous cosine function C(0 there are constants
M > 1 and w > 0 such that for all real t

(~.a.~0) tt c(~)l~ ~ M (~ ~* ~).
Combination of definition (5.3.6) of the cosine function, and estimate

(5.3.10) gives the inequality

(s.a.~l) Hs(0H ~ MI,I exp(~l~l).
For A > w the operator functions C(t), S(t) and the resolvent R(A, A) 
the operator A are related ~ follows:

A) = /C(,)~-~’ d,,R(A2

0

R(A~, A) = / S(¢)e-~

0

dr.
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Here both integrals are understood in a strong sense.
A simple observation that equation (5.3.3) is autonomous could 

useful in the sequel. Since problem (5.3.3)-(5.3.4) is uniformly well-posed,
the Cauchy problem

u"(t) = An(t), a < t 

~,(to) = ~’o, ¢(to) = 

is also uniformly well-posed for all numbers a, b, to with a < to _< b. The
function

u(t) = C(t- to)uo + S(t - to) 

suits us perfectly in studying this problem.
Let us come back to the nonhomogeneous Cauchy problem

(5.3.1)-(5.3.2) for which the following result is obtained.

Theorem 5.3.2 Let problem (5.3.3)-(5.3.4) be uniformly well-posed. One
assumes, in addition, that Uo ̄  E, ul ¯ X and f ¯ C([0, T]; X). Then 
weak solution u of the Cauchy problem (5.3.1)-(5.3.2) exists, is unique and
takes the form

(5.3.12)

t

~(t) = c(t) ~,o + s(t) ~,~ + / x(t - s) 
0

making it possible to express its derivative by

(5.3.13)

t

u’(t) = AS(t) uo + C(t) ul + / C(t- s) 

0

Conditions u0 ̄  E and f ¯ C( [0, T]; X ) are necessary for the exis-
tence of a strong solution. As far as any strong solution becomes a weak
solution, formulae (5.3.12)-(5.3.13) continue to hold for strong solutions.
Therefore, the existence of a strong solution is ensured by the continuous
differentiability of the integral term on the right-hand side of (5.3.13). Let
us stress that in this case the continuity of the function f is insufficient.
The results we cite below allow to impose the conditions under which the
Cauchy problem at hand is solvable in a strong sense.
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Theorem 5.3.3 Let the Cauchy problem (5.3.3)-(5.3.4) be uniformly well-
posed. One assumes, in addition, that Uo E Z)(A), u~ ~ E 

f e C1([0, T]; X) + C([0, T]; 79(A)) 

Then a slrong solution u of the Cauchy problem (5.3.1)-(5.3.2) exists, is
unique and is given by formula (5.3.12).

As stated above, formula (5.3.13) is established for any strong solu-
tion. Some progress will be achieved once we involve in the further de-
velopment the functions u" and Au. If f = fl + f2 with the members

fl e C1 ([0, T]; X) and f~ e C([0, T]; ~)(A)), 

(5.3.14) u"(t) =C(t)[Auo+fl(O)] +AS(t)ul

c(t - s) f (s) 

(5.3.15)

t

A u(t) = C(t)

S(t - s) A f2 (s) ds + f2 

[ A uo + fl(0)] AS(t)u~

t

C(t - s) f~ (s) 

t

S(t - s)A f~(s) ds- f~(t).

By integrating by parts in (5.3.13) we are led to an alternative form of the
first derivative

(5.3.16) u’(t) ’= C(t) u, + S(t) [ A Uo (0)]

+ / c(t - s)
0

d8

t

+ J S(t - s) f;(s) 
0
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With the aid of (5.3.14)-(5.3.16) one can find out when a solution 
the Cauchy problem in view becomes more smooth. Indeed, let
f e C1([0, T]; X), u0 e ~(A) and ul e E. Substitution v --= u’ allows
to find by formula (5.3.16) that

t

(5.3.17) v(t) = C(t) Vo + S(t) vl + / S(t - s) 
0

where vo = ul, vl -- Auo ÷ f(0) and g(t) = if(t). With the inclusions
vo E E and g E C([0, T]; X) in view, formula (5.3.17) serves to motivate
that the function v is a weak solution of the Cauchy problem

f v"(t)=Av(t)+g(t), O<t 
(5.3.18) v(0) = v0, v’(0) = v,.
Applying Theorem 5.3.3 to problem (5.3.18) yields the conditions under
which a solution u of the Cauchy problem’ (5.3.1)-(5.3.2) attains the extra
smoothness.

Theorem 5.3.4 Let the Cauchy problem (5.3.3)-(5.3.4) be uniformly well-
posed and Uo ~ 7)(A), ul ~ T)(A),

Auo+f(O) ~ E, f~C2([O,T];X).

Then for a solution u of the Cauchy problem (5.3.1)-(5.3.2) the inclusion
OCCUltS:

u E c3([0, T]; X).

Following the same procedure it is possible to establish some condi-
tions under which the solution of the Cauchy problem becomes as smooth
as we like. Under such an approach we are able to find out when the solu-
tion in question possesses the extra "spatial" smoothness. Indeed, allowing
u0, ul ~ Z)(A) and f E C([0, T]; 7)(A)) and substituting Au, we
involve (5.3.15), whose use permits us to find that

t

w(t) = c(t) wo + s(t) ~ + / s(t h(s) ds,

0

where w0 = A u0, w~ = A u~ and h(t) = A f(t). With the relation A u0 ~ E
in view, the function w gives a weak solution of the Cauchy problem

{~"(t) = Aw(t)+h(t), O<t <T,
(5.3.19)

w(0) = wo, w’(0) = w~.

Under the conditions w0 e/)(A), w~ e E and h e C([0, T]; 7)(A)) 
above Theorem 5.3.3 applies equally well to the Cauchy problem (5.3.1)-
(5.3.2). All this enables us to obtain the following result.
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Theorem 5.3.5 Let the Cauchy problem (5.3.3)-(5.3.4) be uniformly well-
posed. One assumes, in addition, thai uo 6 7)(A~), ul e ~D(A), 
E and f ~ C([0, T]; O(A2)). Then a solution u of the Cauchy problem
(5.3.1)-(5.3.2) satisfies the condition

u e c([0, T]; V(A:)).

The same framework is much applicable in trying to increase the "spa-
tial" smoothness of a solution as high as we like. The main idea behind
approach is to move in both directions, thereby providing proper guidelines
for conditions of the "mixed" smoothness.

One way of proceeding is to reduce the equation of the second order to
the system of equations of the first order. Having substituted v(t) = u’(t),
as usual, we may attempt the Cauchy problem (5.3.1)-(5.3.2) in the 

~’(¢) = ~(t), o < ~ < T,

v’(t) = An(t) + f(t) , 0 < 

~(o)= uo, ~(o) = ul,

which can be treated from a formal point of view as the Cauchy problem
for the first order equation

v(t)) xA \ v(t))

(0)+ f(t) 0<t<T,

(5.3.21)
(~(0) 

Before giving further motivations, a few questions need certain clarification.
The first is concerned with a suitably chosen Banach space a" in which the
Cauchy problem (5.3.20)-(5.3.21) is completely posed. This question 
a unique answer in the case when the natural correspondence between
problem (5.3.1)-(5.3.2) and problem (5.3.20)-(5.3.21) is needed. 
given f = 0, observe that problem (5.3:1)-(5.3.2) is weakly solvable for 
u0 ~ E and u~ 6 X. On the other hand, on account of Theorem 5.2.2
the first order equation has a weak solution under any input data. The
well-founded choice of the space X immediately follows from the foregoing:

X=ExX.
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The second question needs investigation in connection with the domain of
the operator

(0(5.3.22) A = A ’

In that case strong solutions may be of help in achieving the final aim. It is
worth mentioning here that the Cauchy problem (5.3.1)-(5.3.2) with f 
has a strong solution for any u0 E T~(A) and u] E E. One more Cauchy
problem

{w’(t) = ~4:~t), 0 < t < (5.3.23) w(0) = 

complements our studies. We know that this problem, in turn, possesses a
strong solution for any w0 ~ 7?(A). With this relation in view, the problem
statement necessitates imposing the extra restriction

(5.3.24) Z)(A) = Z)(A) 

The main difficulty here lies in the comparison of the uniform well-
posedness of problem (5.3.3)-(5.3.4) with the same property of problem
(5.3.23). A case in point is as follows. No convergence to zero in the
space C([0, T]; X) for the first derivative of the solution is required 
the definition of the uniform well-posedness of the Cauchy problem for the
second order equations even if the initial data elements vanish. At the same
time this property is needed in the statement of problem (5.3.23). This 
due to the fact that its solution admits the form

~(t) = (~(t)~’(t) ) 

Nevertheless, the following assertion is valid and makes our exposition more
transparent.

Theorem 5.3.6 Let the Cauchy problem (5.3.3)-(5.3.4) be uniformly
well-posed and conditions (5.3.7)-(5.3.8) hold. Then the Cauchy problem
(5.3.23) is uniformly well-posed if we agree to consider the space X -- E x X
and (5.3.24) as the domain of the operator ,4 of the structure (5.3.22).

From Theorem 5.3.6 it follows that if the operator A generates a
strongly continuous cosine function C(t), then the operator A generates a
strongly continuous semigroup V(t). In dealing with the sine function S(t)
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associated with C(t) it is plain to derive the explicit expression for the
semigroup V(t):

(c(t) s(t)’l(5.3.25) v(t) = \AS(t) C(t) J 

As a matter of fact, the semigroup V(t) becomes a group if we accept
formula (5.3.25) for all negative values t, too. In this case the function
V(t) obeys the group property, amounting, for all real values t and s, to
the relation

V(t + s) = V(t) V(s).

The group property just considered provides that for any real t the operator
V(t) has a bounded inverse V(t) -1. By the same token,

v(t)-I v(-t).

We will have more to say about relationship between the resolvents of the
operators A and ,4:

-1 (A(A2I-A) -1 (A2I-A) -1 )(5.3.26) (AI-A) \A (A2I_A)_ 1 A( A2I_A)_ 1 .

The assertion of Theorem 5.3.6 can be inverted in the following sense.
Suppose that a Banach space E1 is continuously embedded into the space
X and :D(A) is continuously e~rtbedded into the space El. In the Banach
space A" = E1 x X we consider the operator (5.3.22) with the domain

V(A) = T~(A) × 

If the operator A generates a strongly continuous group, then the operator
A generates a strongly continuous cosine function and the space E~ coin-
cides with the space E arising from relations (5.3.7)-(5.3.8) up to equivalent
norms on that space.

The next step is to consider the Cauehy problem for the nonlinear
equation

(5.3.27) u"(t) = Au(t)+ f(t,u(t),u’(t)), 

(5.3.28) u(0) = u0, u’(0) 

This problem needs more a detailed exploration, since its solution is not
defined, in general, on the Whole segment [0, T]. It may happen that the
Cauchy problem (5.3.27)-(5.3.28) is solvable only on a certain segment
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[0, T*] with 0 < T* _< T. Denote by ~(y, R) a closed ball in the space 
of radius R > 0 with center y and introduce the set

u = [o, T] × S(~o, n) × $(~, 

One assumes, in addition, that the ingredient f meets the requirement
labeled by (5.3.29) for the reader’s convenience:

the function f is continuous on the set U and satis-
fies thereon the Lipschitz condition with respect to
the second and third arguments or, more specifically,
there is a constant L > 0 such that at all points

(t, u, v), (t, ~v, z) e U one 

(5.3.29) [If(t,u,v) - f(t,w,z)l I <~ L (llu ~- wll + IIv- zll) .

Observe that the continuity of the function f permits one to define
weak and strong solutions of the Cauchy problem (5.3.27)-(5.3.28) 
natural way. Indeed, for any function u E CI([O,T*];X) subject to the

condition (t, u(t), u’(t)) valid at each point t C [0 ,T*] , the superpo-
sition f(t, u(t), u’(t)) is continuous on the segment [0, T*] and belongs to
the space/)’((0, T*); X ), thereby justifying a possibility of applying 
previous concepts of weak and strong solutions to the case of the nonlinear
equation (5.3.27).

Of special interest is a weak solution of the Cauchy problem (5.3.27)-
(5.3.28) provided that the homogeneous Cauchy problem (5.3.3)-(5.3.4)
is uniformly well-posed and u0 C E. With relation (5.3.12) in view, the
nonlinear problem (5.3.27)-(5.3.28) is equivalent to the integral equation

(5.3.30)
t

u(t) = C(t) Uo + S(t) u~ + / S(t - s) f(s, u(s), 
0

when operating in the class of continuously differentiable functions. With
the aid of (5.3.13) it is easy to recast this equation as the system of integral
equations for the functions u(t) and v(t) = u’(t):

(5.3.31)

t

u(t) : c(t) ~o + s(t) ~1 + f s(t f(s, ~(s),v(s)) 
0

t

v(t) = A S(t) ~o + C(t) ~ + f C(t - 8) f(s, ~(s), 
0



5.3. Second order linear differential equations 353

It is worth bearing in mind here that the system (5.3.31) is viewed in the
class of continuous functions. Making the substitutions

(c(t)uo + s(t) u, w0(t)= AS(t)uo+C(t)u, 

F(t,w) = (f(t,u,v))\ f(t, v) A(t,s) = (S(t-s)o s))’

we rewrite the system (5.3.31) as the Volterra integral equation of the
second kind

(5.3.32)

t

w(t) = wo(t) + J A(t,s) F(s, w(s)) 
0

when operating in the class of continuous functions with values in the
Banach space X × X. Equation (5.3.32) satisfies all the conditions 
Theorem 5.1.19, thus ensuring the local solvability of the system (5.3.31)
and the uniqueness of its solution. Because of (5.3.13), the function v refers
to the first derivative of the function u and, therefore, equation (5.3.30) 
an immediate implication of the system (5.3.31). All this enables us 
obtain the following result.

Theorem 5.3.7 Let the Cauchy problem (5.3.3)-(5.3.4) be uniformly well-
posed and let Uo E E and ua ~ X. One assumes, in addition, that the
function f complies with (5.3.29). Then there is a value T* > 0 such that
the nonlinear Cauchy problem (5.3.27)-(5.3.28) has a weak solution u on the
segment [0, T*]. Also, if there is no possibility of extending this solution
on a more wide segment, then the point (T*, u(T*), u’(T*)) belongs 
the boundary of the set U. Moreover, any two weak solutions of problem
(5.3.27)-(5.3.28) will coincide on a common part of the segments of their
existence.

Assume that the second integral equation in the system (5.3.31) 
considered with respect to one unknown function v by relating another
function u to be continuous and fixed. With these ingredients, the existence
of a strong solution of the Cauchy problem (5.3.27)-(5.3.28) amounts 
the question of the continuotis differentiability of the function v as we have
mentioned above. It is possible to overcome this obstacle in just the same
way as, for instance, we did in Section 5.2 for the first order equations. For
the moment, the function f is supposed to be Frechet differentiable at
a point (to, u0, v0), it being understood that the increment of the function
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f can be expressed by

f(t,u,v)- f(to,Uo,Vo) = ft(t-to)+ fu(u-Uo)+ 

+ v) (It - t01 + II u - Uoll + II v - v011),

where f, E X; f~,, fv~ £.(X) and a(t, u, v) ---* as(t, u, v) - -~ (to, no, V
Here the element ft and the operators f~ and fv stand for the partial
derivatives of the function f at the point (to, no, Vo). A function f is said
to be Freehet differentiable on the set U if it is Frechet differentiable at
each point of this set. In what follows we take "for granted the collection of
conditions labeled by (5.3.33) for the reader’s convenience:

(5.3.33)

the function f is Frechet differentiable on the set U,
its partial derivatives f,, f~, f~ are continuous and
satisfy thereon the Lipschitz condition with respect
to the third argument.

Omitting some details and difficulties arising when finding a strong
solution of the Cauchy problem in comparison with the work done in Sec-
tion 5.2 for the first order equations, we cite here only the final results
obtained.

Theorem 5.3.8 Let the Cauchy problem (5.3.3)-(5.3.4) be uniformly well-
posed and let

uo ~ 7)(A) and ul ~ 

One assumes, in addition, that the function f is involved in (5.3.29) and
(5.3.33) both. Then there is a value T* > 0 such that the nonlinear Cauchy
problem (5.3.27)-(5.3.28) has on the segment [0, T*] a strong solution u.
Also, if lhere is no possibility of extending this solution on a more wide
segment, then the point ( T*, u(T*), u’(T*)) belo,gs to the boundary of the
set U. Moreover, any two strong solutions of problem (5.3.27)-(5.3.28) will
coincide on a common part of the segmenls of lheir existence.

5.4 Differential equations with varying operator coefficients

In this section we deal with direct problems for abstract diffential equa-
tions in the case when the operator coefficient depends on the argument t.
This part of the theory, being the most difficult one and relating to pre-
liminaries, can serve as the necessary background in advanced theory. In
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this regard, it is appropriate to mention the books and papers by Amann
(1986, 1987), Fattorini (1983), Gil (1987), Henry (1981), Ikawa 
Kato (1961, 1970, 1973, 1975b, 1982), Lomovtsev and Yurchuk (1976), 
izawa and Watanabe (1986), Sobolevsky (1961), Sobolevsky and Pogore-
lenko (1967), Yakubov (1970, 1985), Yosida (1965). The preliminary 
is connected with the Cauchy problem in a Banach space X

(5.4.1) u’(t) = A(t)u(t) + f(Q, 0 < 

(5.4.2) u(0) = u0,

where for each t E [0, T] the operator A(t) is linear and closed and its
domain :D(A(t)) is dense in the space X. Careful analysis of the Cauchy
problem (5.4.1)-(5.4.2) is rather complicated as compared with problem
(5.2.1)-(5.2.2). Until now there is no universal or advanced theory 
problems of the type (5.4.1)-(5.4.2). For further successful developments
of such theory we will be forced to impose several additional conditions,
metking it possible to distinguish the hyperbolic and parabolic types of
equation (5.4.1). The passage from problem (5.2.1)-(5.2.2) to problems
with varying operator coefficients necessitates modifying the notion of uni-
form well-posedness. In preparation for this, we study the homogeneous
Cauchy problem

(5.4.3) u’(t) = A(t) u(t), 0 < 

(5.4.4) u(O) = Uo.

Recall that special investigations of problem (5.2.3)-(5.2.4) hinge essen-
tially on the property of the translation invariance of the equation (5.2.3)
solution. The validity of this property is an immediate implication of
the autonomy of equation (5.2.3) and, in turn, implies the uniform well-
posedness of the related Cauchy problem on any segment. In particular,
the uniform well-posedness of problem (5.2.3)-(5.2.4) provides the 
property for another problem

u’(t) = AT(t), s<t 
u(s)

for any s E [0, T). Additional restrictions are needed in such a setting,
since the indicated property fails to be true for nonautonomous equations.
Thus, the definition of the uniform well-posedness of the Cauchy problem
(5.4.3)-(5.4.4) on the segment [0, T] is accompanied by the solvability 
this problem on any segment [s, T] with s ~ [0, T). To be more specific, it
is required that
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(1) there is a dense subspace D of the space X such that for any value
s E [0, T) and any element Uo ~ D one can find a unique function
us(t) subject to the following relations: us ~ 1 (Is, T ]; X) and for
any t ~ Is, T]

us(t) ~ V(A(t)), u’s (t) = A(t) us 

and ~(s) = ~0.
Another point in our study is concerned with the continuous depen-

dence of a solution upon the input data. Provided condition (1) holds, the
input data should include not only the element u0, but also the parameter
s. Especial attention is being paid to the construction of an evolution
operator

v(t,s): ~o ~ ~(~),
by means of which the Cauchy problem can be resolved on the segment
Is, T]. In this direction one more condition is imposed:

(2) there exists a function V(t, s) taking the values in the space ~.(X)
and being strongly continuous in the triangle

such that the Cauchy problem

(~,’(t) = A(t)~(t), s < 
u(s) = ~o,

is solved by the function u(t) = V(t, ~) 

In accordance with what has been said, the.Cauchy problem (5.4.3)-
(5.4.4) is uniformly well-posed if both conditions (1)-(2) are satisfied. 
the operator coefficient A(t) does not depend on t, the definiton of uniform
well-posedness coincides with that given in Section 5.2 and in this case
the semigroup V(t) generated by A and the evolution operator V(t, s) just
considered are related by

v(t, s) = v(t - 

If the Cauchy problem (5.4.3)-(5.4.4) is uniformly well-posed, 
the evolution operator V(t, s) is uniformly bounded. That is to say, there
is a constant M > 0 such that

It v(t, ~)11 _< M
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for all (t, s) E A. Moreover, the operator function V(t,s) possesses the
properties similar to those established earlier for semigroups:

(5.4.5) V(s,s) = I, 0 < s < 

(5.4.6) v(,., = v(t, o < < ,. t < :r .

By the definition of evolution operator, for any u0 E D the function

(5.4.7) u(t) = V(t, s) 

is continuously differentiable on the segment [s, T] and solves equation
(5.4.3) on the same segment Is, T]. Each such function is called a strong
solution of (5.4.3). Observe that an arbitrarily chosen element u0 of the
space X does not necessarily lie within the set D. From such reasoning it
seems clear that the function u defined by (5.4.7) will be less smooth. One
might expect its continuity and no more. For this reason the function u so
constructed is said to be a weak solution to equation (5.4.3).

As stated in Section 5.2, strongly continuous semigroups are in a
one-to-one correspondence with uniformly well-posed Cauchy problems for
autonomous equations. In this view, it is reasonable to raise the same
question with respect to equations for the time-dependent operator coeffi-
cient. We call V(¢, s) an evolution fa.mily if V(¢, s) is strongly continuous
in A and satisfies both coiiditions (5.4.5)-(5.4.6). Also, we are somewhat
uncertain: could any evolution family V(t, s) be adopted as an evolution
operator for a uniformly well-posed problem of the type (5.4.3)-(5.4.4)?
Unfortunately, the answer is no even in the case of a finite dimension. In
dealing with the basic space X = R and a continuous positive function f
being nowhere differentiable, observe that the function

V(t,s) f( ~)/f(s)

constitutes what is called an evolution family. However, there is no uni-
formly well-posed Cauchy problem being in a proper correspondence with
v(t, s).

Let us compare the concepts of well-posedness for the cases of a con-
stant operator coefficient and a varying one. With regard to problem
(5.4.3)-(5.4.4) the transition stage is of artificial character. However, 
should bear in mind here that this notion is of less importance for prob-
lem (5.4.3)-(5.4.4) as compared with.problem (5.2.3)-(5.2.4). To decide
for yourself whether a particular Cauchy problem with a copstant operator
coefficient is uniformly well-posed, a first step is to check the fulfilment
of the conditions of Theorem 5.2.1. A key role of this p.roperty is con-
nected with a number of corollaries on solvability of nonhomogeneous and
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nonlinear equations involved in further reasoning. As to the case of a vari-
able coefficient, the situation changes drastically. Of crucial importance
is now the unique solvability of the Cauchy problem (5.4.1)-(5.4.2). 
thermore, the construction of the corresponding evolution operator V(t, s)
is a preliminary step only and in any event should be followed by proving
the solvability of the nonhomogeneous equation in some or other senses.
What is more, careful analysis of the evolution operator is carried out by
the methods depending essentially on the type of the governing equation.

The first stage is devoted to the hyperbolic type" recognition for
an abstract differential equation. There are several frameworks for this
concept, but we confine ourselves to two widespread approaches which are
frequently encountered in theory and practice and are best suited for deeper
study of hyperbolic differential equations of the second order as well as of
symmetric hyperbolic systems of differential equations of the first order.

The first approach is much applicable and appears useful not only for
hyperbolic equations of the second order, but also for equations of parabolic
type and Schrbdinger equation. However, more recently, the contemporary
interpretation of parabolic equations owes a debt to the introduction of
another concept based on analytic semigroups, whose use permits us to
obtain more advanced results¯

Consider a family of norms II "I]t, 0 < t < T, on the Banach space

X, each being equivalent to the norm of the spate X. The same symbol
II ’ lit will stand for the operator norm induced by this family on the space
£(X). In what follows we take for granted that

(HI) the domain 13(A(t)) of the operator A(t) does not depend on t, 
is,

V(A(t)) .= 

(H2) there is a number a > 0 such that for each t E [0, T] all of the real
numbers A, satisfying the condition [A[ > a, is contained in the
resolvent set of the operator A(t) and the ostimate is vMid:

(H3) there exist s E [0, T] and A with IX[ > a such that the operator
function

B(t) = ( AI- A(t)) ( AI- -~

is continuously differentiable on the segment [0, T] in the norm of
the space £(X);
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(H4) one can find a nondecreasing function w(t) such that,for all
t, sE [O,T],t > s, and each x ~ X

and, moreover, there is a constant 5 > 0 such that for all ~ [0, T]
and each x ~ X

We claim that under these agreements the Cauchy problem (5.4.3)-
(5.4.4) is uniformly well-posed. A more deep result is: revealed in the
following statement.

Theorem 5.4.1 Let conditions (H1)-(H4) be fulfilled. Then the following
assertions are true:

(a) the Cauchy problem (5.4.3)-(5.4.4) is uniformly well-posed;

(b) if uo ~ D and

f e c([0, T]; x), A(t) f(t) C([0, T] ; X)

then a solution u of the Cauchy problem (5.4.1)-(5.4.2) exists and
is unique in the class of functions

e c’ ([o, T]; x), A(t)u(t) C([0, T] ; X)

Also, this solution is representable by the formula

(5.4.s)
t

u(t) : V(t,O) Uo + / V(t,s) f(s) 
0

where V(t, s) refers to the evolittion operator of the homogeneous
Cauchy problem (5.4.3)-(5.4.4).

The solution u ensured by item (b) of Theorem 5.4.1 is called a strong
solution of the Cauchy problem (5.4.1)-(5.4.2). Here Theorem 5.4.1 serves
as a basis for decision-making about the uniform well-posedness of the ho-
mogeneous Cauchy problem (5.4.3)-(5.4.4). Therefore, under the same 
ditions there exists an evolution operator associated with (5.4.3)-(5.4.4),
so that the function u expressed formally by (5.4.8) is continuous for any
element uo ~ X and any function f e C([O’, T]; X), This provides enough
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reason to define the function u as a weak solution of the Cauchy problem
(5.4.1)-(5.4.2) via representation (5.4.8).

As we have mentioned above, the second concept provides proper
guidelines for the hyperbolic type recognition with regard to an abstract
equation and covers the case of symmetric hyperbolic systems of first order
differential equations. Further treatment of the abstract equation (5.4.1)
in a similar manner is caused by the assumption that the domain of the
operator A(t) depends on t and, in view of this, the notion of stability 
the operator function A(t) becomes important and rather urgent. We say
that the function A(t) is stable if

(S1) there exist a pair of constants ~ and M > 0 such that for each
A > w and any finite set of points { ti}i~l, satisfying the condition
0 <_ ~1 <_ t2 <_ ... <_ tk <_ T, the estimate is valid:

~ z - ~(tk))-~ (~ ~ - A(t~_~))-~ M

In a particular case, when the function A(t) does not depend on t,
condition (S1) coincides with condition (5.2.5) from Theorem 5.2.1. 
matter of fact, the following condition allows to distinguish the class of
hyperbolic equations:

($2) there exist a Banach space Xo embedded densely and continuously
into the space X and an operator function S(t) defined on the seg-
ment [0, T] and taking the values in the space £(Xo, X) such that
S(Q is strongly continuously differentiable on the segment [0, T]
and for each t E [0, T]

s(t)-1 ~ z(x, Xo), Xo c

and the operator function

A E C([O, TI; ~(Xo, x )).

Moreover, the relationship S(t)A(t)S(t) -~ = A(t) + R(t) takes
place for each I ~ [0, T], where the operator R belongs to the class
£(X) and the operator function R(Q is strongly continuous on 
segment [0, T].

Recall that condition ($2) is aimed at covering the abstract equations
corresponding to symmetric hyperbolic systems of first order differental
equations. For this, the operator S(t) is treated as an abstract counterpart
of the Calderon-Zygmund singular integral operator.
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Theorem 5.4.2 Let conditions (S1)-($2) hold. Then the following asser-
tions are true:

(a) the Cauchy problem (5.4.3)-(5.4.4) is uniformly well-posed;

(b) ifuo ̄  Xo and f ¯ C([0, T]; Xo), then a strong solution u of 
Cauchy problem (5.4.1)-(5.4.2) exists and is unique. Moreover,
this solution is given by formula (5.4.8).

We should take into account once again that the element u0 may
occupy, in general, an arbitrary place in the space X and, in view of this,
does not necessarily belong to the subspace X0. Just for this reason formula
(5.4.8) gives, under the conditions of Theorem 5.4.2 in combination with
f ¯ C([O, T]; X), only a continuous function being, by definition, a weak
solution of the Cauchy problem (5.4.1)-(5.4.2).

We proceed to the next case as usual. This amounts to the further
trea.tment of (5.4.1) as an equation of parabolic type under the set 
constraints

(P1) the domain 79(A(t)) = 7P theoperator A doesno$ depend on th e
variable t and, in addition, there is a real number w and a positive
constant C such that for each t ¯ [0, T] the half-plane Re A > w is
contained in the resolvent set of the opera,or A(t). Also, for any 
with ReA > w and each t E [0, T] the estimate holds:

II R(A, A(t))ll
C

The condition so formulated provides a natural generalization of the
parabolic type definition relating to equation (5.2.26) in the case of 
constant operator coefficient. Condition (P1) is in common usage and cov-
ers plenty of widespread applications such as the Dirichlet problem for a
partial differential equation of parabolic type in a space-time cylinder over
a bounded domain in the space R" and many others. However, while
studying Neumann’s problem or some other types of boundary conditions
and thereby involving equation (5.4.1) in which the domain of the operator
coefficient A(t) depends on t, condition (P1) is more stronger and does
not fit our purposes. Recent years have seen the publication of numerous
papers whose results permit one to overcome the difficulty involved and
there are other conditions ensuring the well-posedness of the Cauchy prob-
lem for the case of an abstract parabolic equation with varying operator
coefficients even if the domain of the operator A(t) depends on the variable
t. The conditions mentioned above find a wide range of applications and,
in particular, allow to consider partial differential equations of parabolic
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type with various boundary conditions (see Amann (1986, 1987)). A 
sual acquaintance with properties of analytic semogroups in interpolation
spaces is needed in applications of these results to the current framework.
But they are beyond the scope of this book.

If you wish to explore this more deeply, you might find it helpful to
study condition (P1) on your own. Provided condition (P1) holds, 
uniform well-posedness of the Cauchy problem at hand is ensured by the
restriction that the operator coefficient is of H61der’s type, meaning that

(P2) there exist a complex number A with ReA > Ao, a real constant
L > 0 and a real value fl E (0, 1] such that for all t, s, r ~ [0, T]
the estimate is valid:

[A(t) - A(s)] R(A, A(r)) _< L z.

Likewise, a function u G C([0, T]; X) is called a classical solution
to equation (5.4.1) 

(i) u is continuously differentiable on the half-open interval (0, T];

(ii) for each t ~ (0, T] the inclusion u(t) 73(A(t)) occurs;

(iii) this function solves for t ~ (0, T] equation (5.4.1) subject to the
initial condition u(O) = Uo.

Theorem 5.4.3 Let conditions (P1)-(P2) of *he present section hold.
Then the following assertions are true:

(a) the Cauchy problem (5.4.3)-(5.4.4) is uniformly well-posed;

(b) if uo e X and f e C~([O, T]; X ), 0 < ~ < 1, then a classical
solution u of the Cauchy problem (5.4.1)-(5.4.2) exists, is unique
and is given by formula (5.4.8);

(c) if, in addition to item (b), Uo ~ 2), then formula (5.4.8) gives a
strong solution of the Cauchy problem (5.4.1)-(5.4.2).

Subsequent studies place special emphasis on the question of solv-
ability of the Cauchy problem for ~ quasilinear equation of parabolic
type, whose statement is as follow.s:

(5.4.9) u’ = A(t, u) u + f(t, 

(5.4.10) u(O) = Uo,
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where the operator function A(t, u) takes the values in a set of closed linear
operators whose domains are dense. ,Of special interest is the local solvabil-
ity of the Cauchy problem at hand under the assumption that the ther~ is
a neighborhood of the point (0, u0) of proper type

(5.4.11) {(t, u): Ilu-u011

The operator functions A(t,u) and f(t,u) are defined in the specified
neighborhood. Suppose also that the operator A0 = A(0, u0) generates
a strongly continuous analytic semigroup or, what amounts to the same
things on account of Theorem 5.2.8, there is a half-plane Re,~ > w in
which the resolvent of the operator A0 obeys the estinaate

(5.4.12) II R(A, A0)[I 
C

One assumes, in addition, that the point (0, u0) has some neighborhood
U~ in which the domain of the operator A(t, u) does not depend on the
variable t. This means that for each (t, u) E 

(5.4.13) ~(A(t, u)) 

When the operator function A(t, u) is smooth enough, the parabolic type
of equation (5.4.9) shall remain in full force in some neighborhood of the
point (0, u0). It is required that the function u is such that there exist 
complex value ~ with Re,~ > w, a real number/? E (0, 1] and a constant
L > 0 such that for all (t, u), (s, v) ~ U~ the estimate is valid:

(5.4.14) [A(t,u)-A(s,v)] R(,~,Ao) (It -slZ+llu-oll).

In this line, a similar condition is imposed on the function f saying that
for all (t, u), (s, v) 

(5.4.15) I] f(t, u) - f(s, v)ll ~ L (It - s z +IIu -v

Conditions (5.4.12)-(5.4.15) allow to prove the local solvability by means 
the method of "fixed" coefficients. As usual, t~is amounts to reducing
equation (5.4.9) related to a fixed function v(t) to the following one:

(5.4.16) u’(t) = A(t,v(t)) u(t) + f(t, 

where v stands in place of u among the arguments of the functions A and
f. Holding, for instance, the function v fixed in (5.4.16), we arrive at the
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linear differential equation related to the function u. If follows from the
foregoing that in this case the operator coefficient depends solely on t and
admits the form

Av(t) = A( t, v(t)) 
while the corresponding nonhomogeneous term becomes

fv(t) = f( t, v(t)) 

Adopting similar ideas and joining with the initial condition, we might set
up the linear Cauchy problem

u’(t) Av(t)u(t) + fv
(5.4.17)

u(0) = u0.

When the function v happens to be of Hhlder’s type, it is plain to show
that the equation involved in problem (5.4.17) satisfies both conditions
(P1)-(P2) and, moreover, can be written 

(5.4.18)

t

u(t) = vv(t, 0) u0 + f vo(t, s) Iv(s) 
0

where the evolution operator V~,(t,s) corresponds to the operator coeffi-
cient Av (t). Observe that relation (5.4.18) is equivalent, in a certain sense,
to the Cauchy problem (5.4.17). On the other hand, equations (5.4.9) 
(5.4.17) coincide for u = v, making it possible to treat the right-hand side
of relation (5.4.18) as an operator carrying every function v into a function
u. With these ingredients, the Cauchy problem (5.4.9)-(5.4.10) amounts 
the problem of determining a fixed point of the operator (5.4.18). In the ap-
propriate functional spaces any operator so defined satisfies the contraction
mapping principle (Theorem 5.1.91), by means of which we establish the
unique local solvability of the quasilinear Cauchy problem which interests
US.

Theorem 5.4.4 Let conditions (5.4.12)-(5.4.15) hold and Uo E ~D. Then
there exists ~ > 0 such that a strong solution u of the Cauchy problem
(5.4.9)-(5.4.10) e~cists and is unique on the segment [0, ~].

5.5 Boundary value problems for elliptic differential
equations of the second order
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We give below the relevant prerequisities from the theory of linear differ-
ential equations in Banach spaces. The books and articles by Balakrishnan
(1960), V. Gorbachuk and M. Gorbachuk (1984), Ivanov et al. (1995), 
and Laptev (1962, 1966a,b), Laptev(1968), Sobolevsky (1968), Trenogin
(1966) are devoted to this subject. In this section we consider direct bound-
ary value problems for abstract elliptic differential equations of the second
order. Let X be a Banach space and A be a closed linear operator, whose
domain is dense in the space X. The elliptic differential equation of
the second order

(5.5.1) u"(t) : 

will be of special investigations in the sequel. There are several approaches
to the concept of elliptic type with regard to equation (5.5.1). We accept
here the notion involving the positivity of the operator A. By definition,
the operator A is said to be positive if the real half-line A _< 0 enters the
resolvent set of the operator A and, in addition, there is a constant C > 0
such that for all numbers A > 0 the estimate

C
(5.5.2) (A÷AI)-~ <- ~÷1

is valid. Any positive operator A possesses the positive square root A1/~,

meaning that the positive operator _/l U"° being squared equals A. For the
purposes of the present section we develop the scheme of introducing the
square root of the operator A. One way of proceeding is to initiate the
construction of the operator

(5.5.3)

A_U~ = 1 i 1

)-1
0

Estimate (5.5.2) serves to motivate that formula (5.5.3) specifies a bounded
operator, so that

II A-11~ II _< c,
where C is the same constant as in (5.5.2). We note in passing that the
operator A is invertible. Due to this fact we are now in a position to
introduce

All2= (A-1/~)-1

Being the inverse of a bounded operator, the operator A1/2 becomes closed.
Moreover, for each x E 7)(A)

1 i 1 (A+AI)_IAx dA.
(5.5.4) A1/2 x = --

0
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When the operator A happens to be unbounded, the domain of the operator
A1/2 is more broader than that of the operator A. In this case one can prove
that the operator A~/~ will coincide with the closure of the operator defined
by the formula on the right-hand side of (5.5.4). One thing is worth noting
here. Being concerned with a positive operator A, one can always define
each real power of this operator in such a way that the group property

A~+5= A~A~, A°= I,

will be in full force. The operator A1/~ plays a key role in later discussions of
equation (5.5.1) and possesses some properties that are more principal than
its positivity. True, it is to be shown that the operator -A1/~ generates a
strongly continuous analytic semigroup V(t). Solutions to equation (5.5.1)
can be expressed in terms of the semigroup V(t).

Of special interest are classical solutions to equation (5.5.1) with some
modification. A function u E C~ ([0, T]; X) is said to be a classical solu-
tion to equation (5.5.1) if this function is twice continuously differentiable
on the interval (0, T), for each t E (0, T) goes along with the inclusion

u(t) ~ :D(A)

and obeys equation (5.5.1) on the same interval (0, 
In what follows we take for granted that the function f involved sat-

isfies either

(5.5.5) II f(¢) - f(s)ll <- L I~- s, 0 < q < 1,

or

(5.5.{3) f e I~([0, T];’~I(A1/2)).

A simple observation may be useful as further developments occur.

Theorem 5.5.1 Let *he opera,or A be positive and the function f satisfy
either (5.5.5) or (5.5.6). Then .for a classical solution u of equation (5.5.1)
there are two elements ul, u2 ~ X such that the function u is representable
by

(5.5.7) u(t) = V(t) -U2 u~ +V(T- t) -~/ ~ u~

T

21 / V(it_ sl)A_~12 f(s ) ds,
o
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where V(t) refers to the semigroup generated by the operator 112. Con-
versely, each pair of elements ul and u2 given by formula (5.5.7) is a classi-
cal solution to equation (5.5.1). Moreover, a classical solution u to equation
(5.5.1) complies with the inclusion

(5.5.s)

Two boundary conditions will appear in what follows, whose aims and
scope are to determine the elements ul and u~ needed in formula (5.5.7)
with further passage to the new variables

Ll(U) -~ oq~ u(O) q- 0{1~ u’(O) q- flll u(T) q- 

L~(u) = %1 u(0) + a2~ u’(0) +/321 u(T) + fl~ u’(T).

The boundary value problem we h~ve considered so f~r consists of find-
ing a classical solution to equation (5.5.1) supplied by the boundary con-
ditions

(5.5.9) L~(u) : fl, L~(u) : f~,

where f~, f2 ~ X. Of great importance are three particular cases given
below. The Cauchy problem is connected with the values

a~ = 1, %~ = 1

and

o~2 =flll = fi~ = a~, = ~ = &~ = O.
The Dirichlet problem will be completely posed once we accept

oql = 1, /3~1 = 1

and

0{1~ = ft. = fil~ = ~ = ~ = N~ = O.
Finally, when the equalities

and

are put together, there arises the Neumann problem.
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Theorem 5.5.2 Let the operator A be positive, the function

f ¯ C([0, T]; X)

and the function u be defined by equality (5.2.7) with V(t) denoting the
semigroup generated by the operator-A1/2. Then

~ ¯ C~([0, T]; X)

and

(5.5.10) u’(O = - V(O u, + V(T - ~) 

1 / V(t- s) f(s)

o

ds

T
1 j v(~ - t) f(s) 
2

With the aid of relations (5.5.7) and (5.5.10) it is plain to reduce 
boundary conditions (5.5.9) to the system of equations

(5.5.11) (Dla ul + D12 u2 = ha ,

D21 Ul + D~ u~ h~,

where

(5.5.12)

Daa =- an A-1/~ - oqz ~ -q- flaa V(T) -1/2 -fl a2 V(T),

D,2 = an V(T) -~1~ +oq~ V(T) + fl ll A-~1~ + fl 12 1,

D2, -" c~, A-1/~ - ~ I + 13~, V(T) -~/~ -t3~ V(T),

D~2 = az~ V(T) -x/2 +~ V(T) + ~a-~/~ + fl ~ I,

(5.5.13)

T
hi "- fl gv f lt~l (s) f(8) 

o
T

h~ f~ ÷ f I£~(s) f(s) 
o
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I
~K~(t) = -~ + ~ o~

+½ fl~ v(T - t) A-~/~ - ~ ~ V(~ - t) 
(5.5.14)

1 g(t) -1/2 1 V( t)
K~(t) = 

1 1 ~22 V(T - t).+~1 V(T - t)A
When relations (5.5.11) are put together, there arises a system of equations
with the bounded and commuting operator coe~cients. The system thus
obtained can be resolved by means of Cramer’s method. A key role here
is played by the determinant

(5.5.1~) D = D~ D~ ’

which is called the charaeteristie determinant of the boundary value
problem (~.~.1), (5.g.9).

As a first step towards the solution of problem (~.~.1), (5.5.9), 
main idea is connected with the homogeneous boundary value problem

~(~ o, ~(~ = o,
because a solution of problem (~.~.1), (~.~.9) is determined up to a solution
of problem (5.~.16). Therefore, to decide for yourself whether a solution
of the nonhomogeneous problem (5.~.1), (g.5.9) is unique, a next step 
to analy~e a possibility of the occurrence of a nontrivial solution to the
homogeneous problem (~.g.16). The following theorem supplies the answer
to this question.

¯ heorem 5.5.~ The bo~ndar9 wl~e problem (5.~.16) has a nonlrivial
solution if and onl~ if zero is

Therefore, a solution of problem (5.~.1), (~.g.9) is unique if and 
if there exists the inverse (not necessarily bounded) operator -1.

Of importance is the case when

(5.5.17) D-~ e £(X),

which assures that the system (5.5.11) is uniquely solvable for any h~, 
and it8 solution can be written in simplified form ~ follows:

u~=D-~(D~h~-D~h~),

u2 -- D-1 (D11h2-D~lhl).
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Putting these together with (5.5.7) we derive the final expression for the
solution in question:

(5.5.18)

where

(5.5.19)

(5.5.20)

T

u(t) x,(t) fl&(t) f~ + f G(t,s) f(s) 
0

Sl(t) = D-1A-1/2 [ V(t) D~ - V(~’- t) ],

S2(t) = -1 A-1/2 [V(t) DI2 -[- V(T -- t)’ D~ ],

(5.5.21)

O(t, s) -~ A-~/~ Iv(t) ( D~: I~ .’1 (s -- Dl~( S) K~(s)) + V( T 

_ ~ A-~I~X (Dll f(2(s) - J~)21](l(S)) ] -~ V(It- sl) 

The function G(t, s) is referred to as the Green function of the boundary
value problem (5.5.1), (5.5.9). Preceding manipulations are summarized 
the following statement.

Theorem 5.5.4 Let the operator A be positive and the operator D involved
in (5.5.15) be in line with (5.5.17). One assumes, in addition, that fa, f2 ~
X and the function f satisfies either (5.5.5) or (5.5.6). Then a classical
solution ~ of the bo,ndaru value problem (5.5.~), (5.5.9) e~ists, is unique
and is given by formula (5.5.18).

The Neumann boundary conditions

(5.5.22) u’(O) = f~, u’(T) = 

complement the further development and can serve as one useful exercise
to motivate what is done. Under such a formalization the characteristic
determinant is of the form

D = V(2T)-I.

Recall that the operator A is positive, that is, satisfies condition (5.5.2).
In view of this, there exists a positive number ¢ such that the spectrum of
the operator -A~l~ is located in the half-plane Re ~ _< -¢. This is due to
the fact that for any t > 0 the spectral radius of the operator V(t) is less
than 1. From such reasoning it seems clear that the opera,or V(2 T) - I 
invertible, so that the inclusion

( V(2T)- ~)-~ e 

occurs. In this case the Neumann boundary value problem concerned com-
plies with (5.5.17), thereby confirming the following statement.
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Theorem 5.5.5 Let the operator A be positive and the function f satisfy
either (5.5.5) or (5.5.6). Then for any elements fl, f~ E X a classical
solution u of the Neumann boundary value problem (5.5.1), (5.5.22) exists
and is unique.

It is also worthwhile to warn the reader against the following wide-
spread but wrong reasoning. It would be erroneoug to think that in the
current framework condition (5.5.17) is the unique possible and cannot 
omitted or replaced by the others. Even for the problem with the Dirichlet
boundary conditions

(5.5.23) u(O) = fl, u(T) = f~,

condition (5.5.17) fails to hold. In this view, it is reasonable to regard
boundary conditions distinguishing via representation (5.5.18) as regular
and nonregular ones. This can be always done in the case when the opera-
tor D has the inverse (not necessarily bounded). The only inconvenience 
caused by the obstacle that the operators $1, $2 and G(t, s) are unbounded.
We do not touch here all possible types of boundary conditions and confine
ourselves to the Dirichlet boundary data (5.5.23) only. The characteristic
determinant of the Dirichlet problem admits the form

D = v(2 T)) -1,

whence it follows that the operator

D-1 = (I-V(2T))-1 A

is unbounded and has the domain T~(A) imposed at the very beginning.
Therefore, the system of equations (5.5.11) followed by the relations

Dul = D~hl-D~h~,
(5.5.24)

D us = Dll h2 - D~I h~ ,

cannot be resolved for any f~, f2 E X. Indeed, condition (5.5.8) holds true
for a classical solution of equation (5.5.1). The meaning of this is that
f~, f~ are not arbitrary elements and should be suitably chosen from the
manifold ~(AI/2). This condition is necessary for the Dirichlet problem
(5.5.1), (5.5.23) to be solvable and appears to be sufficient too. Indeed, 
the case of the Dirichlet boundary conditions formulae (5.5.14) become

~ V(t)A-~D,=

~ V(T t)A-~/~.= -
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From relations (5.5.13) it follows that the elements hi, h~ E T~(A1/2) for
any fl, f~ ~ "D(AI/2), so that

T
1

/ V(s) f(s) A1/~hl = A~/~ f~ + ~

o

T
1 / V(T - ~) f(~) A~/~h~ = A~/~ f~ + ~

o

implying on the basis of relations (5.5.12) that

DI~ = A-~/~ , D~ = V(T)A-1/ ~,

D~ = V(T) -~/~, D~ = A-~/ ~.

All this enables us to deduce that the elements on the right-hand side of
(5.5.24) belong to the manifold ~(A) 

A ( D~h~ - D~h~) = A ( A-~/~h, - V(T) A-’/~h~)

= A~/~h~ - V(T)A~/~h~,

A ( D~ h~- D~ h,) = A (A-~/~h~- V(T) A-’/~h~)

= A~/~h~ - V(T) A~/~h~.

Consequently, equations (5.5.24) are solvable for any f~, f~ ~ ~(A~/2) ~nd

u~ = (I- V(2T)-~) (A~/~h~ - V(T)A~/~h~),

~ = (~- V(~T)-1) (Z~/=~ _ V(~)A1/~ ).
Putting these together with (5.5.7) we establish representation (5.5.18)
with the members

S~ (t) = (Z - Y(~ -~ (Y(*) - V( ~ T - 

S~(*) = - ( ~ - V(~T))-~ ( V(T + t) + V(T- ~)) 

G(¢,s)-1-~(I- V(2T))-I A-1/~ (V(t + s) - Y(2T + t 

+ V(~T- ~ - ~) - V(~T- ~ + ~) Y(l* - ~t)).
As ~ final result we get the following assertion.
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Theorem 5.5.6 Let the operator A be positive. If the function f satis-
~es either (5.5.5) or (5.5.6), then the Dirichlet problem (5.5.1), (5.5.23) 
solvable if and only if

(5.5.25) fl, f~ E 79(A1D).

Moreover, under the constraint (5.5.25) a classical solution u of the Dirich-
let problem (5.5.1), (5.5.23) exists and is unique.





Chapter 6

Abstract Inverse Problems for
First Order Equations and

Their Applications in

Mathematical Physics

6.1 Equations of mathematical physics and abstract problems

The method of abstract differential equations provides proper guidelines
for solving various problems with partial differential equations involved.
Under the approved interpretation a partial differential equation is treated
as an ordinary differential equation in a Banach space. We give below one
possible example. Let ~ be a bounded domain in the space R~, whose
boundary is sufficiently smooth. The initial boundary value problem-for
the heat conduction equation can add interest and aid in understanding.
Its statement is as follows:

ut : A u ÷ f(x,t), (x, t) ¯ 

(6.1.1) ~(~,0) : ~(~), x ̄  a,
u(x,t) on× = 

[0,

375
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where G = f~ x [0, T] is a cylindrical domain. When adopting X
as a basic Banach space, we introduce in the space X a linear (unbounded)

o
operator A = A with the domain T~(A) = W~(f~) O W2’(ft) and call 
the Laplace operator. The function u(x,t) is viewed as an abstract
function u(t) of the variable t with values in the space X. Along similar
lines, the function f(z, t) regards as a function with values in the space X,
while the function ~(x) is an element ~ X,making it possible to tre at
the direct problem (6.1.1) ~ the Cauchy problem in the Banach space 
for the ordinary differential equation

u’(t) = Au(t) + f(t), 0 < 
(6.1.2)

~(0) = p.

Recall that the boundary conditions for the function u involved in (6.1.1)
are included in the domain of the operator A.

The well-founded choice of the basic space X owes a debt to severM
important properties among which the we]]-posedness of the Cauchy prob-
lem, a need for differentia] properties of a solution with respect to a spatial
variable and others. Such a setting is much a~plicab]e for non-normed and
locally convex topologicM vector spaces which are used in place of the Ba-
nach space just considered. Also, in some cases the space X is replaced
by a scale of Banach spaces. Within a wide range of applications which
do ~rise in the sequel, the space X is ~resupposed to be B~nach unless
otherwise is explicitly stated.

mhe m~in id~ behind ~ ~tur~l ~pp~o~ch to p~obl~m~ (~.l.1)-(~.l.2)
is that all of the basic relations should occur in a pointwise sense. However,
there-is some difference between problems (6.1.1) and (6.1.2). The essense
of the ma~ter is that the operation of differentiation with respect to ~ is per-
formed in a dissimilar sense for both cases. In particular; the t-derivative
~rising in problem (6.1.2) is to be understood as a limit of the correspond-
ing difference relagion in the norm of the space X. When solutions of both
problems are treated as distributions, the dissimilarity between them will
disappear. A generalized solution of problem (6.1.2) can uniquely be as-
sociated with a distribution from the class ~’(G) subject to (6.1.1) 
certain sense. Because of this, the exploration of problem (6.1.2) is some-
what different from that of problem (6.1.1) by means of special methods,
~hose use permits us to reveal some properties peculiar to the regularity
of generalized solutions to the heat conduction equation in the class
~or the purposes of ~he present chapter it would be su~cient to operate
only with continuous solutions of problem (6.1.2). A rigorous definition 
such solutions will appear in the next section.

Before proceeding to a common setting, we would like to discuss some
statements of inverse problems and their abstract analogs. Recent years
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have seen plenty of publications in this field with concern of the main
mathematical physics equations. We refer the reader to Beals and Pro-
topescu (1987), Birman and Solomyak (1987), Bykhovsky (1957), 
and Lions (1972), Fujita and Kato (1964), Guirand (1976), Hejtmanek
(1970, 1984), Henry (1981), Ikawa (1968), Jorgens (1968), Kato (1975a,b),
Kato and Fujita (1962), Lax and Phillips (1960), Lehner and Wing (1955),
Lekkerkerker and Kaper (1986), Massey (1972), Mizohata (1959a,b, 1977),
Montagnini (1979), Phillips (1957, 1959), Richtmyer (1978, 1981), Pdbaric
(1973), Sanchez-Palencia (1980), Shikhov (1967, 1973), Sobolevsky (1961),
Temam (1979), Vidav (1968, 1970), Voight (1984) and Yakubov (1985). 
pecial attention in the subsequent studies is being paid to some properties
peculiar for some operators by means of which the subsidiary information is
provided. There exist two typical situations, where in the first the function
f as a member of equation (6.1.1) is of the structure

(6.1.3) f(x,t) = 02(x,t) p(t),

where the function q~ is known in advance and the unknown function p
is sought. In trying to recover the function p we have to absorb some
additional information. One way of proceeding is to describe the solution
behavior at a fixed point of the domain f~ by the relation

(6.1.4) U(xo,t) = ¢(t), 0 < t < T,

where ¢ is some known function defined on the segment [0, T]. Other
ideas with abstract forms are connected with the following setting. When
working in the space Y = R, we assume that the functions ¢ and p fall into
the category of abstract functions of the variable t with values in the space
Y. The symbol qS(t) designates, as usual, the operator of multiplication
of an element p E Y by the function ¢2(x,t) being viewed as a function of
the variable x with a fixed value t. If the function q5 is sufficiently smooth
(for example, under the premise that for any fixed argument t E [0, T] the
function (I)(x, t) as a function of the variable x belongs to the space L2(f~)),
then O(t) acts from the space Y into the space X. When this is the case,
we may attempt relation (6.1.3) in the abstract form

(6.1.5) f(t) = ~(t)p(t),

where the operator ~(t) E £(Y, X) for any t E [0, 
In the space X = L2(~) the operator B acting in accordance with the

rule

B u = u(x0)
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is defined on the set of all continuous in ft functions and is aimed to derive
an abstract form of relation (6.1.4). On that space the operator B becomes
a linear functional from X into Y, so that relation (6.1.4) can be rewritten
as

(6.1.6) B ~(~) = ¢(0, 0 < t < T.
When equation (6.1.2) is adopted as a relation satisfied in a pointwise

sense, we take for granted that for any fixed value t e [0, T] the element u(t)
o

belongs to the space 7)(A) = W~(ft) ~1 W~(ft). Embedding theorems 
Sobolev’s spaces yield W~(f~) C C(~)) for any bounded three-dimensionM
domain ft and, therefore, the operator B is defined on any solution to
equation (6.1.2). However, this operator fails to be bounded and even
closed. On the other hand, if the manifold 7)(A) is equipped with 
graph norm, that is, with the W~(ft)-norm, then the operator B acting
from 7)(A) into Y becomes bounded:

(6.1.7) B ¯ £(T~(A), 

Additional information may be prescribed in an integral form as well.
The following example helps motivate what is done. The subsidiary infor-
mation here is that

(6.1.8)

Rela~;ion (6.1.8) admits an interesting physical interpretation as a result
of measuring the temperature u by a perfect sensor of finite size and, in
view of this, performs a certain averaging over the domain fL Observe that
(6.1.8) takes now the form (6.1.6) with the operator B incorporated:

B u = f u(x) w(~) 

Holding w ̄  L2(ft) fixed we will show that

(6.1.9) B ¯ £(X, Y).

Indeed, when (6.1.8) is the outcome of measuring the temperature by 
real sensor, there is a good reason to accept th.at the function w is smooth
and finite in the domain ft. In the case of a sufficiently smooth boundary
of the domain ft the Laplace operator is self-adjoint and

0

V(A*) = w:(ft) 
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Let now w E/P(A*). Then for any element u E ~)(A) we 
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and both operators B and B A are bounded. Moreover, the closure of B A,
which is defined by means of the relation

= / w(x)

complies with the inclusion

(6.1.10) B A E £( X, Y ).

This serves to motivate that the operator B possesses a certain smooth-
ing property. In what follows, within the framework of the abstract
inverse problem (6.1.2), (6.1.5)-(6.1.6), conditions (6.1.7), (6.1.9)-(6.1.10)
are supposed to be true.

Of special interest is one .modeling problem in which the function f
involved in equation (6.1.1) is representable 

(6.1.11) y(z,t) = ~(z,t) p(z),

where the function (I) is known in advance and the coefficient p is sought.
Additional information is needed to recover this coefficient and is provided
in such a setting by the condition of final overdeterminatlon

(6.1.12) u(x,T) = ¢(x), x e 

The abstract statement of the inverse problem concerned should cause no
difficulty. We proceed as usual. This amounts to further treatment of the
function p as an unknown element of the Banach space X = L2(f~). With
this correspondence established, relation (6.1.11) admits the form

(6.1.13) f(t)

where ~(t) regards to the same operator performing the multiplication
by the function (I)(x, t) being viewed as a function of the variable x for 
fixed value t. If for any fixed value t the function (~(x,t) is measurable
and essentially bounded as a function of the variable x, then ff)(t) ~ £(X)
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for any fixed value t ¯ [0, T]. What is more, condition (6.1.12) can 
rewritten as

(6.1.14) u(T) = 

where ¢ is a known element of the space X.
It is necessary to indicate a certain closeness between the statements of

the inverse problems (6.1.1), (6.1.3)-(6.1.4) and (6.1.1), (6.1.11)-(6.1.12).
In the first one the unknown coefficient of the source term depends solely on
t and in this case the subsidiary information is also provided by a function
depending on t. In the second one the same principle is acceptable for
action: the unknown part of the source and the function built into the
overdetermination condition depend only on one and the same variable x.
Such a closeness emerged in the abstract analogs of the inverse problems
posed above. This is especially true for (6.1.2), (6.1.5)-(6.1.6) and (6.1.2),
(6.1.13)-(6.1.14). In the first setting being concerned with a function 
the variable t with values in the space Y we are trying to find a function
of the variable t with value~ in the space Y. In another abstract inverse
problem an element p E X is unknown and the subsidiary information is
that ¢ is an element of the same space X.

There are no grounds to conclude that the principle formulated above
is not sufficiently universal to cover on the same footing all possible state-
ments of inverse problems arising in theory and practice. In dealing with
problems of another nature (being not inverse) one can encounter other
statements in which the unknown parameter and the subsidiary informa-
tion are connected with functions of several variables. Such settings find a
wide range of applications, but do not fit our purposes within the uniform
abstract framework and need special investigations. Just for this reason
we focus our attention here on such statements of inverse problems, whose
constructions not only provide one with insight into what is going on in
general from a uniform viewpoint, but also permit one to get quite complete
answers to several principal questions of the theory.

6.2 The linear inverse problem
with smoothing overdetermination:
the basic elements of the theory

Let X and Y be Banach spaces. We have at our disposal a closed linear ¯
operator A in the space X, whose domain is dense. Under the natural
premises ~ ¯ C([0, T]; £( Y, X )), F C([0, T] ; X ), B £̄(X,Y )

¢ ¯ C([0, T]; Y), u0 ¯ X we consider the inverse problein of finding
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a pair of the functions ~ ~ C([0, T]; X) and p ~ C([0, T]; V) from the 
of relations

(6.2.1) u’(t) = Au(t)+ f(t), 0<t <T,

(6.2.2) ,,(0) = ~o,

(6.2.3) f(t) = ~(t)p(t) + 0 < t < T,

(6.2.4) Bu(t) : ~b(t), 0 < t < T.

Since only continuous solutions are considered, equation (6.2.1) is to 
understood in a sense of distributions. Recall that the the operator A is
closed. Consequently, the domain of A becomes a Banach space in the
graph norm, making it possible to deal with distributions taking the values
from the manifold 79(A). The meaning of relation (6.2.1) is 

~ e v’((o, T), v(A))

and for any function ~ ~ 79(0, T) we should have

Because the function u is continuous from the segment [0, T] into the space
X, the remaining relations (6.2.2)-(6.2.4) are meaningful.

At first glance the well-posedness of the Cauchy problem (6.2.1)-
(6.2.2) needs certain clarification. We assume that the operator A gen-
erates a strongly continuous semigroup V(t), that is, the class of operators
in L;(X) which are defined for t >_ 0 and satisfy the following conditions:

(1°) for any x ~ X the function V(t)x is continuous for all t >_ 0 in the
space X;

(2 0) V(O)=~;

(30) V(t+s)=V(t)V(s) for anyt, s>_O.

The operator A is just a strong derivative at zero of the semigroup it
generates and, in so doing,

fz~X: 31im V(t)- V(O) ~
t--*O ~ J ’

A x = lim V(~)-V(O) ..
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For the operator A to generate a strongly continuous semigroup the Hille-
Yosida condition is necessary and sufficient, saying that there is a whole
ray A > A0 contained in the resolvent set of the operator A and there is a
constant M :> 0 such that on that ray its resolvent R(A, A) obeys for any
positive integer n the estimate

(6.2.5) II R(A, A)’ 
M

This condition holds true if and only if the Cauchy problem (6.2.1)-(6.2.2)
is uniformly well-posed in the class of strong solutions

u e C~ ([0, T]; X) ~ C([O, T]; V(A)) 

The Hille-Yosida condition is also sufficient for this problem to be well-
posed in the class of distributions. For more a detailed exposition of the
well-posedness of the Cauchy problem and the relevant properties of op-
erator semigroups we recommend to see Balakrishnan (1976), ClEment 

al. (1987), Dunford and Schwartz (1971a,b,c), Fattorini (1983), Goldstein
(1985), Henry (1981), Hille and Phillips (1957), Kato (1966), Krein 
Mizohata (1977), Pazy (1983), Trenogin (1980), Yosida (1965). It 
be noted here that under the conditions imposed above the Cauchy prob-
lem (6.2.1)-(6.2.2) has a continuous solution u e C([0, T]; X) for 
function f e C([0, T]; X ) and any element u0 e X, this solution is unique
in the indicated class of functions and is given by the formula

u(t) : V(~) Uo + / V(~- s) f(s) 

0

If, in addition, f e Cl([0, TI;X) -[-C([0, TI;7)(A)) and u0 e 79(A), 
formula (6.2.6) specifies a strong solution

¯ T];X) C([O,

The assumptions to follow are concerned with some properties of the
operator B, which is in charge of surplus information in the form of overde-
termination. This operator is supposed to possess £ smoothing effect,
meaning

(6.2.7) B, BA e £,(X, Y).

Theorem 6.2.1 Let the closed linear operator A with a dense domain
generate a strongly continuous semigroup in the space X, condition (6.2.7)
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hold and ̄  E C([0, T];£(Y,X)), F ~ C([0, T];X), Uo ~ X and ~ ~
C~([0, T]; r). Zffor any ~ ~ [0, T] the operator ~O(t) is in~ertib~e,

(B~)-~ ~ c([o, T];
and the compatibility condition B uo = ¢(0) holds, then a solution u, 
of the inverse problem (6.2.1)-(6.2.4) exists and is unique in the class of
functions

~ E c([o, T]; x), p ~ C([O, T]; 

Proof Formula (6.2.6) implies that a solution of the Cauchy problem
(6.2.1)-(6.2,2) can be expressed 

t t

0 0

Therefore, condition (6.2.4) is equivalent to the following equation:

(6.2.8)
t

B (v( luo+ f v(t-sl (s p(sl 
0

t

¢(t), o < t < T.

The equation thus obtained contains only one unknown function p and the
question of existence and uniqueness of a solution of the inverse problem
(6.2.1)-(6.2.4) amounts to the question of existence and uniqueness 
continuous solution to equation (6.2.8). At the next stage we are going
to show that equation (6.2.8) can be differentiated. The following lemmas
will justify the correctness of this operation.

Lemma 6.2.1 For any Uo ~ X the function g(t) = B V(T) Uo is continu-
ously differentiable on the segment [0, T] and

d(t) = B A V(t) 
Proof Holding A ~ p(A) fixed and setting

ul = (A - AI) -1 Uo,
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we thus have ul E :D(A) and

(V(t) ul)’ = V(t) AUl = AY(t) 

Furthermore, it is straightforward to verify that

g(t) = BV(t)(A-AI)Ul = BAV(t)ul-ABV(t)ul

and, since both operators B A and B are bounded, find that

g’(t) = BA(V(t)u~)’-AB(V(t)u~)’

= BAV(t) Au~-ABV(t)Aul

=BA V(t)(A-~I)ul

= BA V(t) uo.

Lemma 6.2.2 On the segment [0, T] the function

t

g(t) : B / Y(t- s)f(s) ds

0

is continuously differentiable for any continuous in X function f and

= B---~ / V(t - s) f(s) ds + B f(t).g’(t)

0

Proof By analogy with the above lemma the proof is simple to follow.
Holding k E p(A) fixed and setting, by definition,

h(t) = ( A AI)-1 f( t) ,

we deduce that

Ah(t) = ((A- hi)+ hi) (A-.~I) -1 f(t)

:f(t)÷(A-AI)-If(t),
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so that

(6.2.9) h, Ahe C([0, T]; X).

On the other hand,

g(t) = B / V(t - s) ( A - ~ I ) h(s) 
0

t

= (B A - ~ B) J V(t - ~) 
0

From condition (6.2.9) it follows that

t

v(t - ~) h(~) = u(t - ~) A h(~) d~ + 
0 0

and, due to the boundedness of both operators B A and B,

0

Since B A C B A, we find that

0

~rom the definition of ghe Nnc~ion h it seems clear that

or, what amounts to the same,

~h(~) = ah(~ + ~(t).

With the relation h(~) ~ ~(A), ~ e [0, T], in view, we deduce 

~ ~ h(~l = ~ 

385
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and

(BA- AB) h(t) = BAh(t)- 

= B(~ h(t) + f(t)) - ~ 
= By(t).

In this line, we get

t

= BA / V(t-s) f(s) ds+Bf(t)g~(t)

0

and the second lemma is completely proved.,

Returning to the proof of Theorem 6.2.1 observe that the left-hand
side of equation (6.2.8) is continuously differentiable on account of the
preceding lemmas. The compatibility condition B u0 = ~b(0) ensures the
equivalence between (6.2.8) and its differential implication taking for now
the form

t

-/BA V(t)uo+BA V(t-s)~b(s)p(s) ds+B¢b(t)p(t)

0

+ B A / V(t - s) F(s) d~ + B F(t) ¢’(t)
0

and relying on the formulae derived in proving Lemmas 6.2.1-6.2.2. By
assumption, the operator B ~(t) is invertible. Hence, multiplying the pre-
ceding equation by (B O(t)) -1 from the left yields the Volterra integral
equation of the second kind

t

(6.2.10) p(t) = p0(t)+/K(t, ds,

0

where

(6.2.12)

po(t) = (B~(t)) -1 (¢’(t)- BAV(t) 

t

0

K(t, s) = -( if (t)) -1 B A V(t - s)~(s
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From the conditions of the theorem and relations (6.2.11)-(6.2.12) we 
duce that the function P0 is continuous on the segment [0, T] and the
operator kernel K(t, s) is strongly continuous for 0 < s < t < T. These
properties are sufficient for the existence and uniqueness of the solution to
the integral equation (6.2.10) in the class of continuous functions in light
of results of Section 5.1 and thereby the theorem is completely proved. ̄

Having established the unique solvability of the inverse problem
(6.2.1)-(6.2.4) we should decide for ourselves whether the solution in ques-
tion is continuously dependent on the available input data.

Theorem 6.2.2 Under the conditions of Theorem 6.2.1 there exists a pos-
itive constant M = M(A,B,¢,T) such that a solution u, p of the inverse
problem (6.2.1)-(6.2.4)satisfies lhe eslimates

II ~ IIc(I0,rl;x) -< M @ Uo IIx + II ¢ Ic,(t0 Tl;r) + II v I c(~0,w~.x)),

IIP~I~(~0,T3;~3 6 M (11 ~ollj + II¢ Ile,(~0,~; v) IIFllcC~o,~;x3 ).
Proof To derive the second inequality one can involve the integral equation
(6.2.10), whose solution does obey the estimate

IlPllc(lo,~3;Y) M1Ilpo
where the constant M~ depends only on the kernel of this equation, that
is, on A, B, ¯ and T. On the other hand, relation (6.2.11) implies that

II p0 IIc<iO,T~; y) ~ M~ (11 Uo IIx + II W IIC’(~0,T~; y) + II f IIc<~0, T~; 
which justifies the desired estimate for the %nction p. Here the constant
M2 depends only on A, B, ~ and T. With regard to the function u formula
(6.2.6) applies equally well to the decomposition

yielding

where the constant Ma depends only on A and T. Since

II f Ile([0,r]; x) 5 M4 (ll P IIc([0, T]; + II F lice[0, r];X) )

with constant M4 depending solely on ¯ and T, the desired estimate for
the function p is a simple implication of the preceding inequalities and the
estimate for the function u we have established at the initial stage of our
s~udy. This compleges the proof of the theorem.~
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It is interesting to know when equation (6.2.1) is satisfied in a point-
wise manner. In this regard, there arises the problem of finding out when
the solution of the inverse problem concerned,satisfies the condition

u e c1([0, T]; x) N c([0, T]; P(A)).

Because the function f involved in the right-hand side of equation (6.2.1) 
continuous, the belonging of u to the space C([0, T]; ~(A)) will be proved
if we succeed in showing that u ¯ C1 ([0, T]; X). One well-known fact
from semigroup theory may be of help in achieving the final aim: if the
function f ¯ C1 ([0, T]; X) and the element u0 ̄  D(A), then the function
u specified by formula (6.2.6) is continuously differentiable on the segment
[0, T] in the norm of the space X, so that

(6.2.1a)
t

u’(t) : V(t) (Auo f( 0)) + V(t - s)f’ (s) ds.

o

If f admits the form

with the members

f(t) + F(t)

¯ ¯ C1 ([0, T]i £(Y, X)), r ¯ c1 ([o, x),

then the continuous differentiability of the function p would be sufficient for
the function f to be continuously differentiable. Just for this reason a pos-
itive answer to the preceding question amounts to proving the continuous
differentiability of a solution to the integral equation (6.2.10).

Theorem 6.2.3 Let the closed linear operator A with a dense domain be
the generator of a slrongly continuous semigroup in the space X, condition
(6.2.7) hold, ¯ ¯ el(J0, T]; £:(Y,X)), ¯ Cl ([0, T] ; X), ?. o ¯ ~(g),
~b ̄  C2([0, T]; Y), for any t ¯ [0, T] the operator l3C~(t) be invertible and

(B q~) -~ e C~ ([0, T]; £(Y)). If the compatibility condition B Uo = ¢(0) is
fulfilled, then a solution of the inverse problem (6.2.1)-(6.2.4) exists and is
unique in the class of functions

~t ¯ cl ([0, T]; X) N C([0, r]; D(A)), p ¯ C1 ([0, ~E’]j y) 

Proof As stated above, it is sufficient to prove that under the premises
of the theorem a solution to the integral equation (6.2.10) is continuously
differentiable. This can be done using equation (6.2.10) together with the
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equation for the derivative q(t) -= p’(t). In trying to justify the correctness
of differentiating the integral term we take into account the explicit form
of the kernel K(t, s) and formula (6.2.13), implying that

t

v(t - ~) ~(~) p(~) d~ : V(~) ~(0) 
0

~

0 0

One thing is worth noting here. The value p(0) can be found from equation
(6.2.10) related to t = 0. With the aid of (6.2.11) we deduce 

p(o) : po(O) : (~ ~(o))-’ (,’(o) - ~ A ~o 

By formal differentiating of equation (6.2.10) and minor manipulations with
the resulting expressions we are led to the relation

(6.2.14)

t t

0 0

where

(6.2.15) %(0 : p’o(t) + n(t)-~-X v(t)~(o)po(o),

(6.2.16)
Kl(t,s) : R’(t) B A V(t- s) q~(s)

+ R(t) B A V(t - s) c~’(s),

(6.2.17) n(t) = - ( ~~(t))-l.

By virtue of (6.2.15)-(6.2.17) the continuity of the function q0 and 
strong continuity of the operator kernel K~(t, s) for 0 _< s _< t _< T are
stipulated by the premises of the theorem. The strong continuity of the
kernel K(t, s) defined by (6.2.12) has been already established and has 
taken into account in the current situation.
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Let us consider the system of integral equations

t

p(t) = po(t) + / If(t, s)p(s) 
0

t t

q(t) = qo(t)+ / Kl(t,s)p(s) ds+ / K(t,s) 

which has a unique continuous solution. This is due to the continuity of the
functions P0 and q0 and the strong continuity of the operator kernels K(t, s)
and Kl(t, s) (for more detail see Section 5.1). Moreover, this solution can
be obtained by means of the successive approximations

t

(6.2.18)
0

t

(6.2.19) 4,~+1(t) qo(t)+ j K~(t, s) ~(s) ds
0

/ s) ds,+

0

which converge as n --~ c~ to the functions p and q, respectively, uniformly
over the segment [0, T]. In light of the initial approximations/50 = 0 and
40 = 0 it is reasonable to accept

Assuming that there exists a positive integer n, for which the equality
= p. is true, we will show by differentiating (6.2.18) that this equality

continues to hold for the next subscript. In giving it all the tricks and tucks
remain unchanged as in the derivation of equation (6.2.14). The outcome
of this is

t t

~+~(t) = qo(t) + / K~(t,s)~(s) K(t,s)~(s) ds.

Comparison with (6.2.19) shows that ~.+~ = p~+~. We deduce by induction
on n that the equality
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is valid for any positive integer n.
Therefore, the sequence/Sn converges as n --~ ~ to the function p

uniformly over the segment [0, T]. At the same time, the sequence /5~
converges uniformly to the function q. From such reasoning it seems clear
that p is continuously differentiable and p~ = q, thereby completing the
proof of the theorem.[]

The next step of our study is connected with various estimates for
the derivatives of the inverse problem solution similar to those obtained
in Theorem 6.2.2 and the existing dependence between its smoothness and
the smoothness of the input data. The questions at issue can be resolved
on the same footing if the derivatives of the inverse problem (6.2.1)-(6.2.4)
solution (if any) will be viewed as the continuous solutions of the same
problem but with other input data known as the "problem in varia-
tions". This approach is much applicable in solving nonlinear problems,
since the emerging "problem in variations" appears to be linear. However,
this approach provides proper guidelines for deeper study of many things
relating to linear problems as well.

Theorem 6.2.4 Lel the conditions of Theorem 6.2.3 hold, a pair of lhe
functions u, p solve the inverse problem (6.2.1)-(6.2.4),

Wo = A uo + f(O) G = ¢’ p + F’

and ~ = ¢’. Then the functions w = u’ and q = p’ give a continuous
solution of the inverse problem

(6.2.20) w’(t) = A w(t) g(t)., 0 < t < T,

(6.2.21) w(O) = Wo,

(6.2.22) g(t) = if(t) q(t) + 0 < t < T,

(6.2.23) B w(t) = ¢,v(t), 0 < t < T.

Proof Since the function p is continuously differentiable, the function

f = i p+ F G C1([0, T]; X).

Because of this fact, we might rely on formula (6.2.13) as further develop-
ments occur. Substituting g = fl and retaining the notations of Theorem
6.2.4, we recast (6.2.13) 

t

 o(t) = v(t) + / v(t - s) g(s)ds.

0
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Comparison of the resulting equality with (6.2.6) provides support for the
view that the function w is just a continuous solution of the Cauchy problem
(6.2.20)-(6.2.21). The validity of (6.2.22) becomes obvious on the basis 
the relations

Now formula (6.2.23) is an immediate implication of (6.2.4) due to 
boundedness of the operator B and can be obtained by differentiating
(6.2.4) with respect to t. This leads to the desired assertion. 

Corollary 6.2.1 ff the conditions of Theorem 6.2.1 hold, then there exists
a constant M = M(A,B,~,T) such that a solution u, p of the inverse
problem (6.2.1)-(6.2.4) satisfies the estimates

II u Ilc’(i0,Tl; x) -< m (11U011v(a) ÷ II ¢ Ilc~(I0, TI; + 11FIIc’(I0,Tl; X) )

Proof The derivation of these estimates is simple to follow and is based
on Theorem 6.2.2 with regard to the inverse problem (6.2.20)-(6.2.23),
~ccording to which there exists ~ constant Ma such that

Arguing as in dealing with equation (6.2.14) we set p(0) po(O), where the
Nnction po is defined by (6.2.11). Since

wo = A uo + f(O) = A uo ~(0)p0(0) + F(

formula (6.2.11) implies the estimate

H~011x ~ M~ (ll ~0it~(~ + II ¢ll~,~e0,~;.~ + II FIV~0,~;~).
Recall that G = @’ p+ F’. Using the estimate established in Theorem 6.2.2
for the function p we deduce that
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thereby justifying the first and third estimates of Corollary 6.2.1. As can
readily be observed, the relation

A u(t) : u’(t) - (I)(t) p(t) - F(t)

holds true on the strength of (6.2.1) and (6.2.3), so that the second inequal-
ity arising from Corollary 6.2.24 becomes evident by successively applying
the preceding estimates for u’ and p to the right-hand side of (6.2.24). This
proves the assertion of the corollary. ¯

The result obtained in Theorem 6.2.4 may be of help in revealing
the dependence between the smoothness of the inverse problem solution
and the smoothness of the input data. Being a solution of the inverse
problem (6.2.20)-(6.2.23), the functions w and q give the derivatives of 
corresponding solution of the inverse problem (6.2.1)-(6.2.4). With this 
mind, the conditions of continuous differentiability of the inverse problem
(6.2.20)-(6.2.23) solution turn into the conditions of double continuous
differentiability of the inverse problem (6.2.1)-(6.2.4) solution.

In trying to obtain these conditions we make use of Theorem 6.2.3
with regard to the inverse problem (6.2.20)-(6.2.23). Careful analysis 
its premises shows that it would be sufficient to achieve ~ ¯ C2 ([0, T];
£(Y,X)), F C~([O, T] ; X), Au o + f( O) ¯ D(¢ ¯ Ca(J 0, T]; Y),
B u0 = ¢(0) and

B (duo + f(0)) --= ¢’(0).

This type of situation is covered by the following assertion.

Corollary 6.2.2 Let the closed linear operator A with a dense domain be
the generator of a strongly continuous semigroup in the space X, condition
(6.2.7) hold and (b ¯ C2([0, T]; £(Y,X)), F C2([0, T] ; X), Uo¯ D(A

Auo + f(0) ¯ D(A), ¢ ¯ Ca([0, Y), Buo = ¢( 0)and

B (A u0 + f(0)) = ¢’(0).

If for any t ¯ [0, T] the operator Be(t) is invertible and

(B ,)-~ ̄  1 ([0, T]; z(Y)),

then a solution u, p of the inverse problem (6.2.1)-(6.2.4) exists and is
unique in the class of functions

u ̄  c~([o, T]; x), v ̄  c~([o, ~]; v).
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In this context, one thing is worth noting. This is concerned with
the value f(0). Although the function f is supposed to be unknown in the
statement of the inverse problem (6.2.1)-(6.2.4), the value f(0) can 
be found from equality (6.2.3), implying that

f(0) = a(0) p(0) 

Combination of (6.2.11) and (6.2.12) gives for t = 0 the equality

p(0) = 0(0) (¢,(0) - F(0))
and, because of its form, the compatibility conditions

Au0 + f(0) E ~(A), B (Auo+ f(0)) 

can be rewritten only in terms of the input data of the inverse problem
(6.2.1)-(6.2.4). The reader is invited to carry out the appropriate manip-
ulations on his/her own.

In concluding this section it remains to note that in Theorem 6.2.3
and Corollary 6.2.2 the differentiability condition for the function ( B ̄  ) 
can be replaced by the continuity condition for the same function. This is

due to the fact that the differentiability of (Bq~)-1 is an implication of
the well-known formula for the derivative of the inverse operator

[A-l(t)]’ = -.A-~ A’(t) A-~(t).

A final remark is that the procedure of establishing the conditions
under which the inverse problem solution becomes more smooth can be
conducted in just the same way as we did before. Using Theorem 6.2.4
with respect to the inverse problem (6.2.20)-(6.2.23) we might set up 
inverse problem for the second derivatives of the problem (6.2.1)-(6.2.4)
solution. The inverse problem thus obtained is covered by Theorem 6.2.3
and so the conditions of triple continuous differentiability of the problem
(6.2.1)-(6.2.4) solution are derived without any difficulties. Going further
with this procedure we reach a solution as smooth as we like.

6.3 Nonlinear inverse problems with
smoothing overdetermination: solvability

In the present section we carry over the results of Section 6.2 to the case
of a semilinear evolution equation. Given Banach spaces X and Y, let
A be a closed linear operator in the space X with a dense domain. One



(6.3.2)

(6.3.3)

(6.3.4)

where
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assumes, in addition, that the operator A generates a strongly continuous
semigroup V(t) and the operator B satisfies the following inclusions:

(6.3.1) B, BA

We are interested in recovering a pair of the functions u e C([0, T]; X 
and p ~ C([0, T]; Y) from the system of relations

u’(t) = Au(t)+ f(t, u(t),p(t)), 

u(0) = u0,

B u(t) = ¢(t), 0 < t 

f: [O,T]xXxY~X

is a continuous function. Omitting some details related to the concept
of the generalized solution to equation (6.3.2) we mean by a continuous
solution of the Cauchy problem (6.3.2)-(6.3.3) a continuous solution
to the integral equation

t

(6.3.5) ~(t) v(t)~o+/ V(t - s) f( s, u(s),p(s)) ds.

0

Furthermore, we take for granted that the function f has the structure

(6.3.6) f(t,u,p) = fl(t,u) + f2(t,u,p).

The main idea behind decomposition is that the properties of the function
fl should be somewhat different from those of the function f2 due to the
limitations imposed. Representation (6.3.6) is similar to (6.2.3) involved
in the exploration of the linear inverse problem posed completely in the
preceding section. Although the character of (6.3.6) is not quite typical
for a nonlinear problem, it may be of help in investigating some particular
questions at issue.

Let us introduce the following notations:

Sx(a,R)= {~¢~X: Ila-alix<R},

Sx(a,R,T)= {(t,x): O < t < T, X e Sx(a,n)} 

Allowing the function ¢ to be differentiable we define the value

(6.3.7) z0 = ¢’(0) BAuo - Bf~(O, uo
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and require then the following:

(A) the equation 13 f2(O, Uo,p) = zo with respect to has a solution

Po E Y and this solution is unique in the space Y;

(B) there exists a mapping

~: [O,T] x Y x Y ~ Y

such that

(C) there exists a number 1~ > 0 such that for any t ~ [0, T] the map-
ping z = ~(t, ¢(t),p) as a function of p is invertible in the 
Sy (Po, R) and has the inverse

(6.3.s) p = z);

(D) there is a number R > 0 such that both functions fa(t,u) and
f~(t,u,p) are continuous with respect to the totality of variables
on the manifold Sx×v ((no, Po), R, T) and satisfy thereon the 
schitz condition with respect to (u, p);

(E) there is a number R > 0 such that the mapping (6.3.8) is continu-
ous with respect to (t, z) on the manifold Sy(Zo, R, T) and satisfies
thereon the Lipschitz condition in z.

Theorem 6.3.1 One assumes that the closed linear operator A, whose do-
main is dense, generates a strongly continuous semigroup in the space X
and conditions (6.3.1) and (6.3.6) hold. Let u0 E X, ¢ E C1([0, T]; Y)
and 13 Uo = ¢(0). Under conditions (A)-(E), where Zo is defined (6.3.7),
there exists a value T~ > 0 such that on the segment [0, T1] the inverse prob-
lem has a solution u, p and this solution is unique in the class of functions

u e c([o, TIp x), p e c([o, T]; Y).

Proof The conditions of the theorem imply that for any functions
C([0, TIp X ) and p e C([0, TIP Y ) the function

f(t) = f( t, u(t), 
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is continuous and the Cauchy problem (6.3.2)-(6.3.3) is equivalent to 
integral equation

(6.3.9)

t

u(t) = v(t) ~o + / - s)f(s, .(s),p(s)) d~,
0

whence we are led by condition (6.3.4) 

t

(6.3.10) B V(t) uo + B J V(t - s) f(s) = ¢(t ), 0 < t < 
0

Arguing as in proving Theorem 6.2.1 it is straightforward to verify that
by virtue of Lemmas 6.2.1-6.2.2 along with the compatibility condition
relation (6.3.10) is equivalent to its differential implication

t

(6.3.11) BA V(t)Uo + BA / V(t- s)f(s,u(s),p(s)) 
0

+ Bf(t,u(t),p(t)) = ¢’(t), 0<t<T.

Furthermore, set

g0(t) = ¢’(t) - BAY(t).0 Bf~(t, V(t).o).

From condition (A) and equation (6.3.11) with t = 0 it follows that p(0) 
P0. Therefore, conditions (B)-(C) assure us of the existence of a sufficiently
small value T > 0, for which equation (6.3.11) becomes

(6.3.12) p(t) = ~b(t, go(t) + g~ (t, 

t

0

where

gl(t,u) = -B (f~(t,u)- f~(t,V(t) uo), K(t,s) = -BA 

Relations (6.3.9) and (6.3.12) constitute what is called the system 
the Volterra integro-functional equations for the functions u and p
being equivalent to the inverse problem (6.3.2)-(6.3.4).
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At the first stage we are going to show that for a sufficiently small
value T > 0 the system (6.3.9), (6.3.t2) has a unique continuous solution.
On account of the inclusion go E C([0, T]; Y) the function gl(t,u)is con-
tinuous with respect to (t, u) on the manifold Sx (uo, t7, T) and satisfies
thereon the Lipschitz condition in u. The kernel K(t, s) is strongly con-
tinuous for 0 < s < t < T. The second step is to replace (6.3.12 by the
equation

(6.3.13) p(t) =¢(t,go(t) + gi (t, ul(t))
\

where

t

(6.3.14)

0

The couple of the resulting equations (6.3.9) and (6.3.12) is evidently equiv-
alent to the system (6.3.9), (6.3.13). At the next stage we consider 
metric space

Z = C([0, T]; Sx(u0,S~) × S~(p0,S~))

and introduce the operator

a: (u, p) ~ (~,, p,),

where Ul is defined by (6.3.14) and p~ coincides with the right-hand side 
(6.3.13).

The theorem will be proved if we succeed in finding a positive number
T > 0 for which the operator G has a unique fixed point in the space Z.

The Lipschitz condition for the functions ¯ and f~ implies the in-
equalities

(6.3.16) It g,(t, ",(t))ll L II ,~,(t) - v(t) ,Lo
Let M1 = sup0<t<r II v(t)ll. With this constant in view, representation
(6.3.14) yields

t

6.3.17) Ilu,(t)- V(t)~oll <_ M, J Ilf(s,u(s),p(s))ll ds.
0
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By the definition of the function Pl we find with the aid of (6.3.15) that

Estimates (6.3.16) and (6.3.17) together provide sufficient background 
the validity of the inequality

t

L
0

which is followed by

t

(6.3.18) ~p~(t) - ~( t, go(t))~ ds

0

if we ~gree to involve the constant

M~ = L~ M~ + L su~ ~ ~(t, ~)11.

Comparison of (6.3.7) with the relation

~o(0) = ~’(0) - ~ A ~o - ~ ~(0, 
shows that g0(0) = zo. Hence conditions (A)-(C) assure us of the validity
of the equality

~(0, ~o(0)) = 

Moreover, V(O)uo = uo. From condition (D) it follows that the function
f is bounded on Sxxu((uo,Po),R,T ). Due to this property estimates
(6.3.17)-(6.3.18) provide the existence of a sufficiently small number T 
which the outcome of mapping by the operator G acts in the space Z.

Let

(~, ~,) = ~(~, 

and
(~, ~) = a(~, 

The symbol L(f) designates the constant arising from the Lipschitz con-
dition for the function f on the manifold Sxx~ ((uo,po), R,T). With this
notation in view, (6.3.9) and (6.3.13)imply 

(6.3.~9) ~ ~ ~(t) - u~(t)l~ ~ M~ L(~)T ~((~,~), (~,~1)),
~(t) - ~(t)~l ~ M~ L(f)~ ~((~,~), (~,~)),
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where p refers to a metric on the space Z. Estimates (6.3.19) justifies that
there exists a sufficiently small value T, for which G becomes a contrac-
tion operator in the space Z. Thus, the desired assertion is an immediate
implication of the contraction mapping principle, thereby completing the
proof of the theorem. ̄

It is interesting to find out when a solution of the inverse problem
(6.3.2)-(6.3.4) will be differentiable. To provide the validity of this prop-
erty, conditions (D) and (E) necessitate making some refinements. It 
be sensible to replace them b~ the following ones:

(Da) there exists a number R > 0 such that both functions fl and 
are Frechet differentiable on the manifold Sx ×Y ( ( uo, po), R, T) and
their partial derivatives (fx)t, (fl)~, (f2)~, and (f~)v are con-
tinuous thereon in the operator norm and satisfy the Lipschitz con-
dition with respect to (u,p);

(EI) there exists a number R > 0 such that the function (6.3.8) is Frechet
differentiable on Sv (Zo, R, T) and i~s partial derivatives apt and apz
are continuous in the operator norm and satisfy thereon the Lip-
schitz condition in z.

Theorem 6.3.2 Let the closed linear operator A with a dense domain
generate a strongly continuous semigroup in the space X and conditions

(6.3.1) and (6.3.6) hold, Uo e 73(A), ¢ C2([0, TI P Y)andBuo --: ¢(0)
Under conditions (A)-(C), (Da) and (E~), where Zo is defined (6.3.7),
there exists a value TI > 0 such that on the segment [0, T1] a solution u, p
of the inverse problem (6.3.2)-(6.3.4) exists and is unique in the class of
functions

u e el(J0, Ta]; X) [~ C([0, Ta]; D(A)), p ̄  c’([0, T,]; r).

Proof First of all observe that conditions (Da) and (Ea) imply conditions
(D) and (E). Hence by Theorem 6.3.1 the inverse problem (6.3.2)-(6.3.3)
has a unique continuous solution for all sufficiently small values T. Since the
function f(t, u(t), p(t)) is continuous, the continuity of the function A u(t)
is ensured by relation (6.3.2) because of the continuity of u’(t). There-
fore, in order to establish the desired assertion, it suffices to justify the
differentiability of the functions u and p both.

l~ecall that these functions give a continuous solution to the system of
the integral equations (6.3.9), (6.3.12), which are currently to be differenti-
ated and supplemented by the relevant equations for the functions w -- uI

and q = pl. By the initial assumptions and relation (6.3.6) there exists 
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value R > 0 such that on the manifold Sxx~. ((u0,p0),/~, T) the function
f(t, u,p) is Frechet differentiable and its partial derivatives f~, f~ and 
are continuous and satisfy thereon ~he Lipschitz condition wi~h respec¢ ¢o
(u, p) in ~he operator norm. Moreover, the function

go(*) : ~’(~)- BA V(*)Uo- B ~(~, 

will be continuously differentiable in Z on the sp~ce Y ~nd the function

g~(t,u) = -B (f~(t,u)- f~(t, V(t)uo))

will be Frechet differentiable on the manifold Sx (Uo, R, T) and its partiM
derivatives g~,t ~nd g~,~ will be continuous thereon and sutisfy the Lip-
schitz condition with respect to u in the operator norm. Being formally
differentluted equations (6.3.9) and (6.3.12) lead to the chains of relations

(6.3.20) w(t) = V(t)(Auo+ f(O, uo,Po))

t

+ / V(t - s) [ ft (s, u(s), 
0

+ ~. (~, ~(~), ~(~)) 

+ fp(s,u(s),p(s)) q(s)] ds,

(6.~.~) ~(t) = ~,(t,~o(t) +~(t,~(t))

t

+S K(t,s)f(s,u(s),p(s))

0

0

" (~(~) + a,,(~, .(0) + a,.(~, .(0) ~(~)

+ ~’(~, o) f(o, .o, 
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t

0

+ fu(s, u(sl,P(sl) w(s)

+ fp(s, ~(s), p(~)) q(~)] 

When the functions u E C([0, T]; X ) and p e C([0, T]; Y) are kept fixed,
the system (6.3.20)-(6.3.21) becomes a linear system of the Volterra second
order integral equations related to the functions w and q. The nonhomoge-
neous members of this system are continuous and the kernels are strongly
continuous. Whence it follows that there exists a unique continuous so-
lution to the preceding system and it remains to establish the relations
w = u’ and q = p’. With this aim, we agree to consider

wo = Auo + f(0,Uo,po),

qo = Ct(O, go(O)) + ~z(O, go(O))

× (g~(O) + gl,t(O, ZtO) g,,,,(O, uo) Wo

+ s,:(o, o) f(o, ~o, pc)).

We note in passing that equations (6.3.12) and (6.3.21) are equivalent 
the following ones:

(6.3.~2) v(t) 
t

0

(6.3.23)

q(t)

t

0

+ ~ (t, ~o(t) + ~(t, ~(t))
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t

0

x (g~o(t) +gl,t(t, ~(t)) +g~,~(t,. ~(t))ff~(t)

+ ~r~(t, o) 1(o, ~o, 

t

+ f iqt, s) [ s, (s, u(s), p(s))
0

+ f~ ( s, u(s), p(,)) 

+ fp ( s, u(s), p(s)) q(s)] ds),

where ~(t) are @(t) refer to the right-hand sides of relations (6.3.9) 
(6.3.20), respectively.

Let

Z1 = C([O, T]; Sx(uo,R) x Sy(po,R) x Sx(wo,R) × Sy(qo,R)).

We deal in that metric space with the operator

where ~ and ~ stand for the right-hand sides of (6.3.22) and (6.3.23), 
spectively. The operator G1 so constructed is of the same structure as the
operator G arising from the proof of Theorem 6.3.1. Following the scheme
of proving the preceding theorem we are now in a position to find a suffi-
ciently small value T > 0 for which the operator G1 becomes contractive
on the space Z~. In this view, it is reasonable to employ the method of
successive approximations by means of which a solution of the system of
equations (6.3.9), (6.3.20), (6.3.22) and (6.3.23) can be obtained. 
result of such manipulations is as follows:

(6.3.24)

t

~tn+~(t) = V(t)uo + / V(t- s) f( s, ~tn(s),~n(s)) 
0

Also, the sequences

(6.3.25) t~n+~ (t) V(t) ( A Uo+ S(O, uo,po))
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+ / v(t - ~) [ f~(~, ri~(s),~(~))
o

+ f~(~, ri~(sl,~(s)) ~(~)
+ fp(S, rin(s),~n(s)) ~n(s)] ds,

~+~(t) = ̄  ( t, go(t) + g~ 5~+~(t))

t

o

O.+l(t) = ¢, ( t, go(t) + g, ~n+l( t))

o

+ *. (~, ~o(~1 + ~, (t,
t

o

x (g’o(t)

+ gl,~ (t, ~n+l(t)) 

0

+ ~ (~, ~(~,~(~)

will be uniformly convergent on the segment [0, T]. The initial approxima-
tions rio(t), ~o(t), 150(t) and ~0(t) may be taken to be zero. Via represen-
tations (6.3.24) and (6.3.26) it is not difficult to deduce by induction 
that the functions ri~ and/~ are continuously differentiable for all n.

With the initial assumptions in view, careful analysis of (6.3.4) leads
to

f(t) = f(t,~.(t),#n(t)) CI([O,T];X),
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so that the function fin+l satisfies the equation

(6.3.28) ~+l(t) - AG~+I(t) = f(t,G~(t),~(t)).

The value A ~n+l can be found from (6.3.24) by the well-known formula
from the theory of semigroups (see Fattorini (1983), Kato (1966)).

t t

A / V(t - s) f(s) ds -- / V(t - s)S’(s) V(t) f(O) f(t) 

0 0

which is valid for any continuously differentiable function f. If ~(0) -- 
and/~,~(0) = P0, then

(6.3.29) A~tn+~(t) =V(t)(Auo+ f(O, uo,Po))

t

+ / v(t - s) [ft(s,~n(s),~n(s))

+ f~ (s, ~,(s),~n(s)) 

+ f.(~, ~.(~),~.(~)) ~’~(~)] 

- f(t, ~n(t),~(t)).

Subtracting (6.3.29) from (6.3.25) yields the relation

t

(v,~+~(t) - A (tn+~(t) = / V(t - s) [ f~ ( s, G~(s), 

0

(6.3.30) x (~,~(s) - fi~(s)) f. (s, ~n(s),~n(s))

× (~(s) ~’~(s)] ~ + f(t, ~(t),~(t)),
from which (6.3.28) can be subtracted. All this enables us to establish the
relationship

(6.3.31)

~+~(t) - ~’~+~(t)
t

0

x (~(~) - ~’~(~)) + ~,(~, ~(s),~(~))

x q.(~)-p.(s 
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Having (6.3.26) differentiated we subtract the resulting expression from
(6.3.27) and, after this, arrive 

¯ ~ (t,go(t) gl(t, ~n+l(t))~n+l(t)
\

t

o

× (gl,u(t,~n+l(t)) (~n+l(t) -- fi~n+l(t))

t

0

With zero initial approximations, the equalities

and

become valid. With the aid of relations (6.3.31)-(6.3.32) we derive 
induction on n the equalities ~,~ fin and ~ = ~1= Pn, valid for all n E N, and
involve these as further developments occur. Therefore, the sequences fi,~ --~
u, u,~ -~ w, i5~ --~ p andp,~ ~’ --* q as n --* o~ uniformly over the segment
[0, T]. Finally, the functions u and p are continuously differentiable, thus
causing the needed relations u~ = w and pl = q and completing the proof
of the theorem.m

6.4 Inverse problems with smoothing overdetermination:
smoothness of solution

We begin by considering the inverse problem (6.3.2)-(6.3.4) in another 
sion giving a generalization of setting up problem (6.2.1)-(6.2.4) under 
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agreement that the function f involved in equation (6.3.2) is representable
by

(6.4.1) f(t,u,p) ~= Ll(t)u + L~(t)p+ F(t),

where L~(t) ¯ £(X), L~(t) ¯ £(Y, andF(t) ¯ X f orevery fixed t ¯
[0, T]. In that case the unique solvability is revealed on the whole segment
[0, T] as occurred in the inverse problem (6.2.1)-(6.2.4). For the reader’s
convenience the complete statement of the inverse problem amounts to
finding a pair of the functions u ¯ C([0, T]; X ) and p ¯ C([0, T]; Y ) 
the system of relations

(6.4.2)

(6.4.3)

(6.4.4)

u’(t) = A u(t) + L1 (t) 

+ L (t) p(t) + F(t),

u(O) 

B u(t) = ¢(t), 0 < t 

0<t<T,

where the operator B is in line, as before, with the inclusions

(6.4.5) B,BA ¯ £(X,Y)

and equation (6.4.2) is to be understood in a sense of distributions.

Theorem 6.4.1 One assumes that the closed linear operator A, whose
domain is dense, generates a strongly continuous semigroup in the space X
and condition (6.4.5) holds. Let

La ̄  C([0, T]; £(X)) L2 ̄  £([0, T]; £(Y, X)),

F ¯ C([0, T]; X), Uo ¯ X, ¢ ¯ C1 ([0, T]; 

When t ¯ [0, T] is kept fixed, the operator B L2 (t) is supposed to be invert-
ible and

(B L~)-~ ¯ C([0, 

ff the compatibility condition B Uo = ¢(0) is fulfilled, then a solution u, p
of the inverse problem (6.4.2)-(6.4.4) exists and is unique in the class of
functions

u ¯ C([0, T]; X), p ¯ C([0, T]; 
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Proof Before we undertake the proof, let us stress that conditions (A)-(E)
of Section 6.3 remain valid if we accept the following representations:

f~ (t, ~) : L1 (t) u + F(t),

f3(t,z,p) = B L~(t)p,

O(t,z) (BL2(t))-1 ~" Z,

Therefore, further treatment of the inverse problem (6.4.2)-(6.4.4) amounts
to solving the system of the integral equations (6.3.9), (6.3.12) or the equiv-
alent system (6.3.9), (6.3.13) taking under the conditions of Theorem 6.4.1
the form

t

(6.4.6) u(t) = uo(t)+ / Kl(t,s) u(s) 
0

t

0

(6.4.7) ;(t) = ;o(t) 
t

f K~(t,s) u(s) 

0

where

t

+ / L~(t,s)p(s) 
0

t

~o(t) = v(t) ~o + / v(t - ~) F(~) 
0

Po (t) = ( B L~ (t)) -~ (¢’(t) - B A V(t) 

t

-BA / V(t-s) F(s) ds
0

- BF(t) - BL~(t) uo(t)) 
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K~(t,s) = V(t - s) Ll(s),

L~(t,s) = V(t - s) L~(s),

K~(t,s) = - ( B L~(t))-1 ( B A V(t - 

× L,(s) + B L, (t) K~(t, 

L~(t,s) = - ( B m2(t))-1 ( B A V(t - 

x L~(s) +BL~(t)L~(t,s)).

It is worth bearing in mind that the premises of this theorem imply the
strong continuity of the operator kernels K~, L~, K~, L~ for 0 < s < t <
T as well as the continuity of the functions no(t) and po(t). We know
from Section 5.1 that these properties are sufficient for the system of the
Volterra integral equations (6.4.6)-(6.4.7) to have a unique solution
in the class of continuous functions, thereby completing the proof of the
theorem.I

If the input data functions possess the extra smoothness, then the
same property would be valid for a solution. The analog of Theorem 6.3.2
in the linear case of interest is quoted in the following proposition.

Theorem 6.4.2 One assumes that the closed linear operator A, whose
domain is dense, generates a strongly continuous semigroup in the space X
and condition (6.4.5) is satisfied. Let

L1 e C1([0, T]; ~(X)) , L2 1( [0, T]; ~(Y~ X)),

~ e c1 ([o, T]; x), u0 ¯ ~(A)

and ¢ ¯ C2([0, T]; Y ). If, for any fixed value t ¯ [0, T], the operator
B L~(t) is invertible,

( B L~)-i ¯ C1([0, T]; £(Y))

and the compatibility condition B uo = ¢(0) holds, then a solution u, p
of the inverse problem (6.4.2)-(6.4.4) exists and is unique in the class of
functions

/Z ¯ CI([0, T]; X) f~ C([0, T]; V(A)) /9 ¯ cl([o, T];



410 6. Abstract Problems for First Order Equations

Proof First of all note that the conditions of the theorem provide the
validity of conditions (D1) and (El) as well as reason enough for differenti-
ating the system (6.4.6)-(6.4.7) and extending it by joining with equations
(6.3.20) and (6.3.23). The system thus obtained is linear and can be written

(6.4.8) u(t) = uo(t) 

t

[ul(t,s)~(s) + u~(t,s)p(s)] 

(6.4.9) p(t) = po(t) 

t

[P~(t, s) u(s) + P~(t, s)p(s)] 

(6.4.10) w(t) = Wo(t) 

(6.4.11)

t

[ w~ (t, s) u(s)
0

+ w2(t, ~)p(s) + w3(t, 

+ w,(t, ~) q(s)] 
t

q(t) : qo(t) + / [ Q~(t, s) u(s) + Q~(t, 
0

+ Q~(t, s) w(s) + Q,(t, q(s)] ds,

where

Ul(t,s) = V(t- s) L~(s),

Us(t,s) = V(t - s) L~(s),

t

uo(t) = v(t) ~o + f v(t - ~) r(~) 
0

P,(t,s) = - ( S L,(t))-l[-~-~ V(t - s) 

+ Bn~(t) V(t- s) Ll(s)],

P:(t, s) = - ( B L~(t))-1 [’-~-~ V(t -- 8) L:(S)
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+ B L~(~) V(t - L~(~)],

po(t,s) = ( B L~(t))-~[ 

+ B ~(t)) ~o(0- ~

w~ (t, ~) = v(t - ~) L’~ 

W~(t, ~) = V(t - L~(s),

W~(t, ~) V(t - ~)L,(

W~(t, ~) = V(t - ~) L~(~) 

+ L~(O);o(O) 

t

+ / V(t - s) ds,

o

~(~) = ( ~ L~(t))-~,

Q~(t, s) = - R~(t) S(t) V(t - s) 

- ~(t) s(t) v(t - ~) (~)

- ~(t)B L’,(t) V(t - ~)L~(~),

~(t, s) = - ~’(t) S(t) V(t - ~) ~(~)

- ~(t) S(~) V(~ - ~) 

- n(t) B L’~(t) V(t - ~) 

~(t, ~) = - ~(t) S(t) V(t - ~) ~(~),

~(t, ~) = - ~(t) S(t) V(t - ~) 

411
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t

t

- R(~) S(~) [ ( L, ( 0) Uo +L2 (0)po(O)

0

In light of the theorem premises the operator kernels and the nonhomoge-
neous terms of the system of the Volterra integral equations (6.4.8)-(6.4.11 
will be continuous and strongly continuous, respectively. This implies the
existence and uniqueness of the continuous solution u, p, w, q to the system
concerned. For further reazoning one can adopt the concluding arguments
from the proof of Theorem 6.3.2, since the system (6.4.8}-(6.4.11) coincides
with the system (6.3.9), (6.3.20), (6.3.22)-(6.3.23). As n ~ ~, the succes-
sive approximations ~,~, ~5~, ,&~, ~ specified by (6.3.24)-(6.3.27) converge
to a solution of the system (6.4.8)-(6.4.11) uniformly over the segment
[0, T]. In proving Theorem 6.3.2 we have established that for all n the
equalities

and

Pn

hold true, thereby completing the proof of the theorem.U

Before returning to the inverse problem (6.3.2)-(6.3.4), let us assume
that all the conditions of Theorem 6.3.2 are satisfied. Hence there exists a
segment [0, T~] on which both functions w = u’ and q = p’ are continuous
and satisfy the integral equation (6.3.20). Further treatment of the integral
equation (6.3.20) involves an alternative form of writing

t

(6.4.12) w(t) = V(t)wo V(t- s)

0

+ L2(s) q(s) F(s)] ds,
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where

(6.4.1.3)

wo = Auo + f(0, uo,po),

L1 (t) = f= (t, u(t), p(t)),

L=(t) : fp( t, u(t),v(t)) 

F(t) = ft (t, u(t),p(t)).

Because the operator B is bounded, the equalities

B ¢(t) = (B u(t))’ = 

become valid, whose use permits us to establish the relationship

Bw(t) = ¢’(t).

On the other hand, with the aid of relation (6.4.12) we deduce that the
function w is just a continuous solution of the Cauchy problem

w’(t) = Aw(t) + h(t), ~(0) = ~o,

with h(t) = L1 (t) w(t) + L~(t) q(t) incorporated. Thus, we arri ve at
the following assertion.

Corollary 6.4.1 Under the conditions of Theorem 6.3.2 there exists a
number T~ > 0 such that on the segmenl [0, T~] a solution u, p of the inverse
problem (6.3.2)-(6.3.4) is continuously differentiable and the derivatives
w = u’ and q = p’ give a continuous solution of the inverse problem

(6.4.14)

w’(t) Aw(t) + Ll(t)w(t) + L~(t)q(t) + 

w(O) 
Uw(t) = ~(t),

0<t<G,

0<t<T~,

where Wo, nl, L: and F are given by relations (5.4.15) and ~o = ¢’.

By applying Theorem 6.4.2 to problem (6.4.14) one can derive the
conditions under which a solution of (6.3.2)-(6.3.4) becomes twice contin-
uously differentiable. The inverse problem for the second, derivatives of
this solution can be written in the explicit form in complete agreement
with Corollary 6.4.1. In its framework we are able to establish sufficient
conditions for the solution smoothness up to any desired order.

We give below one possible example of such a process.
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Corollary 6.4.2 Let under the condilions of Theorem 6.3.2 the functions

fl, f2 and ̄  be twice Frechel differentiable on the manifolds

and

respectively, ff

and
Au0 + f(0, u0, Po) fi D(A),

then there exists a number T1 > 0 such that on the segment [0, TI] a solution
u, p of problem (6.3.2)-(6.3.4) is twice continuously differentiable and the
functions w = u’ and g = p’ give a continuously differentiable solution of
the inverse problem (6.4.14).

6.5 Inverse problems with singular overdetermlnation:
semilinear equations with constant operation
in the principal part

When working in Banach spaces X and Y, we consider the inverse problem
of determining a pair of the functions u E Ct([ 0, T];X) and

p e C([O, T]; Y ) from the system of relations

(6.5.1)

(6.5.2)

(6.5.3)

u’(t) = Au(t) + f(t, u(t), 

~(0) = ~o,

B u(t) = ¢(t), 0 < t < 

0<t<T,

under the following restrictions: an operator A with a dense domain is
closed and linear in the space X and generates a strongly continuous semi-
group V(t);

f:’[0, T] x X x Y ~-~ X;

a linear operator B is such that the domain/)(B) belongs to the space 
and the range b~longs to the space Y and, in addition, there is a nonneg-
ative integer m, for which the inclusion

(6:5.4) B e £(7)(A’~); 
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occurs, and the function f is treated as a sum

(6.5.5) f(t, u,p) = f~(t, u) q- f2(t, u,p).

Retaining the notations of Section 6.3

Sx(a,t~ ) -- {xeX: Ilz-allx < P~},

Sx(a,R,T ) = {(t,z): 0<t<T, x e Sx(a,R)} 

accepting the inclusions Uo E 7)(B A) and f~(0, u0) E 7)(B) and 
the function ¢ to be differentiable at zero, we define the element

(6.5.6) z0 = ¢’(0) Bduo - Bf~(O, no

and, after this, impose the following c6nditions:

(A) the equation Bf2(0, uo,p) = Zo with respect to p has a unique
solution Po E Y;

(B) there is a mapping

£: [O,T]xYxY~Y
such that

(C) there is number R > 0 such that fo r any t ~ [0, T] themapping

z = f3(t,¢(t),p)

has in the ball Sy (Po, R) the inverse

(6.5.7) p = ¢(¢,z);

(D) there is number 1:g > 0 such that fo r k = 0,1, m+ 1 both functions

A~ f~(t, A-~u)

and
A f2( , u, p)

are continuous with respect to (t,u,p) and satisfy the Lipschitz
condition with respect to (u,p) on the manifold

Sx×v((Aeuo, po),R,T);

(E) there is a value R > 0 such that the mappingrb specified by (6.5.7) 
continuous with respect to (L z) and satisfies the Lipschitz condition
in z on the manifold Sv (Zo, R, T).
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These conditions are similar to those imposed in Section 6.3 for the
problem with smoothing overdetermination. Having involved these condi-
tions one can state a local unique solvability of the inverse problem with
Singular overdetermination. Before proceeding to careful analysis, we
begin by establishing some properties of a solution of the related direct
problem.

Lemma 6.5.1 Let the linear operator A whose domain is dense in the
Banach space X generate a strongly continuous semigroup V(t) and the
inclusions

Uo E D(A), )~ ~ p(A)

occur. If there ezists a number R > 0 such that both functions f(t, u) and
g(t, u) = ( A- )~ I) f(t, (A- -1u) are continuous with respect to (t , u
and satisfy the Lipschitz condition in u on the manifold SX (a, R, T), then
the Cauchy problem

u’(t) Au(t)+f(t,u(t)), 0<t <T ,6.5.s) u(o) = no,

the class of functions

u e c1([0, ~]; x) ;3 c([0, ~]; v(Ai)

is equivalent to the integral equation

t

(6.5.9) u(t) v(t) ~o+ jv(t - s)f(8, u(~))d~, 0 
0

in the class of functions

, e c([0, ~]; V(A)).

Proof Let u be a solution of the Cauchy problem at hand. Since f(t, u)
and u(t) are continuous, the function

(6.5.10) F(t) = f( t, u(t))

is continuous on the segment [0, T] in the space X. Then so is the function

(6.5.11) w(t) = (A- AI)u(t).
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This owes a debt to a proper choice of the class of solvability of prob-
lem (6.5.8). On the other hand, this property remains valid on the same
segment and in the same space for the function

aF(t) : ( A- hi) f(t, (A- -1 w(t) ) + ~

:g(t, w(t)) + ~ ~’(t, u(t)).
From the theory of semigroups it is clear that the inclusions

F(t), ~ F(t) C([0, T] ; X)

and u0 ~ ~(A) ensure that the C~uchy problem

{~’(t) = ~ u(t) + F(t), 0 < t < T,
~(0) : u0,

is solved by the function

u(t) = V(t) uo + / V(t - s) F(s) 
0

which implies (6.5.9) ~nd the inclusion u ~ C([0, T]; ~(A)) ~s fur 

function F(t) = f(t, u(t)) is concerned (see Fattorini (1983) and Mizohata
(1977)).

To prove the converse, a function u ~ g([0, T]; ~(A)) is adopted 
a solution of the integral equation (6.5.9). By introducing the function 
with the aid of (6.5.10) we obtain

t

: + / ds.

0

Since u ~ C([0, T]; ~(A)), the function w given by formula (6.5.11) 
continuous on the segment [0, T] in the space X. Then so is either of the
functions F(t) and

AF(t) = g(t, w(t)) + ~ f(t, 

Due to the inclusion u0 ~ O(A) the function u(t) specified by (6.5.12) 
continuously differentiable, so that

(6.5.1a) u’(t) = A u(t) 

for all t ~ [0, T]. Equality (6.5.10) implies that the function u solves
equation (6.5.8). The continuity of the derivative of the function follows
from (6.5.13), while the equality u(0) = u0 is an immediate implication 
(6.5.12) with t = 0. This proves the assertion of the lemma. 
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Lemma 6.5.2 If all the conditions of Lemma 6.5.1 hold and

Wo= (A-AI)uo,

then a funclion

u e c1([0, T]; X) fl C([0, T];

is a solution of the Cauchy problem (6.5.8) if and only if the pair of the
functions u(t) and

~(t) = ( A - ~ ~ ) 
is a continuous solution of the system of integral equations

t

(6.5.14) u(t) = V(t) Uo+/V(t-s)f(s, u(s’))ds, 
0

t

(6.5.15) w(t) = V(t)wo+JV(t-s)g(s,w(s))ds, O<t.<T.
0

Proof Let u be a solution of the Cauchy problem (6.5.8) in the indicated
class of functions. Due to Lemma 6.5.1 the function u thus obtained satis-
fies equation (6.5.14), while the function w defined by (6.5.11) is continuous.
By minor manipulations with upplying the operutor A - A I to both sides
of equation (6.5.14) we derive equation (6.5.15).

To prove the converse, it is supposed that a p~ir of the functions.
u, w e C([0, T]; X) satisfies the system (6.5.14)-(6.5.15). Then the 
sion

~ ̄  c([0, T]; V(A))
is established for the function

~(t) = (A - -1 w(t ).

Since uo = (A-),I)-awo and for any fi E 7?(A) the relationship

f(t,~) (A-)~I)-lg(t, (A -)~I)~)
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takes place, the outcome of applying the operator (A - A 1)-1 to both
sides of (6.5.15) 

t

~(t) = v(t) .o + / v(t - .) f(., ~(.)) 
0

O(t~T.

This serves to motivate that the functions u and fi give solutions to equation
(6.5.14) with Lipschitz nonlinearity. From the theory of Volterra integral
equations it follows that any solution of this equation in the class of con-
tinuous functions is unique on the whole segment of its existence, it being
understood that for all values t E [0, T]

u(t) = ~(t),

implying that
w(~)= (A " ~)u(~).

In that case the inclusion u E C([0, T]; ~(A)) occurs, thereby justifying
by Lemma 6.5.1 that the function u is a solution of the Cauchy problem
(6.5.8) and completing the proof of the lemma.¯

Theorem 6.5.1 If all the conditions of Lemma 6.5.1 hold, then there is
a value T1 > 0 such that problem (6.5.8) has a solution

~, e c’([o,T,]; x) f3 c([o,T1]; ~(A)),
which is unique on the whole segment of its existence.

Proof The main idea behind proof is connected with joint use of Theorem
6.5.1 and Lemmas 6.5.1-6.5.2, making it possible to reduce the Cauchy
problem (6.5.8) to the system of the integral equations (6.5.14)-(6.5.15)
in the class of continuous functions. We note in passing that this system
breaks down into two separate equations each of which appears to be a
Volterra equation of the second kind with a strongly continuous operator
kernel with Lipshitz nonlinearity. Because of this fact, these will be solvable
if T > 0 is small enough. If this happens, the solution so constructed will
be unique on the whole segment of its uniqueness, whence the assertion of
Theorem 6.5.1 follows immediately. ¯

Theorem 6.5.2 If under the conditions of Lemma 6.5.1 there is a non-
negative integer m such that the inclusion Uo ~ T~(Are+l) occurs and the
function

h(t,u) = (A-AI) m+l f(t,(A-AI)-m-lu)
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is continuous in and satiCes on the manifold Xx( o,R,T) the
schitz condition in u for some number R > O. Then there is a value T1 > 0
such that a solution u of the Cauchy problem (6.5.8) belongs to the class of
functions

C~ ([0, Ta]; D(A"n)) C([O, TI ]; D(Am+~)).

Proof By Theorem 6.5.1 the Cauchy problem (6.5.8) is solvable if the value
T > 0 is small enough. Moreover, by Lemma 6.5.1 this solution satisfies
the integral equation (6.5.9). By merely setting v0 = "~+1 u0 we can write
down the integral equation

(6.5.16) v(t) = V(t) Vo + / V(t - s) h(s, ds.

o

With the initial assumptions in view, equation (6.5.16) is of the Volterra
type with Lipschitz nonlinearity and can be resolved in the class of functions
C([0, T]; X) for a sufficiently small value T > 0. A good look at the
proof of Theorem 6.5.1 is recommended for further careful analysis. Plain
calculations show that the function

is a continuous solution to equation (6.5.9). In just the same way as in the
proof of Theorem 6.5.1 it is not difficult to demonstrate that this solution
is unique. Therefore, fi(t) u(t), yi elding the relationship

u(t) = (A- -m-~ v(t

with the members v G C([O, T]; X ) and 
In what follows we agree to consider

Zo= (A-~!)rnuo,

F(t) = (A - ,~ I) m f(t, u(t)),

Z(t) -=- ( A- /~[)rn tt(t).

Applying the operator (A- A I)m to equation (6.5.9) yields that the func-
tion z(t) is subject to the following relation:

t

(6.5.17) z(t) = V(t) Zo + / V(t- s) F(s) 0 < t < T.

o



6.5. Semilinear equations with constant operation 421

By assumption, the inclusion z0 E 7)(A) occurs, r~he relations

F(0 = (A - ~ I)-1 h(t, ( A - ~ ~)"+1 ~(~)),

=h(t, ( A- ~I)m+l u(t)) + 

provide support for the view that the functions F(t) and A F,(t) are contin-
uous on the segment [0, T] in the space X. From the theory of semigroups
it follows that the function z(t) is continuously differentiable in the space
X and satisfies the differential equatidn

(6.5.1s) z’(t) = A 40 
The continuous differentiability of the function z(t) serves as a basis for
the inclusion u E C1 ([0, T]; 7?(A’~)), thereby completing the proof of 
theorem. ¯

Remark By applying the operator (A- ,~ I) ’~ to equation (6.5.8) 
derive the equation

(6.5.19) (A- AI)m u’(t) = Az(t) + F(t).

Comparison of (6.5.18) and (6.5.19) shows that premises of Theorem 6.5.2
assure us of the validity of the relation

(6.5.~o) [(A-~I)~(t)]’ = (A- ~)~ 
Let us come back to the inverse problem (6.5.1)-(6.5.3). When comparing
conditions (A)-(E) of the present section with those of Section 6.3, 
difference is recognized in connection with condition (D) in which the oper-
ator A is required to be invertible. It should be noted that this restriction
is not essential in subsequent studies of the inverse problem (6.5.1)-(6.5.3).
Indeed, upon substituting

(6.5.21) u(t) = ~ v(t)

there arises for the new functions v and p the same inverse problem as
we obtained for the function u. This amounts to studying the system of
relations

v’(t) = A~ ~(t) + Ix (t, v(t), p(t)),
v(0) = v0,
Sv(O = ¢~(~),

0<t<T,

0<t<T,
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where

A-hi,

fa(~.,v,p) = e-at f(t,eatv,p),

By merely choosing ~ E p(A) we get the inverse problem (6.5.22) in which
the operator Aa involved is invertible. If the operator A generates a
strongly continuous semigroup V(t), then the operator Aa is a genera-
tor of the strongly continuous semigroup Va(t) = -At V(t). Substitution
(6.5.21) permits us to restate all the conditions (A)-(E) as requested.

Theorem 6.5.3 Let the closed linear operator A with a dense domain
generate a strongly continuous semigroup in the Banach space X, the op-
eralor B be in line with (6.5.4), conditions (A)-(E) (6.5.5) hold, Uo E
D(Am+I), ~ C1([0, T] ; Y)andthe compatibility cond ition B uo = ~b(
occur. Then there is a number T~ > 0 such that the inverse problem (6.5.1)-
(6.5.3) has a solution

?.t e cl([0,~P1]; D(A’n)) [’] C([0,T~]; v e

and this solution is unique in the indicated class of functions.

Proof Lemma 6.5.1 implies that for any continuous in Y function p the
Cauchy problem (6.5.1)-(6.5.2) is equivalent in the class of functions 
C([0, T]; D(A)) to the integral equation for 0 < t 

(6.5,23)
t

= v(t) o + f v(t - f(s ds,
0

where V(t) is ~ semigroup generated by the operator A. It is worth noting
here that the premises of Theorem 6.5.2 for ~ = 0 are ensured by condition
(D). Thus, the function v(t) = r~+~ u(t) i s continuous and satisfies t he
equation

(6.5.24)

t

v(t) = v(t)vo + / v(t s),~(s,v(s),p(s)) ds
0
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where

v0= A’~+lUo, h(t,v,p) = A’~+i f(t,A-’~-~v,p)

and the argument t is small enough. The reader may scrutinize the devel-
opment of equation (6.5.16) in the proof of Theorem 6.5.2. On account 
the preceding remark,

[A"~ u(t)]’ = A"~ u’(t) 

Also, we thus have
(B u(t))’ = B u’(t)

if the operator B satisfies condition (6.5.4) and u(t) is a solution of problem
(6.5.1)-(6.5.2). Applying the operator B to (6.5.1) yields the relation

¢’(t) BAu(t) + B f( t,u(t),p(t)),

which is equivalent to (6.5.3) on the strength of the compatibility condition
B u0 = ¢(0). By virtue of conditions (6.5.5), (B) and (C) the preceding
can be rewritten as

(6.5.25) p(t) = q) (t, ¢’(t) - B A u(t) - B fl (t, 

Let us calculate A u(t) with the aid of (6.5.23). For later use, it will 
sensible to introduce the notations

ha(t,v) = Am+l fl(t,A-m-~v),

go(t) = ¢’(t) - B V(t) A Uo - B d-’~-lhl(t, V(t) 

gl(t, v) = -B -’~-1 (h~(t, v) - h(t , V(t) Vo)) 

I~(t, s) = -~ v(t - ~) -’~.

Let v(t) be a solution to equation (6.5.24). With the relution

A f(s, u(s), p(s)) = A-’~h(s, v(s), p(s))

in view, we may attempt equality (6.5.25) in the form

t

= c~(t., go(t) + g~(t, v(t)) + / K(t, s) h(s, (6.5.26)p(t) ds.

0
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From the conditions of the theorem it follows immediately that the function

go e C([0, T]; Y), the function gl(t, v)is continuous with respect to (t, v)
and satisfies on the manifold Sx(Vo, R,T) the Lipschitz condition in v.
What is more, the kernel K(t, s) is strongly continuous for 0 _< s < t <
T. When relations (6.5.24) and (6.5.26) are put together, the outcome 
this is a system of the Volterra integro-differential equations related to the
functions v(t) = "~+a u(t) and p(t). The converse is certainly t rue: i f t he
pair of the functions v(t) and p(t) is a solution of the system concerned,
then the functions u(t) = A-m-lv(t) and p(t) give a solution of the inverse
problem in the indicated class of functions.

Let us show that the system of equations (6.5.24), (6.5.26) has 
unique continuous solution by relating T > 0 to be small enough. As a
first step towards the proof, we replace equation (6.5.26) by the following
one:

(6.5.27)
t

+ / I~’(~, s) h(s, v(s), p(s)) 
0

where

(6.5.2s) vl(t) V(t)Vo+/V(t-s)h(s,v(~),p(~))ds.

0

It is clear that the system of equations (6.5.24), (6.5.26) is equavalent 
the system (6.5.24), (6.5.27).

At the next stage we introduce in the metric space

Z = C([0, ~]; S~(Vo, ~) × S~(~o,

the operator

where v~ is defined by (6.5.28) and p~ is equal to the right-hand side 
(6.5.27). The assertion we must prove is that the operator G has a unique
fixed point, in the space Z if T > 0 is sufficiently small.

From the Lipschitz condition related to the functions ~ and h~ it
follows that

(6.5.29) II ¢(t, v) - ~(t, g0(t))ll _< L II ~ - g0(t)ll,

(6.5.30)
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With respect to the constant

M = max (L~llV(t-s)[I,L[IK(t,s)ll IIV(t-s)ll}
O<s<~<T ’

we deduce from (6.5.24), (6.5.27) and (6.5.29)-(6.5.30) the estimates

t

(6.5.31) IIv,(t)-v(t) < M /l lh(s,v(s),p(s))ll ds,
0
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t

(6.5.32) Ilpl(t)--gP(t,go(t))[I <_ M /llh(s,v(s),p(s))ll 
0

Since
go(0) = ¢’(0) BAuo - Bf~(O, uo) = zo

where the element z0 is defined by (6.5.6), conditions (A)-(C) imply 
(I)(0, g0(0)) = P0. Moreover,

Y(0) v0 = 

and, in view of this, condition (D) ensures that the function h(t, v,p) be-
comes bounded on the manifold

Sx×y((Vo,Po),R,T) 

This property in combination with estimates (6.5.31)-(6.5.32) assures 
the operator G maps the space Z onto itself if T > 0 is small enough.

Let (v11, P11) = G(vl, p~) and (v:2, p2:) = G(,2, ~2). Xhe 
L(h) is used for the Lipschitz constant of the function h on the manifold

.
With this constant introduced, it is straightforward to verify that (6.5.24)
and (6.5.27) together imply that

(6.5.33)

(6.5.34) IIP~(t)-p,(t)l I <_ M L(h)T p((v~,p~), (v:,p:)) 

where p refers to a metric on the space Z. Due to estimates (6.5.33)-
(6.5.34) the operator G is a contraction operator on the space Z if the
value T > 0 is sufficiently small.

The assertion of the theorem is now a plain implication of the corn
traction mapping principle and is completely proved. ¯
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Consider now the case of a linear equation under the approved
decomposition of the function f:

(6.5.35) f(t, u,p) = L~(t) u + L2(t)p + 

where for each fixed value t ¯ [0, T] the inclusions n~(t) L;(X),
£(Y; X) and f(t) ¯ occur. In thi s case a u nique sol vability of the
inverse problem concerned is obtained on the whole segment [0, T].

Theorem 6.5.4 Let the closed linear operator A with a dense domain
generate a strongly continuous semigroup in the Banach space X, the op-
erator B satisfy condition (6.5.4), the inclusions uo ̄  "D(Are+l) and ¢ ¯
C1 ([0, T]; Y) and lhe compatibility condition Bu0 = ¢(0) hold. Let de-
composition (6.5.35) take place and the operator functions be such that

L~(t), ALI(t)A -1, Am+lnl(t) -m-1 ¯C([0, T] ; £(X)),

Arn+lL2(t)g-m-1 ¯ C([0, T];£(Y; X)).

If, in addition, the function Arn+a f(t) C([0, T] ; X ), theoperator B Lu(t
is invertible for each 1 ¯ [0, T] and

(BL2) -a ¯ C([O, T]; £(Y)),

then lhe inverse problem (6.5.1)-(6.5.2) has a solution

u ¯ Ct([o,r];v(Am)) ~C([O,T];V(Am+t)), p ¯ C([0, T]; Y)

and this solution is unique in the indicated class of functions.

Proof The initial assumptions assure us of the validity of conditions (A)-
(E) with the ingredients

£(t,u) = n~(t) u + f(t),

f~(L u,V) = La(t)p,

fa(t,z,p) : B Lz(t)p,

¢(t,z) (SLy(t))-~z.

All this enables us to involve in the further development Theorem 6.5.3 and
reduce the inverse problem at hand to the system of the integral equations
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(6.5.24), (6.5.26) taking in the framework of Theorem 6.5.4 the 

t

(6.~.a61 v(t) = v~(t) + f ~(t, s) ~(s) 
0

t

+ / Ll(t,s) p(s) 
0

(6.5.37)
t

0

where

~(t)

t

+/L2(t,s)p(s) 
0

t

= V(t) Am+lUo + / V(t - s) Am+if(s) 
0

= (BL2(t)) -1 (¢’(t) Bf(t)

- B V(t) A Uo - B n~ (t) V(t) 

-B

t

V(t - s) A f(s) 

0

~’~ (t, s)

t

- B LI(t) / V(t - s) f(s) 

o

= V(t - s)A"~+~ L~(s) -’~-~,

Ll(t, s) = V(t - m+l Lu(s),

t~(t,s) = - ( B L:(t))-1 ~ ( v(t- ~)~(~)

× A-’~-~ + Ll(t) Y(t- s) Ll(s)A -’~-~ ),
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L~(t, s) = - ( B L~(t))-1 1~ ( V(l. -- S) A L2(s)

-b Ll(t) ~/(t - s)L~(s)).

Note that the continuity of the function v~ (t) and the strong continuity 
the kernels K1 (t, s) and L~ (t, s) immediately follow from the conditions 
the theorem. In turn, the continuity of the function Pl (t) is an immediate
implication of the set of relations

B f(~;) = ( -m) m-1(Am+l f(t)

B V(t) A~o = (B -~) V(t) (’~+~ ~o),

B L, (~) Y(~) ~o = ( -~) ~-1(X~+, ~, (

x A-~-’) V(~)(A~+’

B V(~ - s) A f(~) = ( B A-~) V(~ - ~) ( ~"+~ 

~ Z, (~) V(~ - ~) f(~) -~) A-1 (~+’ Z,(~) d-"-’)

~ V(~ - ~) ~+’ f(~)).

Likewise, the strong continuity of the kernels I(~ (t, s) and L~ (t, s) is estab-
lished from the set of representations

B V(t- s)Anl(S)A -m-1 = ( B -~) V(t - s) "~+l Ll(S ) m-~- i) ,

~ n,(~) V(~ - ~) ~,(~) -~-1 =(~-~) A-1(A~+’ L,(~)A-~-’)

x Y(~-~) ~+1 ~I(~)A-~-’),

B V(t - 8) An~(s) = ( -~) V(t- s) ’’ ~+~ L.~(s) ) ,

B L~(t) W(t - s) n~(s) = ( B -I ( A’+I L~(t) A- ~-l )

x w(~ - ~) ~+’ ~(~)).

Therefore, the system (6.5.36)-(6.5.37) constitutes wh~t is~c~lled ~ linear
system of the Volterra integral equations of the second kind with continuous
nonhomogeneous terms and strongly continuous kernels. As one might
expect, this system has a solution on the whole segment and, moreover,
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this solution is unique in the class of continuous functions (see Section
5.1). This provides reason enough to conclude that the system (6.5.24),
(6.5.26) has a unique continuous solution on the whole segment [0, T] and
thereby complete the proof of the theorem."

Let us highlight a particular case of Theorem 6.5.4 with m = 0 in
which condition (6.5.4) admits an alternative form

(6.5.38) B ¯ £(X, Y).

This type of situation is covered by the following assertion.

Corollary 6.5.1 Let the closed linear operator A with a dense domain gen-
erate a strongly continuous semigroup in the Banach space X, the operator

B be in line with condition (6.5.38) and the relations Uo ̄  :D(A),

¢ ̄  c1 ([0, T]; V), B Uo = ¢(0)

hold. When the decomposition

f(t, u, p) =- L, (t) u ÷ L~(t) p 

is accepted with

L,, AL, A-~ ¯ 8([0, T]; £(X)),

AL~ ̄  C([0, T]; £(r, X)),

Afe C([0, T]; X),

the operator B L2(t) is invertible for each t [0, T] and

(B r~)-’ ̄  C([0, T]; ~(Y)),
the inverse problem (6.5.1)-(6.5.3) has a solution

u ¯ 5q ([0, T]; X) ~ 5’([0, T]; ID(A)) p ¯ g([0, T]; Y)

and this solution is unique in the indicated class of functions.

In trying to apply the results obtained to partial differential equations
and, in particular, to the equation of neutron transport some difficulties
do arise in verifying the premises of Theorem 6.5.4 or Corollary 6.5.1. We
quote below other conditions of solvability of the inverse problem (6.5.1)-
(6.5.3) relating to the linear case (6.5.35) and condition (6.5.38).
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Theorem 6.5.5 Lel the closed linear operator A with a dense domain gen-
erate a strongly continuous semigroup in the Banach space X, the operator
B satisfy condition (6.5.38), the inclusions uo E D(A), ~ C~([0, T] ; Y)
occur and the compatibility condition B uo = ~(0) hold. If the decomposi-
tion

f(t,u,p) = L~(t)u+ L:(t)p+ 

lakes place wilh L1 ~ C1 ([0, T]; Z:(X)), Lz, A Lz ~ C([0, T];/~(Y, and
the function f = fl + f~, where

and

Is ~ c([0, N; V(A)),
the operator B L~(t) is inverlible for each t [0, T] and

(B L~)-1 e C([0, T]; £(Y)),

then the inverse problem (6.5.1)-(6.5.3) has a solution

u e c1([0, T]; x), p e c([0, T]; Y)
and this solution is unique in the indicated class of functions.

Proof Being concerned with the functions u ~ C~([0, T]; X) and p 

C([0, T]; Y), we operate in the sequel with the new functi~Jns

F~(t) = L~(t) u(t), F~(t) : n~(t)p(O.

From the conditions of the theorem it seems clear that the inclusions

F, ~ 81([0, T]; X), Fe, AF~ ¢C([0, T]; X)

occur, due to which relations (6.5.1)-(6.5.2) ~re equivalent, 

(6.5.39) u(t) = V(t) Uo V(t 8) f(s)ds

0

t

+ / v(t - ~) F~ (s) 
0

+ / v(t - ~) F~(s) 
0
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In what follows we deal with a new function

~o(t) = v(t) uo + / v(t - s) f(s) 
0

In the" theory of semigroups the inclusion

rio(t) e 81 ([0, T]; X N C([0, D(A)

was established for any element Uo E D(A) and any function f = fl + f2

with the members fl E C1([0, T]; X) and f2 ~ C([0, T]; D(A)). Likewise,
using the well-known formulae of this theory we deduce the relationships

(6.5.40) A / V(t - s) F,(s) 
0

= fv(t - s)r;(~) d~+ V(t) r~(O) 
0

(6.5.41) 

t

V(t - s) F~(s) 

0

= / V(t - s) A F2 (s) 
0

In the derivation of the governing equation for the function p the operator
B applies to equation (6.5.1) with further reference to relation (6.5.35).
The outcome of this is

(6.5.42) ¢’(t) BAu(t)+BL,(t)u(t)+BL~(t)p(t)+Bf(t).

Calculating the values Au(t) and BL~(t) u(t) with the aid of relations
(6.5.39)-(6.5.41), substituting the resulting expressions into (6.5.42) 
resolving the relevant equations with respect to the function p(t), we find



432 6. Abstract Problems for First Order Equations

(6.5.43) p(t) = S L2(t))-~ [¢’(t)- s A ~o(ti

t

t

- B / V(t - s) A F2(s) ds - B Ll(t) 
0

- B Ll(t)

t

V(t - s) Fl(s) ds

0

t

0

The next step is to insert in (6.5.43) the explicit formulae, whose use per-
mits us to express the functions F~ and F~ via the functions u and p. After
that, the nonintegral term

--r 1 (t) -L1 (t ) u(

should be excluded from further consideration. This can be done using
formula (6.5.39). As a final result we get

(6.5.44)

t

p(t) = po(t) + f I~’(t, s) ~(~) 
0

t

+ / L(t,s) u’(s) 

+ / M(t, s) p(s) 
0
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where

~o(t) = ( B L2(t))-l [ - BA~0(t

- B V(t) Ll(O)uo - Bf(t)] 

K(t, s) = - ( B L2(t))-iB V(t L’ I ( s),

L(t,s) = - ( S L~(t))-IB V(t - s)n,(s),

M(t,s) = - ( B L~(t))-l B s) AL2(s)

As equation (6.5.44) contains a derivative of the function u, there is a need
for enlarging the system (6.5.39), (6.5.44) by an equation u’, which
is obtained by formal differentiating of both sides of (6.5.39). Using the
general rules of differentiating

t / t

0

v(t - 8) ~(8) = V(t - 8),4 V~(8) 
0

and excluding the nonintegral term F~(t) = L~(t)p(t) with the aid of
(6.5.44), we arrive 

(6.5.45)

t

,~’(t) = Co(t) + / I~’(t, s) ~(s) 
0

t

+ / Zl(t,,)u’(,) 
0

t

+ f M~(t, ~) v(~) 
0
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where
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~o(t) = ~’o(t) + v(t) L1 (0)Uo + L~(t)go(t),

I’(l(t, s) = V(t - s) Ll~(s) + L~(t) 

L~(t, s) = V(t - s) L~(s) + L~(t) 

M~(t,s) = V(t - s) A L~(s) + L~(t) 

In what follows the object of investigation is the system of equations

(6.5.46) u(t) = ~o(t) + / V(t - s) L~ (s) 
o

t

+ f v(t - ~)L~(s)p(s) 
0

t

(6.5.47) p(t) =/5o(t) + / K(t, s) u(s) 
o

t

+ / L(t, s) w(s) 
o

t

+ / M(t,s)p(s) 
o

(6.5.48) w(t) = (vo(t) + / IQ(t, s) 
o

t

+ f L~(t, ~) ~(s) 
o

t

+ f M~(t, ~1 p(~) 
o
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which constitute what is called a system of the Volterra integral equations
of the second kind with continous nonhomogeneous terms and strongly
continuous kernels. This system has a unique continuous solution being a
uniform limit of the successive approximations

t

~.+l(t) = ~0(t) + / v(t - s) Ll(s)u~(~)ds
0

t

+ / y(t - s) L~(~) p~(~) 
0

t

p.+~(t) =po(t) + f ~<(t, ~) u.(s) d~

t

+ / L(t,s) wn(s) 

0

t

+ fM(t,~)p.(~) 
0

t

~.+~(t) = coo(t) + f ~rf~ ~) ~(~)d~
0

t

+ ds
0

t

+ / MI (t, s) Pn (s) 
0

By plain calculations we are led to

(6.5.49)

+ L~(t)u~(t) + L~(t)p~(t),
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(6.5.50)
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Comparison of (6.5.49) and (6.5.50) gives

(6.5.51) W,+l(t) u~+l(t ) = L~(t) (p ,+~(t) -p

t

+ / V(t- s)L~(s)(w~(s) 
0

u~(s)) 

The sequence p~(t) converges to the function p(t) as n --~ oz uniformly over
the segment [0, T], so that the sequence

c,~ = sup L2(t) (p~+l(t) - p~(t)) 
te[0,T]

In conformity with (6.5.51) the norm of the difference

~.(t) = ~.(t) -

can be estimated as follows:

(6.5.5~)
t

0

where M is a positive constant. We claim that the sequence of functions
z~(t) converges uniformly to zero as n --* c~, Indeed, estimate (6.5.52)
being iterated yields the inequality

m-1

(6.5.53) II ~÷.~(t)ll (M)~

(Mr)m
+ -- sup

m !
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Let e > 0. We choose the subscript k0 in such a way that for all k > k0 the
inequality

~ -MT

holds. Then

(6.5.54)
,~-1 (Mt)s
E Ck+m-l-s

8!
~ -MT ~ (MT)~ ~
-7~ -~ T - ~

s~-O

for all k _> ko and m _> 1. Holding a number mo fixed so that

(MT)m sup II"*o(t)ll ~
(6.5.55)

m ! ~10, T] ~

for all m > mo, we provide n = ko + m, m > too, as long as n > ko + too.
For this reason the bound

II r,~(t)ll = II r~o+m(t)ll < 7 + 7 = 

is obtained for all values t ¯ [0, T] on the basis of (6.5.53)-(6.5.55). 
this means that the sequence of functions r~(t) converges to zero uniformly
over the segment [0, T].

To complete the proof, we observe that the sequence of functions

u’~(t) = w~(t) - r~(t)

converges uniformly to w(t) as n -+ cx~, since the sequence w,~(t) converges
to the same function w(t) and the sequence rn(t) converges uniformly to
zero in both cases as n --~ o~. For this reason the function u(t) is differen-
tiable, u’(t) = w(t) and, in particular, u ¯ C1 ([0, T]; X). By inserting

L~ (s) u(s) = F~ L~(s)p(s) = F~(s)

and involving the explicit formula for ri0(t), equation (6.5.46) is transformed
into (6.5.39). Since the function u is continuously differentiable, we thus
have

e~ ̄ c’ ([0, T]; x); F~ , A F~ ̄  C([0, T]; X).

With these inclusions in view, relation (6.5.39) yields (6.5.1)-(6.5.2). 
substituting u’ in place of w involved in (6.5.47) we come to (6.5.44). 
guing in reverse order we see that relation (6.5.44) is followed by (6.5.43),
which is equivalent to (6.5.42) on account of (6.5.39). It is worth recalling
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here that formula (6.5.39) gives a solution ~f the Cauchy problem (6.5.1)-
(6.5.2). Because of (6.5.1), relation (6.5.42) becomes equivalent 
equality

Su’(t) = ¢’(t),

which, in turn, is equivalent to

(Su(t))’= ¢’(t)

as far as the operator B is bounded. Further derivation of (6.5.3) is stipu-
lated by the compatibility condition B uo = ¢(0).

In accordance with what has been said, we conclude that if the func-
tions

t~ e ~’1 ([0, T]; X) ~ ~’([0, T]; ~)(A)) p e c([0, rl; r)

give a solution of the inverse problem (6.5.1)-(6.5.3), then the triple

u, p, w = u~)

is just a continuous solution of the system (6.5.46)-(6.5.48). Vice versa, 
a triple of the functions

(u,p, w)

is a continuous solution of the system (6.5.46)-(6.5.48), then w = u’ 
the pair of the relevant functions (u, p) solves the inverse problem (6.5.1)-
(6.5.3). As stated above, the system of the integral equations (6.5.46)-
(6.5.48) has a continuous solution and this solution is unique. So, the
desired assertion of Theorem 6.5.5 follows immediately. ̄

6.6 Inverse problems with smoothing overdetermination:
quasilinear parabolic equations

Unlike the case of constant coefficients, the complete and uniform theory
for equations with variable operator coet~ieients is less advanced. In
trying to overcome some difficulties involved different approaches to various
wide classes of equations are offered. As in the theory of partial differen-
tial equations, in recent years the main objects of investigation were the
parabolic and hyperbolic types of abst_ract equations. Various equations
of parabolic type will be covered within the framework of the present sec-
tion. Readers who are interested in obtaining more detailed knowledge
of the general theory of abstract parabolic equations are advised to study
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Amann (1986, 1987), Fattorini (1983), Henry (1981), Krein (1967), 
hata (1977), Sobolevsky (1961), Yosida (1965).

Let X and Y be Banach spaces. In what follows by A we mean a
mapping carrying out a subset from [0, T] × X into a class of closed linear
operators in the space X. It is supposed, in addition, that

f: [o, T] × X × Y ,-, X, B: [0, T] ~ ,C(.X, Y)

and
O: [O,T] ~ Y.

In such a setting we are looking for a pair of the functions

u ~ C~([0, T]; X), p e c([0, T]; Y),

satisfying the system of relations

(6.6.1) u’(t) = A(t,u(t))u(t)+f(t,u(t),p(t)), O<t<T,

(6.6.2) u(O) = u0,

(6.6.3) B(t) u(t) = ¢(t), o < t < T.

It is appropriate to mention here that the function u satisfies equation
(6.6.1) in a pointwise manner, meaning, in particular, that for any t 
[0, T] the element u(t) belongs to the domain of the operator A(t, u(t)).
Relations (6.6.2) and (6.6.3) together imply a. necessary condition for 
compatibility of the input data

(6.6.4) B(0) u0 

Equation (6.6.1) is required to be of parabolic type, that is,

(P1) the closed linear operator A0 = A(0, Uo) has the dense domain ID,
the half-plane Rel >_ 0 is contained in the resolvent set of the
operator Ao and for any I with Re I _> 0 the inequality holds:

C(Ao-~l)-~ <_ l+l,x-----~.;

(P2) there are numbers ~ 6 (0, 1) and F~ > 0 such that for all u 6 X with

It u II-< -~ and all t e [0, T] the linear dosed operator A(t, A;~u)
has the domain ID and there exists a constant fl 6 (0, 1) such that
for all t, s e [0, T] and all u, v e X with 1~ u ]1 ~ R and II v II ~ ~
the estimate is valid:
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[A(t, A;a u) - A(s, ~ v)] A~-I _<c ( It -8 [ ~ ÷[[ u - v [[ ).

The reader can encounter in the modern literature different definitions
of belonging to the parabolic class. This is due to the fact that different
methods are much applicable in investigating the Cauchy problem (6.6.1)-
(6.6.2). Common practice involves the definition of Sobolevsky (1961) 
so we adopt this definition in subsequent studies.

We impose the extra restrictions on ’the input data of the inverse

problem concerned:

(Pa) u0~, IIAgUoll < ~, ¢ ~ C~+e([0, T];~).

The operator B is subject to the following conditions:

(P4) for all t, s e [0, T] and all u, v e X with II ~ II ~ ~ ~.a II v II ~ ~
the operator B(O A(*, Ag% ) Ag~ is bounded, the estimate

(6.6.5) B(t) [A(t, ~ u)- A(s, Ag v)]

is true and

(6.6.6) B e C1+~([0, T]; £(X,Y)).

The boundedness of the operator

B(t) A(t, A-C~u) ~

ensures that the operator B possesses a certain smoothing effect similar
to (6.3.1). However, the requirement imposed above is more weaker than
the condition for the operator B A to be bounded.

As in Section 6.3 we may attempt the function f in the forrfi

(6.6.7) f(t,u,v) = fl(t, u) + f2(t,u,p).

The conditions playing here the same role as condi,tions (A)-(E) in Section
6.3 are as follows:

(P5) for the element

(6.6.8) zo= ~’(O)+B(O)Aouo-B(O)f~(O, Uo)-B’(O)uo
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the equation
B(O) f2(O, Uo,p) 

with respect to p has a unique solution Po ̄  Y;

(P6) there exists a mapping fa: [0, T] x Y x Y ~-* Y, for which

B(t) f2(t,u,p) = fa(t, B(t)u, 

(PT) for any fixed value * ~ [0, T] the mapping

has in the ball Sv(po, ~) the inverse

~ = ~(~,

all p, q ~ Y with Ilv- poll 5 ~ ~d II q -poll ~ ~ e~ collection or
inequalities hold:

llk(*,Ag%) - k(< Ag%)ll ~ ~(I*- ° + II ~- ~ll),

f=(,,~,q)[[

(pg) there is a number R~ > 0 such that for all *, s ~ [0, T] and all

mapping (6.6.9) obeys the estimate

II ~(*, ~,) - ~(*, z~)[l 5 ~ (l~ - e + II ~, -

Theorem 6.6.1 Let conditions (6.6.7), (P1)-(P9) and (6.6.4) hold and

G < min{1-a,~3}.

Then there exists a number T1 > 0 such that on the segment.[O, T1] a
solution u, p of the inverse problem (6.6.1)-(6.6.3) exists and is unique in
the class of functions

~ ̄  c1([0, T1]; X), p ̄  C~([0, T1]; V).

Proof Involving the function p and holding the values T~ ̄  (0, T] and
K > 0 fixed, we are interested in problem (6.6.1)-(6.6.3). We denote
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by Q = Q/Ta,K,~) the set of all functions v ~ C~[0, T~]; X) for which
~(0) ~ A~ ~o and

II v(0 - ~(~)~I ~ ~ I~ - ~,w, ~~ [0,~].

The set so constructed is closed and bounded in the space C([0, T~]; X).
The value T~ is so chosen as to satisfy the inequMity ~] v(t)l ~ ~ R for all
v ~ Q and all t ~ [0, T~]. This is certainly true if

~ < ((~-~;~0~)/~)~,

since the bound ~ v(0)~ < R is stipulated by condition (P3). On the 
grounds as before, we define P = P(T~, K, ~) as the set of all functions
p e C([0, T~]; ~) for which p(0) : P0 

~p(t)-p(s)~[ ~ K]t-s~~, Vt, sG[O,T~],

It is possible to reduce the value T~ provided thut the inequality

~ ~(t) - ~0 ~ < 

holds for all p ~ P and all t G [0, T~]. In dealin~ with the functions
v G Q, p G P we define the operator function

A(v;t) = A( t, ~ v(t))

and the function

F(v,p;t) = f(t, ~ v(t),p(t)).

Due to the boundedness of the operator A~-~ condition (PS) implies that

- F(v,p;s)[ _< clt-(6.6.10) F(v,p;t)

where the constant c does not depend on v E Q and p E P both.
The Cauehy problem related to the function u comes second:

f u’(t) = A(v;t)u(t)+F(v,p;t), 0<t<T1,
(6.6.11) u(0) = u0.

It is well-known from Sobolevsky (1961) that for a sufficiently small value
T1 > 0 and any v ~ Q the operator function A(v; t) generates an evolution
operator U(v;t, s) being strongly continuous for all 0 _< s < t < Ta. A
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solution of problem (6.5.11) in the class u ~ 1 ([0, T 1]; X) exists and is
given by the formula

(6.6.1~) u(t) = u(v;~,0)u0+/ ds.

o

Furthermore,

(6.6.13) [A~[U(v;t,O)-U(v;s,O)]A; I <_ C]~--8[1-~

and for any function F 6 C([0, TI]; X) ~he es~ima%e is true:

~+~

0 0

< c~t~l-~(~log~&¢~+l) max ~F(~)~.

What is more,

(6.6.1~) I1~ g(v;~,~)~l ~ ~ - -~,

Here the constant c is independent of v ~ ~ (for more detail see Sobolevsky
(1961)). Recall once again that ~he same symbol c may stand for different
constants in later calculations.

It is also a matter of the general experience that for a su~ciently small
value T~ there exists in the class ~ a unique function depending, in general,
on p and providing the same solutions to both problems (6.6.1)-(6.6.2) 
(6.6.11). It w~ shown in Sobolevsky (1961) that u(~) ~ v(~)

Holding the function v fixed we are going to derive the governing
equation for another Nnction p. By virtue of conditions (6.6.4) and (6.6.6)
relation (6.6.a) is equivalent to

(~.~.~ ~(~ ~’(~ + ~’(~) ~(~ = ~’(~).
In turn, (6.6.1), (6.6.12) and (6.6.7) are followed 

(6.6.17) B(¢) u’(¢) = B(~)(I(Lu(~),p(~)) - A(~,u(~))u(~))

- ~(~) ~(v; ~ ~(v; ~, 01 ~0 - ~(~ ~(~; 

ds.

o
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Likewise, (6.6.12) implies that

(6.6.18) B’(t) u(t) = B’(t) (U(v;t,O)

6. Abstract Problems for First Order Equations

t

0

To make our exposition more transparent and write some things in simpli-
fied form, it is convenient to introduce the notations

t
w(t) = A~ U(v;t,O)uo +A~ f U(v;t,s)F(v,p;8)

o

a(v,t) = ¢’(t) B(t) fl (t, A; ~v(t)),

D(v; t) = B(t) A(~; t) Ag~ - ~’(t) ~,

z(t) = a(v;t) + D(v;t) 

Substituting (6.6.17) and (6.6.18) into (6.6.16) 

(6.6.19) B(t) f~(t, u(t),p(t)) 

The increment of the function z can be evaluated as follows:

(6.6.20) II z(t) - z(s)lI <_ II a(v; t) - a(v; I

+ II D(v; t) - D(v; ~)11 ’ II ~(t)II

£rom the definition of the function a(v; t) it follows that

II a(~; ~) - ~(~; 8)11 _< II V(~) - ~’(~)11. ÷ II 

× II .fl (t, A~~ ~(t)) - f~ (~, -~ ~(~))II.

Since v G Q, the inequality IIv(t)ll < Rholds true for any t G [0, T~].
Therefore, under condition (P8) there is a constant M > 0 such that for
all t G [0, Ta] and all v ~ Q the estimate

I[£(t, A~ v(t))[I <_ 
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is valid. A proper choice of the constant M (enlarged if necessary) provides
the validity of the inequality

II B(t)ll -< 

for all* E [0, T~]. By conditions (P3), (6.6.6) and (P8),

(6.6.21) ]]a(v;t)-a(v;s)[ I < c]t-s]a +c M]t-sl

+c (It- + II v(t) - v(s)ll) 

From the definition of/)(v; t), conditions (P4) and (6.6.6)in combination
with the boundedness of the operator Aj= we deduce that

(6.6.22) D(v;t)- D(v;s) 

For any v ~ Q, p G P the value F(v,p;O) = f(O,uo, po) and (6.6.10)
together imply the existence of a constant M > 0 sudi that for any v
Q, p G P and all t G [0,

Since u0 G D, we are led by relations (6.6.13) ~nd (6.6.14) 

(6.6.23) llw(t+At)-w(t)[] IAtt ~-=l[Aouoll+c M

Keeping ~ < 1 - ~ and letting ~ ~ ~ 0, it is not diNcult to establish the
asymptotic relation

which is uniform in v ~ 0, P ~ P and over the segment ~
thermore, by the definition of the %notion w we establish the relationship

~(0~ = 

thereby clarifying that the Nnction w belongs to Q for a su~ciently small
number T~ and any v ~ Q, p ~ P.

In the current situation ghe action of the operator A~ with respect
relation (6.6.12) leads to the equation for the Nnction

(6.6.24) v(~) 
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Observe that z(0) = z0, where the element z0 is defined by (6.6.8). Inserting
the value s = 0 in (6.6.20) and taking into account (6.6.21)-(6.6.22), 
arrive at

when TI is small enough and both elements v and w belong to (~. By virtue
of ~ump~ion~ (P~)-(PT) ~q.~ion (~.~.~) ¢~n b~ ~

(6.6.25) p(t) = O(t, z(t)) 

The desired assertion will be proved if we succeed in showing that the sys-
tem (6.6.24)-(6.6.25) possesses in Q x P a unique solution for a sufficiently
small value T1. This can be done using the function

g(t) = q~(t, a(w;t) + D(w;t)w(t)).

It is straightforward to verify that g(0) : P0. Moreover, condition (P9)
implies the estimate

(6.6
II g(t) g(~)ll _<e (It- ~ z + It ~(w; t) - a(w; s)lI

+ [ID(w;t)- D(w;s)ll II w(t)l[

Using estimate (6.6.22) behind we deduce that there is a constant M > 
for which the inequality

IID(w,t)ll < M

holds true for any w 6 Q and all t 6 [0, T1]. By successively applying
inequalities (6.6.21)-(6.6.22) with w standing in place of v and relying 
(6.6.26), we find that

It g(t) g(s)ll < c (It - s z .÷ II w(t) - w(s)ll)

with a positive constant c > 0. Since ~ < fl, the existence of a sufficiently
small value T~ such that the function g belor~gs to P is ensured by the
preceding inequality in combination with (6.6.23).

At the next stage the metric space Q x P is equipped with the metric
~ induced by the norm of the space C([0, TJ; X ) x C([0, T~]; Y ), making
it possible to introduce in this space the operator

a: (v, p) ~ (w,
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As we have mentioned above, the operator G carries out Q x P into itself
if the value T1 is sufficiently small.

As can readily be observed, the solutions of the system (6.6.24)-
(6.6.25) coincide with the fixed points of the operator G.

Let vl, v2 E Q; pl, p2 E P and

Putting these together with the relationships ul = A~-ow~ and u2 =
A~"~ w~ we derive the system

(6.6.27) {u~(t) A(v~;t) u~ (t)+ F( v~,p~;t),

u’~(t) = A(v~ ;t) u~(t) + F(v~, p~; 

supplied by the condition ua(0) = u2(0) = u0. Whence it follows that 
function u = ul - u2 solves the Cauehy problem

f = A(v ;t) + F(t), 0 < t (6.6.28) = o,

with F(t) = [ A(v~;t) - A(v~;t)] u2(t) + F(v,,p~;t) - F(v~,p~;t) incorpo-
rated.

By condition (P2) and the definition of Q the function

A(t) = [A(v=;t)- A(va;t)] AjI

happens to be of HSlder’s type in the space £(X) with exponent (r and
constant not depending on vl, v2 ~ Q..

On the other hand, estimates (1.71) and (2.27) from Sobolevsky (1961)
could be useful in the sequel if they are written in terms of problem (6.6.27).
With these in view, inequality (6.6.10) clarifies that the function A0 
is of H61der’s type for t > 0 and is unif6rmly bounded with respect to
v2 ~ Q, p~ ~ P, t ~ [0, T~], that is,

(6.6.29) 11Aou~(t)[[ <~ M.

Therefore, a solution of the Cauchy probleh~ (6.6.28) can be represented
via the evolution operator (for more detail see Sobolevsky (1961))

t

(6.6.30) u(t) = / U(va;t,s) F(s) 
0
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We are led by assumption (P2) 

(6.6.31) I{ A(t)l] <- c II v2(t) vl (t)lI .

In turn, the combination of (6.6.7) and (P8) gives the inequality

(6.6.32) IIF(vl,pl;t)-F(v2,p~;t)ll _<c(2 live(t)-v~(t)ll

+ 11p2(t) 
Applying the operator A~ to (6.6.30) with further p~ssage to the appropri-
ate norms we deduce with the ~id of (6.6.15), (6.6.29) ~nd (6.6.31)-(6.6.32)
that

t

0

+ c (~ ~ ~(t) - ~(t)~l + ~ ~(t) - ds.

This provides reason enough to conclude that there is a positive constant
c~ > 0 such that

(6.6.33) II ~1 w~IIC(~O,T,~;X) ~ ~ ~?-~P((’~,P,), (~,P~)) ,
where p refers to a metric of the space Q x P.

By ~ssumption (Pg), the following estimate

IIg~(t) -g~(t)ll ~c (lla(w~;t)= a(w=;t)ll

+ ~ D(w,;t) - D(w~;t)ll 

+ ~ D(~;t)i] ̄ ~l w~(t) 
is ensured by the definition of the function g. By virtue of condition (P8)
we thus have

while condition (P4) impfies that

[I o(~ ;t) - O(w~;t)ll ~ ~ ~ ~(t) ~(t)]l.
From the inclusion wa ~ Q it follows that ~ w~(t)l I < R. The estimate

(6.6.34) ~lga --9~C([O,Ta];Y) ~ c~ T~-~ p((va,p~), (vz,p~))

c~n be justified by the uniform boundedness of the operator functions
D(w~,t) and B(t) ~nd the preceding estimate (6.6.33). Here e~ > 0 
u positive constant. On the basis of estimates (6.6.33)-(6.6.34) we 
clude that the operator G is contractive in Q x P if Ta is sufficiently small.
This completes the proof of the theorem. 1
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6.7 Inverse problems with singular overdetermlnation:
semilinear parabolic equations

In this section we consider the inverse problem (6.6.1)-(6.6.3) in the 
when equation (6.6.1) is semilinear. The appropriate problem statement
is as follows:

(6.7.1) u’(t) = A(t) u(t) + f(t, u(t), 

(6.7.2) u(0) = Uo,

(6.7.3) B ~,(t) = ¢(t), 0 _< <,T.

O<t<T,

Here the operator B is supposed to be bounded from the space X into the
space Y and (6.7.3) is termed a singular overdetermination. The pres-
ence of (6.7.1) in the class of parabolic equations is well-characterized
by the following condition:

(PP1) for anyt E [0, T] the linear operator A is closed in the space X and
its domain is dense and does notdepend on t, that is,

7)(A(t)) 

Also, if A is such that ReA >_ O, then for all t ~ [0, T] and A ~
p(A(t))

C

(A(t)-AI)-I <-IAI+I’

where c is a positive constant.

Further treatment of the inverse problem concerned necessitates in-
volving the well-posedness of the direct linear problem

(6.7.4)
u’(t) A(t) u( t)+f(t),

u(0)=Uo.
O<t<T,

Granted (PP1), a sufficient condition for the direct problem (6.7.4) to 
well-posed is as follows:

(PP2) there exist a constant c > 0 and a value ~ ~ (0, 1] such that for all
t, s, v ~ [0, T] the inequality holds:

IliA(t)-A(s)] A-~(r) <_ c It-sl~.
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Under conditions (PP1)-(PP2) the direct problem (6.7.4 has a strongly
continuous evolution operator in the triangle

~(T) = {(t, s): 0 ~ s < T, 8 < ~ < 

If each such case u0 E /3 and the function f is subject to either of the
following conditions: A f E C([0, T]; X) or f is of HSlder’s type in the

space X, then problem (6.7.4) has a unique solution u ~ C~([0’, T]; X),
this solution is given by the formula

t

(6.~.~) ~(t) u(t, o)~o + /u(t,~) f( ds

o

and the operator function

W~ (t, s) = A(t) U(t, s) 

is strongly continuous in A(T). What is more, the function

Wl+~(t,s) = AI+~(t) U(t,s)A-I-~(s)

will also be strongly continuous in A(T) for ~ < a. If one assumes, 
~ddition, that u0 ~ 9(A1+~(0)) 

~+’(t) f(t) c([0, ~]~ x)

then a solution of problem (6.7.4) will comply with the inclusion

(6.~.6) ~’(0)~(t) e cl([0, ~]; 

We refer ~he reader to Sobolevsky (1961).
Let the operator B meet one more requirement similar in form to

(5.1.~):

(6.7.7) ~ ~ ~(9(~(0)), ~ < ~,

where the manifold ~(A~(0)) is equipped with the 

~ ~ ~, = ~1 ~’(0) ~.

On the same ~rounds as before, we may attempt the function f in the form

(6.7.s) f(t, ~,p) = f~(t, ~) f~(t, ~,;).
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With the aid of relations (6.7.6)-(6.7.7) it is not difficult to show that 
two conditions

(6.7.9) ~ E C1([0, T]; Y), Bu0 = ~(0)

are necessary for the solvability of the inverse problem (6.7.1)-(6.7.3) 
the class of functions

u E C1([0, :~]; X),

By means of the functions ~b E C1([0, T]; Y) and u0 ~D(BA(O)) we
define the element

(6.7.10) Zo = ~b’(0) B A(O) Uo- Bf~(O, Uo)

and involve it in the additional requirements:

(VV3) the equation B f~(O, uo,p) = Zo with respect to p has a unique
solution Po ~ Y;

(PP4) there exists a mapping

f3: [O,T]xYxY ~--* Y

for which

(6.7.11) B fz(t,u,p) = fz(t,Bu,p)

(PP5) there is a number R > 0 such that for any t ~ [0, T] the mapping

z = fz(t, ~b(t), 

has in the ball Sy(po, R) the inverse

(6.7.1~) p = ~(t,z).

With the relation u0 ~ 7)(A1+~(0)) in view, the following manifolds

SI ( R, T) = { ( t, z, p): O <T, Il z - A(O) uo ll < Rlip -poll <R},

So(n, r) = {(t,z,;): 0 <~ <T, IIz-uoll < 2, lip- ;oil < 

SI+~(n,T) = {(t,z,p): 0 < t < T, Ilz- AX+fl(O)uoll < n,

II;-;oll < n}
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are aimed to impose the extra smoothness restrictions:

(PP6) there is a number R > 0 such that for k = 0, 1,/3 + 1 either of th’e
functions

Ak(t)fl(t, A-k(t)u)

and
A~(t) f2( t, A-~(t)u, 

is continuous with respect to the totality of variables and satisfies
on the manifold S~(R,T) the Lipschitz condition with respect 

(PP7) the mapping (6.7.12) is continuous on the set Sy(ZO, R,T) and
satisfies thereon the Lipschitz condition in z.

Theorem 6.7.1. gel conditions (PP1), (PP2), (6.7.7) and (6.7.9) hold. If
u0 e :D(AI+Z(0)) and conditions (6.7.8), (PP3)-(PP7) are valid with 
element zo given by formula (6.7.10), then there is a value TI > 0 such that
on the segment [0, T~] a solution u, p of the inver.se problem (6.7.1)-(6.7.3)
exists and is unique in the class of functions

u e CI([O,T~];X), Au C([0, T~ ];X), peC([O, Td;Y).

Proof By assumption, the inclusions

p e C([0, T]; V 

and
v(t) = A(t) u(O C([0, T] ; X 

imply that the superposition

fl(t) = f(t, A-l(t) v(t), 

is continuous. The same remains valid for the function A(t) fl (t). If so, the
Cauchy problem (6.7.1)-(6.7.2) will beequivalent to the integral equation

t

(6.7.13) = U(t,s) f( s,u(s),p(s)) ds

0

in the class of functions u e C([0, T]; X ) for which the inclusion

e C([0, T]; X)
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occurs. Indeed, a solution to equation (6.7.1) complies with the condition

Al+~(t)u(t) C([0, T] ; X)

if the value T is sufficiently small. To make sure of it, we first perform the
substitution z(t) = AI+Z(t) u(t) with

zo(t) = A~+Z(t) U(t,O) uo = W~+~(t,O) 

thereby justifying that the function u satisfies the integral equation (6.7.13)
if and only if the function z solves the integral equation

(6.7.14)

t

z(t) = Zo(t) + f w,+z(t,s)g(s,z(s),p(s)) 
o

where
g(t, z,p) = A’+~(t) f( t, A-~-O(t) 

It is worth noting here that z0 is continuous on the segment [0, T] and

the kernel WI+~ is strongly continuous on the set A(T). Moreover, 
condition (PP6) the function g is continuous and satisfies the Lipschitz
condition in z. This serves to motivate that equation (6.7.14) has a unique
local solution in the class of continuous functions. Reducing the value T,
if necessary, one can accept (6.7.14) to be solvable on the whole segment
[0, T]. Recall that T may depend on the function p.

Due to the interrelation between solutions to equations (6.7.13) and
(6.7.14) the function

f(t) = f(t, u(t), 

satisfies the equality

A~+~(t) f(t) = AI+Z(t) f(t, A-~-Zz(t), p(t))

and is continuous on the strength of condition (PP6). In view of this, 
solution of the Cauchy problem (6.7.1)-(6.7.2) obeys (6.7.6). Because 
(6.7.7),

(B u(t))’ 
so that relation (6.7.3) is equivalent to the following one:

Su’(t) : ¢’(t), 0<t<T,

making it possible to reduce the preceding on the basis of (6.7.1) 

(6.7.15) p(t) = ¢;(t,¢’(t)- BA(t)u(t)- B fl(t,u(t))).
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Here we have taken into account conditions (6.7.8), (PP4) and (PPh).
By involving formula (6.7.13) and substituting z(t) = l+z (t)u(t) we

are led to an alternative form of wriiting (6.7.15):

(6.7.16) p(t) = 0~ t, go(t)+gl(t,z(t))+ K(t,s)g(s,z(s),p(s)) 

o

where

Since

go(t) = ¢’(t) - B A(t) U(t,O) uo - B f~( t, U(t,O) 

g~(t, z) ~- --B (fl(t, A-~-Z(t) z ) fl( t, U(t, O) uo ) )

I(.(t, s) -BA(t) U(t, s) A-I-Z(s),

g(t, z,p) = A~+Z(t) f(t,A-l-O(t)z,p).

B A(t) U(t, O) uo = A-~(0)) (A~( A-~(t))

× A~+Z(t) U(t, ~o

= ( B A-/~(O)) (AZ(O)A-Z(t))

× W~+~(t,O)(A’+Z(0)u0) ,

the function go(t) C([0, T] ; Y) . This is dueto t he factthat the f unction
A~ (0)A-~ (t)is strongly continuous (see Sobolevsky (1961)). Also, 
attempt the function g~(t, z) in the form

gl (t, z) = ( B A-0 (0)) z (0)A-8 (t))

x (A~+~(t) f~(t,A-~-~(t)z)

- A~+~ (t) fl (t, -~-~ (t)

x Wl+~(t, 0) AI+~(0) u0)),

implying that the function g~ is continuous with respect to the totality of
variables and satisfies the Lipschitz condition in z. Likewise, the kernel
K(t, s) admits the form

I((t, s) -= -(B A-Z(0)) (AZ(0) A-Z(t)) W~+z(t, 
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thereby justifying the strong continuity of I((t, s) in A(T)..
Thus, the system of the integral equations (6.7.14), (6.7.16) is derived.

Observe that it is of some type similar to that obtained ir~ Section 6.3 for
the system (6.3.9), (6.3.12). Hence, exploiting some facts and adopting 
well-developed tools of Theorem 6.3.1, it is plain to show that the system
(6.7.14), (6.7.16) is solvable, thereby completing the proof of the theorem.

Of importance is the linear case when

(6.7.17) f(t, u, p) = L1 (t) u + L~(t)p + 

Theorem 6.7.12 Lel condilions (PP1)-(PP2), (6.7.7) and (6.7.9)
Uo G V(AI+/)(0)), the operator functions

L1, ALl A-1IAI+~ L1 a -1-e e C([0,

AI+eL2 e C([0, T]; e(r, x))
and the function

~*+~ ~ e c([0, r]; x).

if for any t ~ [0, T] the operator B L~(t) is invertible in the space Y and

(~ n,)-~ e C([0, r]; ;(r)),

then a solution u, p of the inverse problem (6.7.1)-(6.7.3), (6.7.17) exists
and is unique in the class of functions

~ e c~ ([o, r]; x), ~ e c([0, ~]; x), v e c([0, r]; 

Proof By virtue of conditions (PP3)-(PPT) with the ingredients

f~(t,u) = n~{t) u + F(t),

k(t,z,v) ~n~(t)~,

¢(t, z) (~ L~(t))-~ ~ Z
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one can recast the system of equations (6.7.14), (6.7.16) 

t

(6.7.18) z(t) :zo(t) +/(I~_’l(t,s)z(s) +Ll(t,s)p(s)) 

o

(6.7.19)

where

t

p(t) = Po (t) + / ( K~ (t, s) z(s) + L~ (t, s) 
0

zo(t) = I/Vl+~(t, 0)Al+~3(0) 

t

+ / Wl+/3(t, s) Al+f3(s) F(s) ds,
0

Kl(t, s) = Wl+~(t, s) (Al+~(s) nl A-l- ~(s)) ,

Ll(t, ~) = Wl+~(t, s) ( A~+e(s) L~(~)) 

po(t) = (BL~(0)-~ [¢’(0 - Br(t)

- B A(t) U(t, O) uo - B.L1 (t) U(t, Uo

t

- B A(t) / U(t, s) r(s) ds
0

t

0

I(2 (t, s) = - ( B L2 (t))-i [ B A(t) U(t, 

× A-~-Z(s) + B L~(t)A-~-Z(t)W~+~(t,s)

× AX+e(s) Ll(s) A-l-Z(s)] 

L:(t,s) = - ( B L2(t))-’ [ B A(t) U(t,s) 

+ B L,(t) m-i-Z(t) Wl+e(t, s) A~+Z(s) L:(s)] 
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The continuity of the function z0 It) and the strong continuity of the kernels
K1 and L1 are a corollary of the initial assumptions, while the continuity
of the function p0/t) follows from the set of relations

× A-l(t)

B A(t) U(t, O) Uo = A-~(O)). (A~(A-~(t))

x W~+~(t,O) (Al+~(0)Uo) 

B LI (t) U(t, O) Uo = ( -~(0)) (A~(0) -~(t )) A- l( t)

x (Al+~(t) L~(t)A-l-~(t)

x WI+~(t,0) (Al+~(0) 

B A(t) U(t, s) F(s) A-~(0)) (A~(0) A-e(t))

x Wl+~(t,s) (A~+Z(s) F(s)),

B n~ (t) U(t, F(s) = ( -~(0)) ( Az (0)-z(ti ) A-~(t)

× (A~+Z(t) LI(t)A-X-#(t))

x WI+Z(t, s) (At+a(s) S(s)).

In turn, the strong continuity of the kernels K2 and L2 on A(T) is ensured
by the identities

B A(t) V (t, s) L~ (s) -1 -~ (s) =( -~(0)) ( ~ (0)-~(t) ) WI~ (t , s)

x (Al+~(s) L~(s)A-l-~(s)),

B LI (t) A-~-Z(t) = (B A-e(O)) (AZ(0) A-Z(t)) 

x (A~+~(t) L~(t)A-~-#(t)).

The desired assertion is simple to follow, since the system of the Volterra
integral equations (6.7.18)-(6.7.19) appears to be linear. 
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6.8 Inverse problems with smoothing overdetermination:
semilinear hyperbolic equations

As in Section 6.7 it is required to find the functions u ¯ C1 ([0, r]; X ) and

p ¯ C([0, T]; Y) from the set of relations

(6.8.1)

(6.8.~)

(6.8.3)

u’(t) = A(t)u(t) + f(t, u(t),p(t)),

u(O) = uo,

B u(t) = ¢(t), 0 < t < T.

O<t<T,

For any t ¯ [0, T] a linear operator A(t) with a dense domain is supposed
to be closed in the space X. The symbol B designates a linear operator
acting from X into Y and

f: [O,T]xXxY ~ X.

Much progress in investigating the inverse problem (6.8.i)-(6.8.3) is 
nected with the subsidiary information that the linear direct problem

(6.8.4) u’(t) = A(t) u(t) + 

(6.8.5) u(0) = uo,

O<t<T,

is well-posed.
Before proceeding to a more detailed framework, it is worth noting

here that the reader can encounter in the modern literature several different
definitions and criteria to decide for yourself whether equation (6.8.1) is 
hyperbolic type. Below we offer one of the existing approaches to this .issue
and take for granted that

(Ill) /’or any t ¯ [0, T] the operator A(t) is the generator of a strongly
continuous semigroup in the space X;

(H2) there are constants M and ~3 such that for any A > ~3 and any finite
collection of points 0 <_ tl <_ t~ <_ .. <_ tk <_ T the inequality holds:

( A(tk) - A -1 ( A(tk_~) - A I) -1 ’’ ’
M

A(t,)-AI) -1 <_ ()~_~)~ 
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One assumes, in addition, that there exists a Banach space X0, which
can densely and continuously be embedded into the space X. In this view,
it is reasonable to confine yourself to particular cases where

(H3) there exists an operator function S(t) defined on the segment [0, T]
with values in the space 12( Xo, X ); this function is strongly contin-
uously differentiable on the segment [0, T] and for any fixed value
~ E [0, T] the operator

[s(t)]-’ ¯ t(x, 

and

S(t) A(t) [ S(t)] -1 A.(t) + R(t),

where R(t) ¯ £(X) and the operator function R(t) is strongly 
tinuous in the space X;

(H4) for anyt ¯ [0, T] the space Xo C :D(A(t)) and the operator function

A ̄  C([0, T]; £,(Xo, X)).

Under conditions (H1)-(tt4) there exists an evolution operator
U(s,t), which is defined on the set

A(T) = {(t,s): O<s<T,s<t<T}

and is strongly continuous on A(T) in the norm of the space X. By means
of this operator a solution u of problem (6.8.4) is expressed 

(6.8.6)

t

u(t) = U(t, O) Uo +’/ U(t, s) f(s) 
0

For u0 ¯ X and f ¯ C([0, T]; X) formula (6.8.6) gives a continuous solu-
tion (in a sense of distributions) to equation (6.8.1) subject to condition
(6.8.2). Furthermore, with the inclusions u0 ¯ X0 and f ¯ C([0, T]; 
in view, the preceding formula serves ~’or a solution of the Cauchy problem
(6.8.1)-(6.8.2) in the class of functions 1 ([0, T]; X) (f or more detail se
Fattorini (1983), Kato (1970, 1973), Massey (1972)).

The present section devotes to the case when the operator B possesses
a smoothing effect, meaning

(6.8.7) B ¯ 12(X, Y), B A ̄  C([0, T]; 12(X, Y)).
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Now our starting point is the solvability of the inverse problem (6.8.1)-
(6.8.3) in the class of continuous functions. Omitting some details, a con-
tinuous solution of the inverse problem concerned is to be understood as a
pair of the functions

u ¯ g([O, T]; X),

satisfying the system of relations

(6.8.8) ~,(t) U(t, O)

t

+ f u(t, 8) 
0

p ¯ C([0, T]; Y),

s,u(8),p(8)) ds, 0 < t < T,

(6.8.9) Bu(t) =¢(t), 0 < t < 

The approved decomposition

(6.8.10) f(t,u,v) = f~(t,u)+ f~(t,u,p)

will be used in the sequel. Allowing the element ¢ to be differentiable at
zero we define the element

(6.8.11) zo = t/,’(0)- B A(O) % - B f~(O, 

and assume that

(Hb) the equation B ~(O, uo,p) = Zo ~¢ith respect to p has a unique
solution Po ̄  Y;

(H6) there exists a mapping f3: [0, T] x Y x Y ~ Y such that

(6.8.12) B f2(t,u,p) = f3(t, Bu,p);

(H7) there is a number R > 0 such that for any t ¯ [0, T] the mapping
z = f3(t, ¢(t),p) has theball Sy(po, R) the i nverse

(6.8.13) p = ~(t, 

In addition to the algebraic conditions (Hb)-(HT), we impose the extra
smoothness conditions:

(HS) there is a number R > 0 such that either of the functions fl(t, u)
and f2(t, u, p) is continuous with respect to the totality of variables
and satisfies on the manifold 5’Xxv ((Uo,Po), R,T) the Lipschitz
condition with respect to (u,p);

(H9) there is a number R > 0 such that the mapping (6.8.13) is con-
tinuous with respect to the totality of variables and satisfies the
Lipschitz condition in z on the manifold Sv (Zo, R, T), where the
element Zo is defined by (6.8.11).
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Theorem 6.8.1 Let conditions (6.8.7), (6.8.10), (H1)-(H9) hold and Uo ̄
X, ¢¯CI([0,T];Y) and Buo =¢(0). Then there is a value Ta > O such
lhal on the segment [0, Ta] a solution u, p of the inverse problem (6.8.1)-
(6.8,3) exists and is unique in the class of continuous functions

~ ̄  c([0, T]; x), p ¯ C([0, T]; Y).

Proof By the initial assumptions the function

(6.8.14) f(t) = f(t,u(t),p(t))

is continuous on [0, T] for arbitrary fixed functions u ¯ C([0, T]; X) and
p ¯ C([0, T]; Y). Within notation (6.8.14), the definition of the solution
of the inverse problem (6.8.8)-(6.8.9) is involved in the further derivation
of the equation

(6.8.15) ¢(t) = B U(t, O) uo + B J U(t, s) f(s) 
0

In the sequel we shall need yet two assertions to be proved.

Lemma 6.8.1 For any element Uo ̄  X and all values t >_ s lhe function

is differentiable and

¢0(t) = u(t, s)

¢~(t) = B A(t) U(t,s) 

Proof Recall that the subspace X0 is dense in the space X. Hence there
exists a sequence of elements un from the space X0 converging to an element
u0 in the space X. Set

¢~(t) = B V(t,s) 

and appeal to the well-known estimate for the evolution operator

IIU(t,s)] I <_ M exp(/?(t-s)).

The outcome of this is

II ¢,~(t) - ¢o(t)ll <_ M II B II exp (I Z l T) II 
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implying that the sequence of functions ~b~ converges as n -~ cx~ to the
function ~bo uniformly over Is, T]. Since un E Xo, the function ~bn is differ-
entiable on the segment Is, T] and

~b’~(t) = BA(t)U(t,s)u~ = BA(t) V(t,s)u~,
whence it follows that

~(t) ~ ~(t) = B A(t) U(t, 

~ n ~ ~. On the basis of the estimate

II G(t) ~(t)[I ~ sup ItB A(t) II M exp([ f l[ T) ~1 u~ -u0 ~l
[0,T]

we deduce that the preceding convergence is uniform over the segment
Is, T]. Because of this fact, the function ~o is differentiable and ~ = ~,
which completes the proof of the ]emma.~

~e=m~ ~.S.: ~t f ~ C([0, ~]; X ) a,~
t

~(~) = u / u(~, ,)f(,) ds.

0

Then the [unction g is di~erentiable on the segment [0, T] and
t

a’(t) = ~ A(t) / U(t, ~) I(,) & + 
0

Proof From the additivity of integrals it follows that
t+h

~(t + ~) - ~(t) 1 f(~.s.l~) ~ = ~~ u u(t + ~, ,) ~(,) 
t

t

[ ~ u(t + ~, ~) - g(t, ,)+ [(s) ds.
0

Since

1
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and the function H(t, s) = U(t, s)f(s) is uniformly continuous in the tri-
angle A(T), the first term on the right-hand side of (6.8.16) converges 
B f(t) as h --~ 0.

The next step is to show that the limit as h --~ 0 of the second term
on the right-hand side of (6.8.16) is equal 

t

B A(t) / U(t, 
0

ds.

This fact immediately follows from the relation

t t

(6.8.17) lim gh(S) ds = / go(s
0 0

where

gh(~) = U(t + h,s) - U(t, s)
h f(s),

go(s) = B A(t) U(t,s) 

First of all observe that by Lemma 6.8.1 the function go(s) is a point-
wise limit of the functions gh(s) as h -~ on[0, T]. Therefore, rela tion
(6.8.17) will be established if we succeed in showing that the norms 
these functions are uniformly bounded. This can be done using the func-
tion #~(t) = B U(t, s) f(s) of the variable t. By Lemma 6.8.1,

#~s(t) = B A(t) U(t, s) f(s) 

By the same token,

gh(~) ,~(t + h)- ,~(t)
h

and, in agreement with the mean value theorem,

I #~(t + h)- p~(t)
(6.8.18) Ilgh(s)ll----I < sup

h - [o, T]

On the other hand, #~s(t) as a function of two independent variables is
continuous in A(T) and thus the right-hand side of (6.8.18) is finite. 
completes the proof of the lemma.,
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Returning to the proof of the theorem we note in passing that the
right-hand side of (6.8.17) is differentiable on account of Lemmas 6.8.1-
6.8.2. By virtue of the compatibility condition relation (6.8.17) is equivalent
to its differential implication taking the form

(6.8.19)

t

¢’(t) = B A(t) U(t, O) Uo ÷ U A(t) f U(t, f(s ) ds + Bf( t)
0

and relying on the formulae from the lemmas we have mentioned above. We
claim that if the second equation of the system (6.8.8)-(6.8.9) is replaced
by (6.8.19), then an equivalent system can be obtained in a similar way.
Indeed, when (6.8.8), (6.8.14) and (6.8.19) are put together, we finally 

(6.8.20) ¢’(t) BA(t) u( t)+ B f( t,u(Z),p(t)).

It is worth noting here that the preceding relationship up to closing of the
operator B A can be derived by formally applying the operator B to the ini-
tial relation (6.8.1). It is plain to reduce relation (6.8.20) via decomposition
(6.8.10) under condition (H6) to the following 

(t, ¢(t), p(,)) = 

where

(6.8.22) z(t) = ¢’(t) - BA(t) u(t)- B fa (t,u(t)).

The new variables

go(t) = ¢’(t) BA(t) U( t,O) uo - B f, (t ,U(t,O)uo),

ga(t,u) = -t3 ( f,(t, u)- f,(t, U(t,O)uo)),

I((t,s) = -B A(t) U(t,s)

complement our studies and help rearrange the right-hand side of (6.8.22)
in simplified form. Putting these together with (6.8.8) and (6.8.22) 
arrive at

(6.s.23)
t

z(t) = go(t) + g, ( t, u(t)) + J K(t,s) f( s, u(s),p(s)) 
0

Moreover, with the aid of relation (6.8.22) we find that z(0) = z0, where
the element z0 is defined by formula (6.8.11). In light of assumptions (H5)
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and (H7)-(H9) there exists a small value T for which equation (6.8.21) 
equivalent to

(6.8.24) ;(t) = ~(t, z(~)).

With the aid of (6.8.23) for the function z the couple of relations (6.8.8)
and (6.8.24) can be recast as the system of integral equations

(6.8.25)

(6.8.26)

0) Uo

U(t,s)f(s,u(s),p(s)) 

go(t)

which can be treated as the system (6.3.9), (6.3.12) and so there is 
difficulty to prove the unique solvability of (6.8.25)-(6.8.26) in just 
same way as we did in proving Theorem 6.3.1, thereby completing the
proof of the theorem..

Of special interest is the linear case when

(6.8.27) f(t,u,p) = Ll(t) u + L~(t)p+ 

Theorem 6.8.2 Let conditions (6.8.7) and (H1)-(H4) hold and Uo ̄  X,
¢ ¯ C1 ([0, T]; Y ), B 0 : ¢( 0) an d representation (6.8.23) take place for
L1 ¯ C([0, T];~(X)), L2 G C([0, T];~(Y, and F G C([0 , T];X ). If
for any t e [0, T] the operator B L~(t) is invertible in the space Y and

(BL~)-1 ̄  C([0, T]; ~(Y)),

then a solution u, p of the inverse problem (6.8.1)-(6.8.3) exists and is
unique in the class of functions

~ e c([0, T]; X), p ̄  C([0, T]; Y).



466 6, Abstract Problems for First Order Equations

Proof Under the restrictions imposed above conditions (H5)-(H9) 
true with the appropriate ingredients

fl(t,u) = L~(t) u + F(t),

f~(t,~,,p) = L,(t)p,

fa(t,z,p) = B L~(t)p,

¯ (t,z) (BL~(t))-1 ~.
Z.

The proof of Theorem 6.8.1 provides proper guidelines for rearranging
the inverse problem (6.8.1)-(6.8.3) as the system of the integral equations
(6.8.25)-(6.8.26) taking now the 

(6.s.28) ~,(t) = ~,o(t) 

+ Ll(t,

t

/ (lq(t,s)
0

(6.8.29) p(t) =po(t) 

t

0

+ L~(t,s)p(s)) 

where

t

uo(t) = U(t,O) uo + f U(t,s) F(s) 
0

I’(i(t, 8) : U(t, 

L,(t, s) = U(t, 8) L~(s),

(6.8.30) po(t) = ( B L~(t))-’ [ ¢’(t) - (-~-A-~ + 

t U(t,s) F(s) ~ - B F(t)]

×. (~(t, 0)~o ~/ ,
0

~(~(t, ~) = -(~ ~,(t)) -~ ( ~ A(t) + ~ L,(t)) ~(t, ~) 
L, (t, ~) = - ( ~ L~ (t)) -~ ( ~ A(t) + ~ ~ (t)) U (t, (~)

By ~ssumption, the functions Uo and po ~re continuous on the segment
[0, T] and the operator kernels K~, L~, K~ and L~ are strongly continuous
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in A(T). The system (6.8.28)-(6.8.29) falls into the category of 
kind linear systems of the Volterra integral equations and, therefore, there
exists a solution of (6.8.28)-(6.8.29) and this solution is unique in the class
of continuous functions on the whole segment [0, T]. This completes the
proof of the theorem.I

The next goal of our study is to find out when the continuous solution
of the inverse problem (6.8.1)-(6.8.3) satisfies equation (6.’8.1) in a 
wise manner. To decide for yourself when the function u e C1 ([0, T]; X ),
a first step is to check the following statement.

Theorem 6.8.3 Let conditions (6.8.7), (6.8.10) and (H1)-(H9) be fulfilled
and let Uo ̄  Xo,¢ ¯ CI([O,T]; Y) and Bu0 = ¢(0). /fcondition (H8)
continues to hold with Xo in place of the space X, then there is a value
71 > 0 such that on the segment [0, T1] a solution u, p of the inverse
problem (6.8.1)-(6.8.3) exists and is unique in the class of functions

~t ¯ C1([0, T1] ; X), p ¯ c([0, v).

Proof From conditions (H1)-(H4) immediately follows that the subspace
H0 is invariant with respect to the evolution operator U(t,s), which is
strongly continuous in A(T) in the norm of the space X0. Due to the
continuous embedding of X0 into X condition (6.8.7) remains valid with
Xo in place of the space X if the operator A(t) is replaced by its part acting
in the space X0. Theorem 6.8.1 implies that there is a value T~ > 0 for
which the inverse problem (6.8.1)-(2.8.3) becomes uniquely solvable in 
class of functions

u ̄  c([0, T1]; x0 ), ; ¯ c([o, T1]; V).
Under condition (HS), valid in the norm of the space X0, decomposi-
tion (6.8.10) provides support for the view that the function f defined
by (6.8.14) satisfies the condition

f ¯ C([0, T1]; Xo).

Since u0 ̄  X0, relation (6.8.8) admits the form

(6.8.31) u(t) = U(t,O) uo + / U(t,s) f(s) 

O.

thereby leading to the inclusion u ¯ CI([O, T1]; X) and completing the
proof of the theorem.l
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In the linear case a solution of the inverse problem at hand exists
on the whole segment [0, T].

Theorem 6.8.4 Let conditions (6.8.7) and (H1)-(H4) hold, Uo e Xo,
¢ ¯ C1([0, T]; Y), Buo = ¢(0) and let representation (6.8.27) be valid
with

L1 ¯ C([0, T]; C(X) (~ C([0, T]; £(Xo)) 

L~ ̄  C([0, T]; £(Y, X)) C([0, T] ; E( Y, Xo

and
F ̄  C([0, T]; X ) [~ C([0, T]; X0 

If for any t ¯ [0, T] the operator B L2(t) is invertible in the space Y and

( B 2 ) -1 ¯ e([0, T] ;

then a solution u, p of the inverse problem (6.8.1)-(6.8.3) exists and is
unique in lhe class of functions

u ̄  el(j0, T]; x), p C([0, T]; Y).
Proof It follows from the foregoing that Theorem 6.8.2 suits us perfectly in
the above framework and, therefore, the inverse problem (6.8.1)-(6.8.3)is
uniquely solvable on the whole segment [0, T] and the solution of this prob-
lem satisfies the system of the integral equations (6.8.28)-(6.8.29). In light
of assumptions (nl)-(n4) the evolution operator U(t, s) becomes strongly
continuous in the norm of the space X0. Under the conditions of the
theorem formulae (6.8.30) provide sufficient background for the inclusions
u0(t) ¯ C([0, T]; X0) and p0(t) ¯ C([0, T]; Y) and the conclusions 
the kernels Kl(t, s) and Kz(t, s) are strongly continuous in the space X0
and the kernels L1 (t, s) and L~(t, s) are strongly continuous from Y into
X0. From such reasoning it seems clear that the system of the integral
equations (6.8.28)-(6.8.29) is solvable in the class of functions

u ¯ C([0, T]; X0), p ¯ C([0, T]; 

Due to the restrictions imposed above contrition (H8) remains valid for the
norm of the space Xo. If this happens, the function f specified by formula
(6.8.14) satisfies the condition

f e C([0, T]; X0).

Since u0 ̄  X0, representation (6.8.31) is an alternative form of relation
(6.8.8) and no more. All this enables us to conclude that u ¯ 1 ([0, T]; X),
thereby completing the proof of the theorem. ̄



6.9. Semilinear hyperbolic equations 469

6.9 Inverse problems with singular overdetermination:
semilinear hyperbolic equations

This section is devoted to more a detailed .exploration of the inverse prob-
lem that we have posed in Section 6.8, where a pair of the functions
u e C1 ([0, T]; X ), p e C([0, T]; Y ) is recovered from the set of relations

(6.9.1)

(6.9.2)

(6.9.3)

~’(t) = A(t) ~(t) + f(t, ~(t), p(t)), 

~(0) 

B ~,(t) = ~(t), 0 < t 

under the agreement that equation (6.9.1) is hyperbolic in the sense 
assumptions (H1)-(H4). The case when the operator B happens to 
unbounded will be of special investigations under the condition

(6.9.4) B ¯ £(Xo, Y).

The solution of the inverse problem concerned necessitates imposing several
additional restrictions on the operator function A(t). Let a Banach space
X1 can densely and continuously be embedded into X0. Assume that con-
dition (H3) of Section 6.8 continues to hold upon replacing X0 by XI, that
is,

(H3.1) there exists an operator function $1 (t) defined on the segment [0, T]
with values in the space £(X1, X); it is strongly continuously dif-
ferentiable on [0, T]; for any t ¯ [0, T] the operator

and

[,~1(t)]--1 ¯ .~(X, Xl)

$1(~) A(~)[$1(~)]-1 A(t ) +/~ l(t) ,

where R,(t) £(X); th e operator fu nction R,(t) is supposed to be
strongly continuous in the space X and to be bounded in the space
£(X).

Also, we take for granted that

(H4.1) the operator function A ̄  C( [0, T]; £(X,, Xo)).

In this view, it is reasonable to look for the function f in the form

(6.9.5) I(t,u,p) = f~(t,u) + f2(t,u,p).
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Theorem 6.9.1 Let condition (6.9.4) hold and

Uo ~ Xl, ¢ ~ C1 ([0, T]; Y) B,,o = ¢(0).

One assumes, in aadition, that conditions (6.9.5), (H3.1)-(H4.1) 
present section as well as conditions (H1)-(H4) and (HS)-(H9) of Section
6.8 are satisfied in ~he norm of the space X, condition (HS) continues
hold in the norms of the spaces Xo and X~ both. Then there exists a value
T~ > 0 such that on *he segment [0, T~] a solution u, p of the inverse
problem (6.9.1)-(6.9.3) exists and is unique in the class of functions

~ e c~([0, ~,];.x) ~ c([0, ~]; x~), ~ e c([0, r,]; ~).
P~oof First of ~ observe that th~ inclusions X~ C X0 and Xo C V(A(t))
imply that X~ C D(A(t)). By assumption (H4.1),

A e C([0, V]; £(X~, X))
because embedding of Xo into X is continuous. ~hus, all the ~ssumptions
(H1)-(H4) of Section 6.8 remain wild upon substituting X~ in place of 
space X0. In this case the evolution operator U(t, s) is strongly continuous
in A(T) in the norm of the space X~. Furthermore, by virtue of conditions
(~4.~) ~na (6.9.4) we d~du¢¢ 

(6.9.6) ~A e C([0, T]; £(x~, r)).
We are now in a position to substantiate the solvability of the inverse
problem concerned in the class of functions

~ e C([0, V]; X~), ~ e C([0, ~]; r)

with some T~ > 0. The function f is defined to be

f(0 = Y(~, ~(~), ~(0).
Recall that assumption (H8) of Section 6.8 is true in the norm of the space
X~. With relation (6.9.5) in view, we thus have

(~.9.7) f e C([0, V~]; X~).

On the other hand, by the definition of continuous solution the function u
should satisfy relation (6.8.8) taking now the form

t

(6.9.s) ~(t) = u(t, 0) ~o + / u(t, ~) ds.

0

Since u0 ~ X~ and the function f is subject to (6.9.7), it follows from
rCpr¢~ntktion (6.9.8) that u e x ([0, T~]; X).
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In subsequent arguments we shall need yet, among other things, some
propositions describing special properties of Banach spaces.

Lemma 6.9.1 If the Banach space Xo is continuously embedded into the
Banach space X and

T G C([a, b]; X0 ) [~ 1 ([a, b]; X

with T’ ¯ C([a,b]; Xo ), lhen T Cl([a,b]; Xo) andthe deri vatives oft in
lhe norms of the spaces X and Xo coincide.

Proof The coincidence of the derivatives we have mentioned above follows
from the continuity of embedding of the space X0 into X. Therefore, ’it
remains to establish the continuous differentiability of the function T in
the norm of the space X0. This can be done using ¢ for the derivative
of the function T in the norm of the space X and then developing the
well-established formula

t

T(t) = T(a) + (X) f ds,
a

where the symbol (X) indicates that the integral is taken in the X-norm.
The inclusion ~/, ¯ C([a, b]; X0) is stipulated by the restrictions imposed
above and provides support for the view that the function ¢ is integrable
on the segment [a, t] for any t _< b in the n~rm of the space Xo. Since X0
is continuously embedded into X, the equality

t t

(x0) re(s) ds = (x) re(s) 
a a

is certainly true and implies that for any t ¯ [a, b]

t

T(t) = T(a) + (Xo) re(s) 
a

Whence it immediately follows that the function T is continuously differen-
tiable in the norm of the space X0, thereby completing the proof of Lemma
6.9.1.1

Lemma 6.9.2 For any element Uo ̄  X1 the function

T(t) = B u(t, 
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is conlinuously differentiable on the segment [s, T] and

T’(t) = BA(t) U(t,s) 

Proof In the proof of this assertion we have occasion to use the function

~(t) = U(t,s)~o.

Since the evolution operator U(t, s) is strongly continuous in A(T) in the
norm of the space X0 and u0 E X0, where X1 C X0, the function tt belongs
to the class C([s, T]; X ). Furthermore, the inclusion u0 E X0 implies that

~ ~ CI([s,T]; X)

and
#’(t) = A(t) U(t,s) 

On the other hand, u0 belongs to the space X1 and the operator U(t, s) is
strongly continuous on A(T) in the norm of the space Xa. This provides
reason enough to conclude that under condition (H4.1)

#’ e C([s,T]; Xo ) 

In agreement with Lemma 6.9.1 the inclusion # e el(Is, T]; X0) occurs
and the derivatives of the function # coincide with respect to the norms
of the spaces X and Xo. The desired assertion follows immediately from
relation (6.9.4). 

Lemma 6.9.3 ff f e C([0, T]; Xl ) and

t

g(t) = B / U(t,s) f(s) 

0

then the function g is continuously differentiable on [0, T] and

t

g’(t) = B A(t) / V(t,s) f(s) ds + 

0

Proof The proof of this proposition is similar to that of Lemma 6.9.2 with
minor changes. The same procedure will work for the function

t

/ u(t, s) f(s)
0
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Since the space X1 is continuously embedded into the space Xo, the inclu-
sion f E C([0, T]; Xo ) serves to motivate that the function # is continu-
ously differentiable on the segment [0, T] in the space X and

t

#’(t) = A(t) / U(t,s) f(s) ds 
0

With the relation f E C([0, T]; X1 ) established, the evolution operator
U(t, s) is strongly continuous in A(T) in the norm of the space X1. Recall
that the space X~ is continuously embedded into the space Xo, so that
#’ G C([0, T]; Xo ) on the strength of condition (H4.1). By Lemma 6.9.1
the function # belongs to CI([0, T]; X0 ) and relation (6.9.4) leads to 
final conclusion. Thus, Lemma 6.9.3 is completely proved. ¯

Before we undertake the proof of Theorem 6.9.1, let us recall that the
main difficulty here lies in the unique solvability of the system of equations
(6.8.8)-(6.8.9) in the class of functions

u e c([0, ), p e c([0, T1]; Y)

with some value T1 > O. With regard to the function

f(t) = f( t, u(t),p(t))

it is not difficult to derive from (6.8.8)-(6.8.9) the equation

t

¢(t) = BU(t,O) uo + B / U(t,s) f(s) 
0

which can be differentiated by the formulae of Lemmas 6.9.2-6.9.3. The
outcome of this is

t

(6.9.9) ¢’(t) = BA(t) U(t,O)uo+ BA(t) / U(t,s) f(s) f(t) 

0

It is worth noting here that the preceding equation is similar to (6.8.19)
and so we are still in the framework of Theorem 6.8.1. Because of (6.8.8),
equation (6.9.9) can be rewritten 

(6.9.10) ¢’(t) B A(t)u(t) + B f( t, u(t), p(t
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yielding

(6.9.11)

with z(t) = ¢’(t)- BA(t)u(t)- B (t, u(t) incorporated. Here we have
taken into account conditions (6.9.5) and (H6). In the sequel we deal 
the new functions

go(t) : ¢’(t) - BA(t) U(t,O) uo- U f~ (t, U(t,O) 

g,(t, u) = -~ ( /~(t, ~) - f~ u(t, 0) u0)),

K(t,s) = -BA(t) U(t,s).

Putting these together with (6.8.8) we obtain

t

z(t) = go(t)+g,(t, u(t)) + / ~(~,s) f(s, ~(s), 
0

showing the new members to be sensible ones. By the definition of the
function z(t) the relation z(0) -- Zo holds true, where the element z0 
defined by (6.8.11). We note in passing that in (6.8.11)

BA(0) Uo = BA(0) 

By assumptions (HS) and (H7)-(H9) of Section 6.8 there exists a sufficiently
small value t such that equation (6.9.11) becomes equivalent 

p(t) = ~(t, z(t)),
thereby reducing the system of the equations for recovering the functions
u and p to the following one:

t

(6.9.12) u(t) = U(t,O)uo + / U(t,s) f( s, u(s), 
0

(6.9.13) p(t)

t

0

In accordance with what has been said, the last system is similar to (6.3.9)
and (6.3.13). Because of this fact, the rest of the proof is simple to follow
and so the reader is invited to complete the remaining part on his/her own
(for more detail see the proof of Theorem 6.3.1).,
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We now turn to the linear ease when

(6.9.14) f(t, u, p) = L1 (t) u + L~ (t) p + 

In this regard, we will show that the inverse problem of interest becomes
solvable on the whole segment [0, T].

Theorem 6.9.2 Let conditions (6.9.4), (H3.1)-(H4.1) of the present sec-
tion and conditions (H1)-(H4) of Section 6.8 hold,

u0 ¯ X1, ¢ ¯ C1([0, T];Y),

and representation (6.9.14) take place with

and

B u0 = ¢(0)

La ̄  C([0, T]; £(X) N £(Xo)N £(X1)),

F e c([0, T]; xl).

If for any t e [0, T] the operator B L2(t) is invertible in the space Y and

(B L2)-1 ¯" C([0, T]; £(Y)),

then a solution u, p of the inverse problem (6.9.1)-(5.9.3) exists and is
unique in the class of funclions

u ¯.CI([O,T];X)~C([O,T];X,),

Proof By the above assumptions the conditions of Theorem 6.9.1 will be
valid with the members

f~(t,u) -- n~(t) u ÷ F(t),

f~(t,u,p) = L2(t)p,

fz(t,z,p) = B L2(t)p,

,~(t, ~) (B c~(t))-1 --~ Z.
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Therefore, the inverse problem (6.9.1)-(6.9.3) becomes equivalent to 
system (6.9.12)-(6.9.13), which in terms of Theorem 6.9.2 takes the 

t

(6.9.15) u(t) = Uo(t) + / ( IQ (t, 
0

+ LI (t, s) p(s)) 

t

(6.9.16) p(t) po(t) + / ( I( 2(t, s)
0

+ L2(t, s)p(s)) 

where the functions uo(t), po(t) and the kernels K 1 (t, 8), L,(t, s), K2(t, 
L2(t, s) are defined by formulae (6.8.30) with no use of bar over the operator
B A(t). The initial assumptions ensure the continuity of nonhomogeneous
terms in (6.9.15)-(6.9.16) and the strong continuity of the operator kernels
in the appropriate spaces. It is sufficient for a solution of the system of
the Volterra integral equations (6.9.15)-(6.9.16) of the second kind to exist
and to be unique in the class of functions

u e C([0, T]; X,), p ¯ C([0, T]; 

Moreover, as we have established at the very beginning of the proof of
Theorem 6.9.1, the solvability of the inverse problem in the indicated class
of functions implies the continuous differentiability of the function u in the
norm of the space X, thereby completing the proof of the theorem.I

6.10 Inverse problems with smoothing overdetermlnatlon:
semilinear hyperbolic equations and
operators with fixed domain

As in the preceding section we focus our attention on the inverse problem
which has been under consideration in Section 6.8. For the reader’s con-
venience we quote below its statement: it is required to find a pair of the
functions u e C1 ([0, T]; X ), p ¯ C([0, T]; Y ) from the set of relations

(6.10.1) u’(t) = A(t)u(t)+ f(t,u(t),p(t)), 0<t<T,

(6.10.2) u(0) = uo,

(6.10.3) Bu(t) = ¢(t), 0 < t < 
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in which for any t ¢ [0, T] the operator A(t) with a dense domain is sup-
posed to be linear and closed in the space X. Here

f: [O,T]xXxY ~--~ X

and B refers to a linear operator acting from the space X into the space
Y. The smoothing property of the operator B is well-characterized by
the inclusions

(6.10.4) B e £(X, B----~ ¯ (?([0, T]; £(X, Y)).

As a matter of fact, the current questions are similar to those explored
in Section 6.8 with only difference relating to another definition for equa-
tion (6.10.1) to be of hyperbolic type. Conditions (It3) and (H4) 
posed in Section 6.8 reflect in abstract form some properties of Friedrichs’
t-hyperbolic systems. In turn, the conditions of hyperbolidty to be used
here reveal some properties of the first order systems connected with a
hyperbolic equation of the second order.

Consider a family of norms I1’ I1~ on a Banach space X, the elements of
which are equivalent to the original norm of the space X. The same symbol
will stand for the induced operator norms on the space £(X). Also, we take
for granted that

(HH1) the domain of the operator A(t) does not depend on t, that is,

(HH2) there is a number a > 0 such that for any t ¯ [0, T] all real numbers
~ with 1~1 > a are contained in the resolvent set of the operator

A(t) and
1

(HH3) there are some values s ¯ [0, T] and A (I A I > a) such that the
operator function

C(~) : (A(O -)~I) (A(s) - 11)-1

is continuously differentiable on the segment [0, T] in. the norm of
the space £(X);

(HH4) a nondecreasing function ~(t) is so chosen as to satisfy for any
t ¯ [0, T] and all elements x ¯ X

II ll,_> all ll, a>0,
and for every ~ > s and all elements x ¯ X

II II, - II ̄  II. < - II ¯ II.
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(6.10.5)

(6.10.6)

to be well-posed.
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Conditions (HH1)-(HH4) are sufficient for the Cauchy problem

u(0) = u0,

It is well-known that under conditions (HH1)-(HH4)
there exists an evolution operator U(t, s), which is strongly continuous
in the triangle

A(T) = {(t,s): O<s<T,s<t<T}

and allows to represent a solution of the Cauchy problem (6.10.5)-(6.10.6)
by

t

(6.10.7) u(t) = U(t,O) uo ÷ / U(t,s) ds.

o

In the case when u0 e :/:) and Af e C([0, T]; X) formula (6.10.7) gives
a unique solution of the Cauchy problem (6.10.5)-(6.10.6) in the class 
functions

~ e Cl([O,T];X), A~ e C([O,T];X).

For each u0 e X and any f e C([0, T]; X ) formula (6.10.7) gives a unique

continuous solution (in a sense of distributions) u e C([0, T]; X ) of prob-
lem (6.10.5)-(6.10.6). Finally, one thing is worth recalling that for any 
number ), with [[ ,k ] > a the operator function

(6.10.8) W~(t,s) (A(t)-AI)U(t,s)(A(s)-AI)-1

is strongly continuous in A(T) (see Ikawa (1968)j.

Lemma 6.10.1 For any element Uo E X and all values t >_ s the function

¢0(t) = B U(t, s) 

is differentiable on the segment [0, T] and

¢~(t) = B A(t) U(t,s) 
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Lemma 6.10.2 For ang function f ~ C([0, T]; X) the function

t

~(t) = ~ f u(t, s) f(~) 
0

is differentiable on the segment [0, T] and

g’(t) = B A(t)

t

-- } U(t,s) f(s)
0

ds + B f(t).

The reader is invited to establish these lemmas on hir/her own, since
they are similar to Lemmas 6.8.1-6.8.2, respectively, with D in place of the
space X0.

The next step is to find out whether the inverse problem concerned
has a continuous solution. As in Section 6.8 we say that a pair of the
functions u e C([0, T]; X ), p e C([0, T]; Y) gives a continuous solution
of the inverse problem (6.10.1)-(6.10.3) if the following relations occur:

t

(6.10.9) u(t) = U(t,O) uo+ } U(t,s) f(s, u(s),p(s)) 
0

(6.10.10) B u(t) = ~(t) 0 < t < T.

Theorem 6.10.1 Let conditions (6.10.4) and t3 Uo = ¢(0) hold and let

uo ¯X, ¢ ̄  c~([o, T]; v).

If conditions (6.8.10) and (H5)-(H9) Section 6.8as well as conditions
(HH1)-(HH4) of the present section are fulfilled, then there is a value
T1 > 0 such that on the segmenl [0, Ta] a solulion u, p of lhe inverse
problem (6.10.1)-(6.10.3) exists and is unique in the class of functions

u ̄  c([o, T,]; x), p ̄  c([o, T,]; y).

Proof In proving the above assertion one should adopt the arguments and
exploit some facts from Theorem 6.8.1. Indeed, with regard to the function

f(t) = f( t, u(t), 
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observe that the initial assumptions ensure that for. any continuous func-
tions u and p the function f(t) is continuous on [0, T];. Furthermore, having
stipulated condition (6.10.10) the equation holds true:

t

u(t, o) .o + B/, U(t, ¢(t) B ds.

0

On account of Lemmas 6.10.1-6.10.2 the preceding can be differentiated as
follows:

t

¢’(t) = BA(t) U(t,O) uo + BA(t) / U(t,s) f(s) f(t) 

0

Because of (6.10.9), it follows from the foregoing that

¢’(t) = B A(t) ~(t) + t~ f( t, ~(t), 

which admits, in view of (6.8.10) and (H6), an alternative 

(6.10.11) fa(t, ¢(t), p(t)) = z(t),

where
z(t) = ¢’(*) - B A(t) u(t) - B (t, u(t) ) .

Since z(0) = z0, where z0 is given by formula (6.8.11), we deduce by 
cessively applying conditions (H5) and (H7)-(H9) of Section 6.8 that 
all sufficiently small values t equation (6.10.11) becomes

;(t) = ~( t, z(t)) 

Forthcoming substitutions

go(t) = ¢’(t) - B A(t) U(t, O) uo - B fl (t, U(t, 

gl(t,u) = -13 (fl(t, u)- fl(t, U(t,O)uo)),

K(t,s) = -BA(t) U(t,s)

make our exposition more transparent and permit ns to derive represen-
tation (6.8.23) for the function z and thereby reduce the inverse problem
(6.10.1)-(6.10.3) to the system of integral equations

t

U(t,O)uo q- / U(t,s) f(s, u(s), V(.S)) (6.10.12) ._

0
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(6.10.13)
t

p(t) -= ~(t, go(t)÷gl(t, u(t)) ÷ J K(t,s) 
0

, ;(s)) ds).

It should be noted that the preceding system is almost identical to the
system (6.3.9), (6.3.12) and, therefore, we finish the proof of the theorem
in just the same way as we did in proving Theorem 6.3.1. ¯

In the linear case when

(6.10.14) f(t,u,p) = Ll(t)u+ L2(t)p+ 

the solvability of the inverse problem concerned is revealed on the whole
segment [0, T].

Theorem 6.10.2 Let conditions (6.10.4) and Buo = ¢(0) hold and let

. Uo e X, ¢ e C1([0, T]; V).

One assumes, in addilion, lhal assumptions (HH1)-(HH4) are true 
decomposition (6.10.14) takes place with

L, e C([0, T];£(X)); L2 e C([0, TI;£(Y,X)); F e C([0, T];X).

If for any fixed value t G [0, T] the operator B L2(t) is invertible in the
space Y and

(S L2)-1 e C([0, T]; ~(Y)),

then a solution u, p of the inverse problem (6.10.1)-(6.10.3) exists and is
unique in the class of functions

u e C([0, T]; X), p ¯ C([0, T]; Y).

Proof The main idea behind proof is similar to that of Theorem 6.8.2. In
this line, we begin by setting the functions

£(t,u) = n~(t) u + F(t),

f~(t, u,p) = L~(t)p,

f3(t,z,p) = B L~(t)p,

O(t, z)(BZ2(t))-~
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being still subject to conditions (H5)-(H9) of Section 6.8. Therefore, 
orem 6.10.1 may be of help in reducing the inverse problem in view to a
system of the type (6.10.12)-(6.10.13). In the case which interests us 
system in question takes the form of the system of the Volterra linear
equations of the second kind

(6.10.15)

t

u(t) = uo(t) + / ( Kl(t,s)u(s) + Ll(t,s)p(s)) 
0

(6.10.16)

t

p(t) = po(t) + J ( K2(t,s)u(s) + L~(t,s)p(s)) 
0

where the functions uo(t), po(t) and the ke~nels I(1 (t, s), L1 (t, s), K~(t, 
and L~(t, s) are specified by formulae (6.8.30). Under the conditions 
Theorem 6.10.2 the implicit representations (6.8.30) imply that the nonho-
mogeneous terms of equations (6.10.15)-(6.10.16) are continuous and their
operator kernels are strongly continuous. Just for .this reason the preceding
system of integral equations is uniquely solvable and the "current proof is
completed.,

We now focus our attention on obtaining the conditions under which
a continuous solution of (6.10.1)-(6.10.3) will be .differentiable. Accepting
(6.8.10), that is, involving the approved decomposition

f(t,u,p) = fl(t,/z) -t- f2(t,zt,p)

and holding a number A (I A I > a) fixed, we introduce the new functions

gl(t,v) = (A(t) -AI)f~(t,(A(t)-AI)-~v),

g2(t,v,p) = ( A(t) - A I ) f2( t, ( A(t) -~"v, p).

Let u0 E 7?. The element v0 is defined by

(6.10.17) vo =
Also, we require that

(HH8) for some number R > 0 and the element Vo given by formula
(6.10,17) both functions 91 and g~ are continuous with respect to
the totality of variables on the manifold SxxY ((Vo, Po), R, T) and
satisfy thereon the Lipschitz condition with respect to (v,p).
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Theorem 6.10.3 Let (6.10.4) hold, Uo ¯ ~, ¢ ¯ C1([0, T]; ¥) and
B u0 = ~b(0). Then the collection of conditions (HH1)-(HH4), (HHS),
(6.8.10) and (H5)-(H9) of Section 6.8 assure that there is a value T1 > 0
such that a solution u, p of the inverse problem (6.10.1)-(6.10.3) exists and
is unique in the clas~ of functions

u ¯ C1([0, T~]; X), p ¯ C([0, T~]; Y).

Proof First of all let us stress that the conditions of Theorem 6.10.1 hold
true and provide support for decision-making that for all sufficiently small
values t a continuous solution of the inverse problem (6.10.1)-(6.10.3) exists
and is unique. We are going to show that there is a sufficiently small value
T1 for which this solution satisfies the condition

(6.10.18) Au e C([0, T1]; X).

With this aim, the system of the integral equations (6.10.12)-(6.10.13) 
put together with the governing equation for the function

v(t) = ( A(t) - ~ I) 

Relation (6.10.8) yields the identity

(6.10.19) (A(t)-~I)U(t,s) = W~(t,s)(A(s)-~I

Some progress in deriving a similar equation for the function v will be
achieved by subsequent procedures: applying the operator A(t) - ~ to
(6.10.12), joining the resulting equation with (6.10.17) and (6.10.19) 
involving the relevant formulae for the functions g~ and g~. The outcome
of this is

t

(6.10.20) v(t) = vo(t) + / W~(t,s)g(s, ds,

0

where

(6.10.21)

v0(t) w (t, 0)vo,

g(t,v) = g (t,v) v, p(t)).

From the conditions of the theorem it follows that the function vo(t) is con-
tinuous on the segment [0, T]. Moreover, the function g(t, v) is continuous
in a certain neighborhood of the point (0, v0) with respect to the totality
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of variables and satisfies in this neighborhood the Lipschitz condition in
v. Since the kernel W~(t, s) involved in (6.10.20) is strongly continuous,
equation (6.10.20) is locally solvable in the class of continuous functions.
Arguing in inverse order we see that the function

u(t) = ( A(t) - A I )-I 

where v(t) is a solution to (6.10.20), will satisfy equation (6.10.12). Being
a solution of the system (6.10.12)-(6.10.13), the function u(t) is subject to
the relation

(A(t)- AI) u(t) ¯ C([0, 

if the value T~ > 0 is sufficiently sm~ll. We note in passing that the
preceding inclusion is equivalent to (6.10.18).

With the aid of (6.10.9) we establish the representation

t

u(t) = u(t, o) uo + f u(t, s) f(s) 
0

where f(t) = f(t, u(t), p(t)). Recall that u0 ̄  D. The continuous differ-
entiability of the function u will be proved if we succeed in showing that
the function A f is continuous. The continuity of A f, in turn, is equivalent
to the continuity of (A - A I) f and the last property is ensured by the
relation

( A(t) - A I ) f(t) = g( t, 

where the function g is defined by (6.10.21) and the function

v(t) = ( A(t) - A I) 

is continuous. This completes the proof of the theorem..

We are interested in the linear case where

(6.10.22) f(t,u,p) = L~(t) u+ L2(t)p+ 

which is covered by the following proposition.

Theorem 6.10.4 Let under conditions (6.10.4) and B Uo = ¢(0) hold and

uo ̄  9, ¢ ̄  c1([0, T]; V).
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One assumes, in addition, that under assumptions (HH1)-(HH4) decom-
position (6.10.22) is valid with

La, (A- ~I) La (A- ~I)-~ ¢ C({0, £(X)) ;

L~, AL~ ~ C([0, T]; £(Y, X));

F, AF ~ C([O, T]; X).

if for any fixed value t E 0 < t < T the operator B L2(t) is invertible in the
space Y and

(BL2)-~ ¯ C([O, T]; £(Y)),

then a solution u, p of the inverse problem (6.10.1)-(6.10.3) exists and is
unique in the class of functions

u e C~([0, T]; X p ~ C([0, T]; Y).

Proof Due to the restrictions imposed above the conditions of Theorem
6.10.3 will be satisfied if we agree to consider

fl (t, u) = L~ (t) u + F(t),

= L:(t)p,

f3(t,z,p) = B L~(t) 

O(t,z) = (BL~(t))-;z,

g~(t, v) = ( A(t) - Ll(t )(A(t) - ~I ) -~

g:(t,v,p) = ( A(t)- ~I) L:(t)p.

v + (A(t) - ~1) 

With these ingredients, the system of equations (6.10.12)-(6.10.13),
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(6.10.23)

(6.10.24)

(6.10.25)

where

t

~(t) = ~o(t) + / (K, (t, ~(~
o

+ L, (t, s) p(s)) 

t

p(t) = po(t) + f ( K~(t, s) 
o

+ r~(t, ~);(~1) 
t

v(t) =~o(t) + / K~(t,s)v(s) 
o

t

~o(t) = v(t, o) ~o + f v(t, ~) F(~) 
o

~;~ (t, ~) = u(t, s) ~ 

L~(t,s) = U(t,s) L~(s),

po(t) = (BL~(t)) -~ [¢’(t)- (BA(t)+ BL~(t))

t

K~(t, s) = - ( B L~(t)) -1 ( B A(t) + B La (t)) V(t, (s)

L~(t,s) = -( B L:(t))-’ ( B A(t) + B L,(t)) U(t,s) 

~o(t) 
t

w~(t, o) ~o + / w~(t, ~)[(A(~) - ~) ~
o
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+ /
0

Under the initial premises the functions uo(t) and po(t) are continuous on
the segment [0, T] and the operator kernels K1 (t, s), L1 (t, s), I<~ (t, s) 
n2(t, s) are strongly continuous in A(T). Relations (6.10.23)-(6.10.24) 
be treated as a system of the Volterra linear equations of the second kind for
the functions u and p. Under such an approach the existence of a solution
to (6.10.23)-(6.10.24) in the class of continuous functions is established
on the whole segment [0, T] in light of the results of Section 5.1. On the
other hand, for any continuous functions u and p the nonhomogeneous
term 9o(t) arising from (6.10.25) is continuous and the kernel K3(t, s) is
strongly continuous. Therefore, equation (6.10.25) is also solvable in the
class C([0, T]; X). In view of this, another conclusion can be drawn that
relation (6.10.18) occurs for T1 = T, thereby justifying the continuous
differentiability of the function u on the segment [0, T] in agreement with
Theorem 6.10.3 and completing the proof of the theorem.~





Chapter 7

Two-Point Inverse Problems for

First Order Equations

7.1 Two-point inverse problems

In this section we deal in a Banach space X with a closed linear operator
A with a dense domain. For the purposes of the present section we have
occasion to use two mappings ~: [0, T] ~-~ £(X) and F: [O, T] ~-~ X and
fix two arbitrary elements u0, ul ~ X. The" two-point inverse problem
consists of finding a function u ~ C: ( [0, T]; X ) and an element p E X from
the set of relations

(7.1.i) u’(t) = A u(t) + f(t) , 0 < 

(7.1.2) u(0) = u0,

(7.1.3) f(t) = ~(t)p+ F(t), 0 < 

(7.1.4) u(T) = ul.

One assumes, in addition, that the operator A is the generator of a strongly
continuous semigroup V(t) or, what amounts to the same things, the

489
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Cauchy (direct) problem (7.1.1)-(7.1.2)is uniformly well-posed. It is 
from Fattorini (1983) that for u0 ̄  79(A) 

f ¯ c1 ([o, T]; X) + C([0, T]; 9(A))

the direct problem (7.1.1)-(7.1.2) has a solution in the class of functions

u ¯ C1([0, T]; X), Au ¯ C([0, T]; X).

This solution is unique in the indicated class of functions and is repre-
sentable by

(7.1.5)
t

u(t) = V(t)uo + / V(t - s) f(s) 

0

In contrast to the direct problem the inverse problem (7.1.1)-(7.1.4) 
volves the function f as the unknown of the prescribed structure (7.1.3),
where the element p ¯ X is unknown and the mappings q~ and F are
available. Additional information about the function u in the form of the
final overdetermination (7.1.4) provides a possibility of determining the
element p.

In the further development one more restriction is imposed on the
operator-valued function O:

(7.1.6) ¯ ̄  c1 ([0, T]; ~(X)),

which ensures that for any p ¯ X the function O(t)p as a function of
the argument t with values in the Banach space X will be continuously
differentiable on the segment [0, T]. Because of this, the function f of the
structure (7.1.3) belongs to the space

c1([0, T]; X) + C([0, T]; V(A))

if and only if the function F belongs to the same space. We note in pass-
ing that from relation (5.7.4) and the very definition of the inverse problem
solution it follows that the inclusion ul ¯/)(A) re~gards as a necessary solv-
ability condition. Before proceeding to careful analysis, it will be sensible
to introduce the concept of admissible input data.

Definition 7.1.1 The elements Uo and ul and the function F are called
the admissible input data of the inverse problem (7.1.1)-(7.1.4) if

(7.1.7) Uo, ul ¯ :D(A), F 1( [0, T]; X) +C([ 0, T]; ~D (A))
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In the case when the input data are admissible, a solution of the
Cauchy problem (7.1.1)-(7.1.2) can be expressed by (7,1.5), thus causing
the equivalence between the system joining three relations (7.1.1)-(7.1.3)
and the following equation:

t

(7.1.8) u(t) = V(t) uo + j V(t [q)(s ) p + F (sds,
o

0<t<T.

All this enables us to extract a single equation for the unknown element p.
In view of (7.1.8), relation (7.1.4) becomes

T

ul = v(T) Uo + / V(T- [O(s) p + F(s)ds
o

and admits an alternative form

(7.1.9) Bp = g,

where

(7.1.10)

T

Bp =f y(T- s)e(s)p
0

(7.1.11)

T

g =u, - V(T) Uo - / V(T- s) F(s) 
o

This provides sufficient background to deduce that the function u and the
element p give a solution of the inverse problem (7.1.1)-(7.1.4) with admis-
sible input data if and only ifp solves equation (7.1.9) and u is given 
formula (7.1.8). Thus, the inverse problem of interest amounts to equation
(7.1.9).

The next step is to reveal some elementary properties of equation
(7.1.9) in showing that its right-hand side g defined by formula (7.1.11) 
an element of the manifold 7)(A). Indeed, recalling that u0, ul E 7)(A)
we may attempt the sought function F in the form F = F1 + F2 with
F1 E Cl([0, T]; X) and F2, AF2 ~ C([0, T]; X). From semigroup theory
(see Fattorini (1983)) it is known that the function u defined by (7.1.8) 
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subject to the following relations:

(7.1.12) u’(t) = V(t) (AUo ÷ 

+ ~(o) ~) + F~’(~)

t

+ / v(~ - s/
0

+ AF~(~)+ ¢’(~)p] 

(7.1.13) A u(t) = V(t) ( A uo + 

+ v(0)p) - F~(,) - ¢(,) 

t

/ v(~ - ~) [ r:(~)+

0

+ A r~(~) + ~’(~)p] 

At the same time, for the element g defined by (7.1.11), the following
relationship takes place:

(7.1.14) Ag =Au~-V(T)(Auo+F~(O))+F~(T)

T

[ V(T- ~) [ r:(~) + A ~(~)] 
0

whence the inclusion g ~ ~(A) becomes obvious. On the other hand, for
uo = 0 and F = 0 we thus have g = u~. Since u~ is ~rbitr~rily chosen from
the manifold ~(A), any element of ~(A) may appear in place of g. Thus,
we arrive at the following assertion.

Corollary 7.1.1 The unique solvability of ~he inverse.problem (7.1.1)-
(7.1.4) wi¢h any admissible inpu~ da~a is equivalen¢ ~o the invertibility of
~ o~o~ ~ ~d ~ ~ ~(~-~) = ~(~).
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The operator B-1 (if it ~xists) is closed. This is due to the fact that
the operator B is bounded. It is not difficult to establish this property
with the aid of (7.1.10). If the operator A is unbounded, thus causing that
the manifold D(A) does not coincide with the space X, then the operator
B-1 fails to be bounded. However, the Banach theorem on closed operator
yields

B-1 e £(1)(A), 

if the space T)(A) is equipped with the graph norm of the operator 

Corollary 7.1.2 If a solution of the inverse problem (7.1.1)-(7.1.4) exists
and is unique for any admissible input data Uo, ul ¯ 7~( A ) and

f =F,+f2

with rl ¯ C’ ([0, T]; X ), F2 ̄  C([O, T]; 79(A)), then the stability estimates
hold:

(7.1.15) Ilullc,<[0,al;x) ~ c (llu01l~<A)÷ II~lll~<A)

(7.1.16)

(7.1.17)

÷ II F, IIc’([O,TI;X) IIF2 II¢([0,T]; v(a))),

IIP II < c (ll ~o IIv(a) ÷ II ’~, IIv(~)

Proof Indeed, since the inverse problem of interest is uniquely solvable
under any admissible input data, the operator B is invertible and so

B-1 ¯ £(D(A), 

In view of this, a solution to equation (7.1.9) satisfies the inequality

tIP[I-< M ttgII~tA) 
where M -- II B-1IĪ With this relation established, estimate (7.1.17)imme-
diately follows from (7.1.11) and (7.1.14). When (7.f.8), (7.1.12)-(7.i.13)
and (7.1.17) are put together, we come to (7.1.15) (7.1.16) as desired.
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It is worth noting here that in the genergl case the operator B fails to
be invertible, thus causing some difficulties. This obstacle can be illustrated
by the example in which the operator A has an eigenvector e with associated
eigenvalue A. One assumes, in addition, that ¢(t) is a scMar-vMued function
such that

T

exp
o

ds:O.

Let the value q%(t) of the function ~ at the point t 6 [0, T] be identified with
the operator of multiplication by the number O(t) in the space X. Turning
now to the inverse problem (7.1.1)-(7.1.4) observe that the function u 
the element p are given by the formulae

This pair constitutes what is called a nontrivial solution of the inverse
problem with zero input data u0, ul, F = 0, thereby clarifying that the
operator B transforms the nonzero element e into zero in the space X.

In this connection the conditions, under which the operator B is in-
vertible and equation (7.1.9) is solvable in every particular case, become im-
portant and rather urgent. What is more, we need to know at what extent
a solution to equation (7.1.9) may be nonunique and find out the conditions
under which Fredholm’s solvability of the inverse problem (7.1.1)-(7.1.4)
arises. To overcome difficulties involved in a study of equation (7.1.9) and
stipulated by the fact that this equation is of the first kind, it is reasonable
to reduce it to an equation of the second kind by imposing extra restrictions
on the input data.

Lemma r.1.1 Let ¯ e c1 ([0, T]; £(X)), the operator Op(T) be invertible
and O~(T)-1 6 £(X). If the elemen* g defined by (7.1.11) belongs to the
manifold V(A) and e p(A), the e a (7.1.9) is eV ilent to th
following one:

(7.1.18) p- B~ p = h,
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w~e~e

(7.1.19) ~, : ~(T)-i[/ V(T- s)
0

× [¢’(s) - ¢(s)]

+ V(T) ~(0)]] 

(7.1.20) h = -q}(T)-i( - A I ) g.

Proof One well-known fact from semigroup theory may be useful in the
further development: for any function f 6 C~ ([0, T]; X)

t t

(7.1.21) A f(O) f(t) 

0 0

Since A 6 p(A) and g ~/)(A), equation (7.1.9) is equivalent to the following
one~

(7.1.22) (A-AI)Bp: (A-II)g,

which, in turn, ’can be rewritten as
T

(7.1.23) V( T-s)¢’(s)pds+V(T)¢(O)p-~(T)p
0

T

-~ / V(T-s)~(s)pds : (A-AI) 
0

Here we have taken into account (7.1.10) and formula (7.1.21) with f(t) 
O(t) p incorporated. Collecting two integral terms in (7.1.23) and applying
then the operator ~(T)-1 to both sides of the resulting equality, we derive
(7.1.18), thereby completing the proof of Lemma 7.1.1.1

In light of the well-known results from semigroup theory there exist
constants M >_ 1 and/9 such that the estimate

(7.1.24) II V(t)ll < M exp(flt)

is valid for any t k 0. This provides suppo.rt for the view that V(t) is a
contraction semigroup if M = 1 and/9 < 0. For a wide range of applica-
tions the corresponding semigroups turn out to be contractive. Moreover,
in some practical problems the constant /9 arising from (7.1.24) is strictly
negative and in every such case the semigroup is said to be exponentially
decreasing.
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Theorem 7.1.1 If under the conditions of Lemma 7.1.1 estimate (7.1.24)
holds and

T

/ [~’(s) - ~(s)] ~(T)-’ e~p (~ (T- (7.1.~)
o

1
+ (I)(O)~(T) -1 exp (/~ T) < 

then the operator B is invertible,

7)(B-1) =

and, in particular, the inverse problem (7.1.1)-(7.1.4) is uniquely solvable
for any admissible input data.

Proof By virtue of Lemma 7.1.1 equatio~ (7.1.9) can be replaced 

(7.1.18) with

v’ = ¢(T) 
Multiplying the resulting equMity by ~(T) from the left yields the governing
equation for the element p’:

(7.1.26) p’ - B~ p’ = h’,
where the expressions

T

B~ = /V(T-s)[~’(s)- ~(s)] ~(T) -1 ds + V(T)~(0)~(T)-1 ,

0

~’=-(~-~)~
are derived from representations (7.1.19)-(7.1.20). Putting these together
with (7.1.24)-(7.1.25) we conclude that the operator B: has the bound

whence the unique solvability of (7.1.26) follows for any right-hand side
h~ ~ X. Therefore, equation (7.1.18) is also uniquely solvable for any
right-hand side, since the elements h and h~ are related by

h’= e(T) 

where ~(T), ~(T) -1 e C(X). For the same reason as before, Lemma
7.1.1 asserts the unique solvability of (7.1.9) for any admissible input data.
Furthermore, on account of Corollary 7.1.1 the operator B is invertible, so
that

V(~-~) = ~(~),

thereby completing the proof of the theorem. ̄
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Theorem 7.1.1 applies equally well to one particular problem in which
a scalar-valued function ¯ is defined and continuously differentiable on the
segment [0, T]. We identify the number (I)(t) and the operator of multi-
plication by this number (I)(t) in the space X bearing in mind the inverse
problem (7.1.1)-(7.1.4). 

and ̄  as an operator function belongs to the space C1([0, T]; £(X)). 
operator ~(T) is invertible if and only if ~(T) # 0 and its inverse coincides
with the operator of multiplication by the number

(1)(T)-~ : ]/4)(T).

Also, for all values t 6 [0, T] we accept

(7.1.27) qb(t) > O’(t) >_ 

Theorem 7.1.2 One assumes Ihat ~he semigroui3 V(t) generated by the
operalor A obeys estimate (7.1.24) wilh M = 1 and ~9 < O. If Ihe fundion
¯ 6 CI[0, T] is in line with (7.1.27), then a solution of Ihe inverse problem
(7.1.1)-(7.1.4) ezisIs and is unique for any admissible inpuI daIa.

Proof From estimate (7.1.24) it follows that II V(T)II < 1, giving 1 e
p(V(T)). The theorem on mapping of the semigroup spectrum yields the
inclusion 0 ~ p(A), making it possible to apply Theorem 7.1.1 to ,~ = 0.
Denote by Q the left-hand side of inequality (7.1.25). Then

T

Q = l,(r)l -*] l ¢’(,)1 exp(fl (T-s)) ds+ I~(O)/4p(T)I exp(/9 T).
0

Since fl < 0, we obtain for any s 6 [0, T] the quantity

e~p(~(T-s)) 

and the following chain of relations as an immediate implication of condi-
tions (7.1.27):

T

fQ < 4~(T)-~ 4)’(s) ds + ~(T) exp (/9 T)

0

= 42(T)-~ ((I)(T)- (I)(0)) + ~--~ 

(I)(T) ( 1 - exp (/5 T)).
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Recall that, by assumption, (I)(0) > 0, (I)(T) > 0 and ~ < 0 and, therefore,
estimate (7.1.25) remMns valid. This provides reason enough to refer 
Theorem 7.1.1 which asserts the unique solvability of the inverse problem
(7.1.1)-(7.1.4) with any admissible input data. 

Of special interest is one particular case ~(t) -- 1 for which the inverse
problem (7.1.1)-(7.1.4) can be written 

(7.1.28)

(7.1.29)

u’(t) = Au(t) +p+ F(t), 0 < 

u(O) : Uo, u(T) Y---- II1.

The function (I) = 1 satisfies both conditions (7.1.27) and so Theorem 7.1.2
is followed by

Corollary 7.1.3 If estimate (7.1.24) with M = 1 and fl < 0 is obtained
for the semigroup V(t) generated by the operator A, then a solution of the
inverse problem (7.1.28)-(7.1.29) exists and is unique for any admissible
input data.

In this line, we claim that Corollary 7.1.3 will be v.alid under the
weaker condition

(7.1.30) 1 e p(V(T)).

Indeed, a first look at equation (7.1.9) may be Of help in this matter.
Because of (7.1.30), the theorem on mapping of the semigroup spectrum
yields the inclusion 0 E p(A), due to which the integral on the right-hand
side of (7.1.10) can be found for -- 1. This canbe doneusing(7.1.21)
with f(t) = p. The outcome of this is

(7.1.31)

T

A/ V(T - s)

o

p ds = (v(T) - 

Comparison of (7.1.31) and (7.1.10) gives.

Bp = A-i( V( T)-I)p,

implying that

(7.1.32) B-1 = (V(T)-I)-IA.
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With this relation in view, the element p can explicitly be expressed by

(7.1.33) p (V(T) I)-IA

Being concerned with the element f, we find the function u by formula
(7.1.8):

t

(7.1.34) u(t) = V(t)uo+/ V(t-s)[p+F(s)].ds, 0<t<T,
0

since 4~ = 1. Thus, we arrive at the following assertion.

Corollary 7.1.4 ff the semigroup V(t) generated by the operator A sat-
isfies condition (7.1.30), then a solution of the inverse problem (7.1.28)-
(7.1.29) exists and is unique for any admissible input data. Moreover, this
solution is explicitly found by formulae (7.1.11), (7.1.33) and (7.1.34).

In trying to verify condition (7.1.30) some difficulties do arise. How-
ever, for a wide class of problems the theorem on the spectrum mapping is
much applicable and, by virtue of its strong version, we thus have

exp (ta(A)) = ~r(V(t)) {0}.

For example, the problem with a self-adjoint operator A falls into the"
category of such problems and so condition (7.1.30) can be replaced 
A-I ¯ £(X). Furthermore, the class we have mentioned above contains
also problems with parabolic equations, since the operator A generates an
analytic semigroup. In this case the meaning of condition (7.1.30) is that
the spectrum of the operator A contains no points of the type 2zrki/T,
where k is an integer and i is the imaginary unit.

As stated above, the inverse problem under consideration may have,
in general, a nontrivial solution even if all of the input data functions
become nonzero. If this inverse problem possesses a compact semigrou’p,
then Fredholm-type solvability of this problem can be achieved. Recall
that the semigroup V is said to be compact if the operator V(t) is compact
for allt >0.

Theorem 7.1.3 If the operator A generates a compact semigroup,

(I) ¯ cl([o, T]; ~(X)) , -1 ¯ ~(X) , )l ¯ p (A)

and the element h is defined by (7.1.20), then the following assertions are
valid:
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(1) for the inverse problem (7.1.1)-(7.1.4) be solvable forany admis-
sible input data it is necessary and sufficient tha~ ~his problem has
only a trivial solution under the zero input data;

(2) the set of all solutions of the inverse problem (7.1.1)-(7.1.4) with
zero input data forms in the space C1([0,
dimensional subspace;

(3) there exist elements I1, 12,... ,ln C X* such that the inverse prob-
lem (7.1.1)-(7.1.4) is solvable if and only if li(h) = O, 1 < i < 

Proof It is clear that all the conditions of Lemma 7.1.1 hold true, by means
of which the inverse problem concerned reduces to equation (7.1.18). Recall
that the semigroup V is compact. Due to this property V will be continuous
for t > 0 in the operator topology of the space £(X). Since the set of all
compact operators constitutes a closed two-sided ideal in this topology, the
operator

(7.1.35) B’ = f V(T- - cts
0

is compact for any s > 0 as a limit of the corresponding Riemann sums in
the space £(X). On the other hand, the norm of the function

f(s) : V(T- s) [¢’(s) 

is bounded on the segment [0, T]. Consequently, the integral in (7.1.35)
converges as e -~ 0 in the operator topology of the space £(X), implying
that the operator

T

0

is compact. It should be noted that in Lemma 7.1.1 this integral is under-
stood in the sense of the strong topology of the space £(X).

If the operator V(T) is supposed to be compact, then so is the operator

B" = V(T) ~(0).

For the same reason as before the ~ompactness of the operators B~ and B"
both implies this property for the operator

BI = O(T)-~( ’ +B") .
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This serves as a basis for special investigations of equation (7.1.18) from
the viewpoint of Fredholm’s theory.

It is easily seen that the element g defined by (7.1.11) runs over the
entire manifold 7)(A) if the input data run over the set of all admissible
elements. Formula (7.1.20) implies that the element h runs over the entire
space X, while the element g lies within the manifold 7)(A). From such
reasoning it seems clear that the solvability of the inverse problem (7.1.1)-
(7.1.4) under any admissible data is equivalent to that of equation (7.1.18)
for any h E X. Therefore, the first assertion of the theorem is an immediate
implication of Fredholm’s alternative.

If all of the input data become zero, then h = 0, so that the set
comprising all of the solutions to equation (7.1.18) will coincide with the
characteristic subspace of the operator B1 if this subspace is associated with
the unit eigenvalue. Since the operator B~ is compact, the characteristic
subspace so constructed is finite-dimensional. In order to arrive at the

second assertion of the theorem it remains to take into account that (7.1.8)
admits now the form

t

u(t) = / V(t - s) ~(s)p 
0

Let {li} form a basis of the finite-dimensional space comprising all of
the solutions to the homogeneous equation l - B~l = 0. From Fredholm’s
theory it follows that equation (7.1.18) will be solvable if and only if l~(h) 
0, 1 < i < n. This proves the third assertion, thereby completing the proof
of the theorem. ¯

7.2 Inverse problems with self-adjoint operator
and scalar function

This section is connected with one possible statement of the two-point
inverse problem, special investigations of which lead to a final decision-
making about the existence and uniqueness of its solution. One assumes
that X is a Hilbert space, an operator A is self-adjoint and the inclusion
(I) E C1[0, T] holds. The main goal of our study is to find a function
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u ¯ C1 ([0, T]; X ) and an element p ¯ X from the set of relations

(7.2.1) u’(t) = Au(t) + f(t), 0 < 

(7.2.2) u(O) 

(7.2.3) f(t) = (~(t)p+ F(t), 0 < t < 

(7.2.4) u(T) 

when the function F ¯ C1([0, T]; X) + C([0, T]; D(A)) and the elements
Uo, ul ¯ D(A) are available, that is, the input data comprising F, u0 and
u2 are supposed to be admissible in the sense of Definition 7.1.1.

The operator A is the generator of a strongly continuous semigroup
if and only if it is semibounded from above. In that case there is a real
number b such that the operator A is representable by

b

= / ~ dE~,A

where E~ refers to the spectral resolution of unity of the operator A
(see Akhiezer and Glasman (1966)). Every element h ¯ X can be put 
correspondence with the measure on the real line

) = d(E h, h),
where (f, 9) denotes the inner product of elements f and g in the space 

A key role in "milestones" with regard to problem (7.2.1)-(7.2.4) 
played by the following lemma.

Lemma 7.2.1 Let the operator A be self-adjoint in the Hilbert space X
and E~ be ils spectral resolution of unity. One assumes, in addition, that
the function ~ belongs to the space C(R) and the set of all its zeroes either
is empty or contains isolated points only. Then the equation

is solvable with respect to p if and only if

(7.2.6)

Moreover, equation (7.2.5) with h = 0 has a unique trivial solution if and
only if the point spectrum of the operator A contains no zeroes of the func-
tion
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Proof The uniqueness of a solution to equation (7.2.5) is of our initial
concern. We proceed as usual. This amounts to considering one of the
zeroes of the function 9, say ,~0, setting h = 0 and adopting ~0 and f as an
eigenvalue of the operator A and the associated eigenvector, respectively.
In accordance with what has been said,

dE),f = ~(~-~o) 

where ~(A) stands for Dirac’s measure. Therefore,

= = o

and equation (7.2.5) has a nontrivial solution p = 
Arguing in reverse direction we assume that the point spectrum of

the operator A contains no zeroes of the function ~ and

Then

(7.2.7) Ilhll== / ]~(1)l 2 d(E),p,p) = 

Since each zero of the function ~ is isolated, relation (,7.2.7) implies that
the function

:
may exercise jumps only at zeroes of the function 9. Let now p ¢ 0. It
follows from the equality

that one of the zeroes of the function 9, say ,~0, should coincide with a
point at which the measure #p(A) has a jump. Consequently, ,~0 of such
a kind would be a jump point of the resolution E),, implying that ,k0 falls
into the collection of the eigenvalues of the operator A. The contradiction
obtained shows that p = 0.1
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In this context, the question of solvability of equation (7.2.5) arises
naturally. Granted (7.2.6), denote by X1 a cyclic subspace generated 
the element h in the space X. This subspace will be a closure of the linear
span of all elements of the type ( EZ - E~) h, where ~,/3 e R (see Akhiezer
and Glasman (1966)).

Moreover, the operator A is reduced by the subspace X1 and the
component A1 of the operator A acting in the space X1 is a self-adjoint
operator with a simple spectrum (see Plesner (1965)). The resolution
of unity of the operator A1 coincides with the restriction of E~ onto X~.
Since h is a generating element, the spectral type of the measure #h(A)
will be maximal with respect to the operator A~. Therefore, condition
(7.2.6) implies that the spectral measure with respect to the operator
A~ of the zero set of the function ~ is equal to zero. The operator ~(A~)
is invertible due to this fact. Furthermore, the inclusion h E/)(p(A1)-1)

is stipulated by condition (7.2.6), whence another conclusion can be drawn
that equation (7.2.5) is solvable in the space X1 and thus in the space 
(see Plesner (1965)).

Arguing in inverse direction we assume that (7.2.5) has a solution, say
p, in the space X. Relation (7.2.5) yields

(E~h, h) 

A

d( E.p, ) 

This serves to motivate that the measure ~h is subordinate to the measure

#v and permits us to establish

d(E h, h) p).

With this relationship in view, it is not difficult to derive that

/ h) : / e(E p, ;) : II;112 

Now condition (7.2.6) follows and this completes the proof of the lemma.

A study of the inverse problem (7.2.1)-(7.2.4) involves the function

T

(7.2.8) ~(~) = f (I)(s) (~ ( T -s))
0



7.2. Inverse problems with self-ad3oint operator 505

Theorem 7.2.1 If the operator A is self-adjoint and semibounded from
above in the Hilberl space X, #2 E C1[0, T] and ~ ~ O, then the following
asserlions are true:

(1) the inverse problem (7.2.1)-(7.2.4) under the fixed input data is
solvable if and only if

(7.2.9) f l~(~)l-~d(E~g, 

where Ez refers to the resolution of unily of the operator A, the
function ~ is specified by (7.2.8), the element 9 is given by relation
(7.1.11), that is,

T

g = u, - V(T) ~o - f V(T - s) F(s) 
o

and V is a semigroup generated by the operator A;

(2) if the inverse problem (7.2.1)-(7.2.4) is solvable, lhen its solulion
will be unique if and only if the point spectrum of the operator A
contains no zeroes of the function ~ specified by (7.2.8).

Proof The inverse problem (7.2.1)-(7.2.4) is a particular case of the 
point problem (7.1.1)-(7.1.4) and, as stated in Section 7.1, can be reduced
to equation (7.1.9) of the form Bp = g, where

T

(7.2.1o) Bp = f v(T- ~)~(~)p 
o

Here V refers, as usual, to the semigroup generated by the operator A.
Since the function u is explicitly expressed via the element p by for-

mula (7.1.8), the existence or uniqueness of a solution of the inverse problem
concerned is equivalent to the same properties for the equation Bp = g,
respectively.

As we have mentioned above, there is a real number b such that

b

A = / A dEa.
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On the other hand, from calculus of self-adjoint operators it is known that

v(t) 
b

/ exp(It) dE),,

which is substitu.ted into (7.2.10) and leads to the formula

T b

It is worth noting here that the measure dE~ ® ds is bounded on (-¢c, b] 
[0, T] and the function

K(A,s) = O(s) exp (A (T- 

is continuous and bounded on (-~, b] x [0, T]. Due to the indicated prop-
erties the Fubini theorem suits us perfectly for the integrals in (7.2.11) and
allows one to change the order of integration. By minor manipulations with
these integrals we arrive at

b

B = f dE ,

where the function ~ is specified by (7.2.8). What is more, it follows from
(7.2.8) that ~ is an entire function which does not identically equal zero.
In this case the zero set of the function ~ contains isolated points only. To
complete the proof of the theorem, it remains to take into account that
the equation Bp = g is of the form (7.2.5) and apply then Lemma 7.2.1,
thereby justifying both assertions..

Suppose that the zero set of the function ~ does not intersect the
spectrum of the operator A. Under this premise item (2) of Theorem 7.2.1
is certainly true and condition (7.2.9) is still valid for (I)(T) :~ 0. A 
observation may be of help in verifying the fact that the integral in (7.2.9)
can be taken from - ~ to a finite upper bound. Also, the integral

(7.2.12)

b

f -: d(E g, g)
a



7.2. Inverse problems with self-adjoint operator 507

is always finite for any finite numbers a and b, since the function ~ is
continuous, its zero set consists of the isolated points only and the spectrum
of the operatgr A is closed. Indeed, if ~(,~0) = 0, then the resolvent set p(A)
contains not only this point ,~0, but also its certain neighborhood in which
Ea = const. In this view, it is reasonable to take the integral in (7.2.12)
over the segment [a, b] except for certain neighborhoods of all points from
the zero set of the function ~. Therefore, the integral in (7.2.12) is finite
and it remains to establish the convergence of the integral in (7.2.9) at -o~.
To that end, we integrate by parts in (7.2.8) and establish the relation

¯ (0) exp AT- ~(T) 1
(7.2.13) ~o(I) 

,~
+ ~

T

x i ¢~’(s) exp(A(T-s)) 

o

implying that
... ¢(T) / 

as ,~ --* -o~. Therefore, the integral in (7.2.9) converges at -ee if and only
if there exists a real number a, ensuring the convergence of the integral

which is just finite due to the inclusion g E O(A) (see Riesz and Sz.-Nagy
(1972)). Recall that the element g was defined by (7.1.11) and its belonging
to the manifold T)(A) was justified at the very beginning of Section 7.1.

From the theory of operators it is known that the spectrum of any self-
adjoint operator is located on the real axis. Hence the function ~o becomes
non-zero on the operator spectrum, provided that none of the real numbers
is included in the zero set of this function. Furthermore, it is supposed that
the function (I) is nonnegative on the segment [0, T] and does not identically
equal zero. On the basis of definition (7.2.8) the condition imposed above 
sufficient for the function ~ to become non-zero on the operator spectrum.
Summarizing, we deduce the following corollary.

Corollary 7.2.1 Let the operator A be self-adjoint and semibounded from
above in the Hilbert space X. If the function q~ E C1[0, T] is nonnegative
and e(T) > O, then a sotution of the inverse problem (7.2.1)-(7.2.4) exi 
and is unique for any admissible input data.
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We now turn to the inverse problem (7.2.1)-(7.2.4) for any self-adjoint
operator with a discrete spectrum. In this case the conditions of Theo-
rem 7.2.1 become more illustrative. The foregoing example clarifies what
is done.

Let { e~ }~=1 form an orthonormal basis of the eigenvectors of the
operator A and

A e~ = ,~ e~.

With the aid of evident expansions with respect to that basis such as

g = gk ek, P = Pk
k=l

it is plain to realize the search of the members p~ for the given sequence
{ = (g, Since

V(T- s) e~ = exp(~(T-s))ek,

equation (7.1.9) being written in the form

T

k=l 0

becomes equivalent to the infinite sequence of equalities

(7.2.14) ~(A~)p~ = g~, k = 1, 2; ....

where ~ is specified by (7.2.8). Wit-h the £id of (7.2.14) we may clarify
a little bit the sense of item (2) of Theorem 7.2.1. Indeed, in the case
when ~(,~k) = 0 for Some subscript k, the coefficient p~ cannot be uniquely
recovered and can take an arbitrarily chosen value. A necessary condition
of solvability in this case amounts to the equality g~ = 0. If we succeed in
showing that the assertion of item (2) of Theorem 7.2.1 is valid, then all 
the Fourier coefficients of the element p will be uniquely determined from
the system of equations (7.2.14).

By appeal to the spectral theory of self-adjoint operators from Riesz
and Sz.-Nagy (1972) we write down the relation

k=l

Due to item (1) of Theorem 7.2.1 the condition for the series on the right-
hand side of (7.2.15) to be convergent is equivalent to the solvability of the
equation Bp = g and thereby of the inverse problem (7.2.1)-(7.2.4).
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The trace of the same condition can clearly be seen in the system of
equations (7.2.14). First, the solvability of (7.2.14).implies the necessity 
another conclusion that if gk is nonzero for some subscript k, then so is the
value ~(,~k) for the same subscript k. All this enables us to find that

=
Second, for the set of numbers {p~} to be the sequence of the Fourier
coefficients of some element p with respect to the orthonormal basis { ek}
it is necessary and sufficient that the condition

~=i

hoMs true. Note th~ th~s condition coincides w~th the requirement for the

r~ght-h~nd s~de of (7.2.15) to be ~n~te and so ~s equ~vMent to the statement
of item (1) of Theorem 7.2.1.

Having involved the available eigenvalues and eigenvectors of the op-
erator A, the reader can derive on his/her own by the Fourier method
the explicit formula for the element p as a solution of the inverse problem
concerned. The outcome of this is

(7.2.16) p = ~(g, e~)~(1~)-~e~.

As such, formula (7.2.16) also will be useful in developing the relevant
successive approximations.

The results obtained can be generalized for anti-Hermitian opera-
tors. Let X be a complex Hilbert space. We agree to consider A = iA~,
where A~ is a selgadjoint operator in the space X. In this case A is the
generator of a strongly continuous semigroup of unitary operators

= /

where E~ stands for the resolution of unity of the operator A~.
In just the same way as we did for self-adjoint operators it is possible

to justify that in the current situation the inverse problem (7.2.1)-(7.2.4)
amounts to equation (7.1.9) of the form Bp = g, where

B

=
T

f ¢(s)
0

exp(iA(T-s)) 
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Lemma 7.2.1 suits us perfectly in investigating the equation B p = g via
representation (7.2.17) and leads to the following proposition.

Corollary 7.2.2 Let X be a complex Hilbert space and A = i A1, where
AI is a self-adjoint operator in the space X. If, in addition, ¯ E C1[0, T]
and ~ ~ O, then the following assertions are true:

(1) the inverse problem (7.2.1)-(7.2.4) is solvable for the fixed admis-
sible input data Uo, ua and F if and only if

(7.z19) / d(E g, g) 

where Ex is the resolution of unity of the operator A1, the function

~1 is defined by (7.2.18), the element g is representable by (7.1.11)
as follows."

T

g : "a 1 V(T) 0 - V( T - 8) F(s ) d8

o

(here V is the group generated by the operator A);

(2) if the inverse problem (7.2.1)-(7.2.4) is solvable, then for its solution
to be unique it is necessary and sufficient that the point spectrum
of the operator A contains no zeroes of the function ~ defined by

(7.2.8).

The second item of the above proposition needs certain clarification.
It is worth bearing in mind some circu-mstances involved. Being multiplied
by i, the point spectrum of the operator A1 turns into the point spectrum
of the operator A. At the same time, t.he zeroes of the function ~a "move"
to the zeroes of the function ~.

Several conditions quoted below assure us of the validi.ty of items (1)-
(2) of Corollary 7.2.2. Recall that the spectrum of the opera.tot A is located
on the imaginary axis. Now the statement of item (3) will be proved if 
succeed in showing that the function ¢p has no zeroes on the imaginary
axis or, what amounts to the same, the function ~1 has no zeroes on the
real axis. If, in addition, the inequality I~(0)1 < IO(T)I holds true, 
condition (7.2.19) is also true. Indeed, if the function ~ga does not vanish
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on the real axis, then it is not equal to zero on the spectrum of the operator
A1 and, therefore, for any D > 0 the integral

D

JI~,(~)1-2 d(E~g, 
-D

is finite.
On the other hand, by integrating (7.2.18) by parts we obtain

(7.2.20) ~1(I) qS(0) ex p(iIT) - 69(T)
iA

T1 J O’(s) exp (iA (T- s)) 

+~
o

After replacing s by T - s the integral term in (7.2.20) becomes

T

1 /g),l(s) exp(iAs) ds,
iA

o

where ~,(s) = ~(T - s). Whence, by the Riemann lemm~t it follows 

T

/ (1)
1

q~’(s) exp (iA (T- s)) ds .(7.2.21) ~-~ = , A -~ oc

o

In conformity with (7.2.21) and the inequality [~(0)] < [q~(T)[, relation
(7.2.20) implies as A ~ cx~ that

so that for all sufficiently large numbers D

I,XI>D I,XI>D

< ~-~ f ; d(E~, g).
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Since g 6 Z)(A), the latter integral is finite. The same continues to hold
for the integral in (7.2.19).

At the next stage we state that if the function (I) is nonnegative and
strictly increasing on the segment [0, T] (the inequality lq)(0)l
is due to this fact), then the function ~ defined by (7.2.18) has no 
roes on the real axis. Being nonnegative and strictly decreasing on the
segment [0, T], the function q)l(t) = (I)(T - t) is subject to the following
relationships:

Re ~i (,~) = cos (A (T- s)) 

T

: / (I)(T- s) As ds

T

= ] ~l(s) cos ,ks ds,
0

T

] ~(s) sin (A (T- ds

o

T

= J ’~(s) sin )~s 
o

Here we used also (7.2.18). Since

T

ae ~, (0) = f ¢1(s) ds 
0

and Im~,l(,~) as a function of ,~ is odd, it remains to show that for any

T

(7.2.22) J O1(s) sin as ds > 
0

If ,~ > ~r/T, then sin as _> 0 for all s e [0, T] and inequality (7.2.22)
immediately follows. Let ,~ < ~r/T and T # 2~rn/,L Allowing n to be
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integer we extend the function ~1 (s) by zero up to the point of the type
27rn/A, which is nearest to T from the right. After that, the integral in
(7.2.22) equals

(7.2.23) E / (I)l(s) sin ds.
k=l 2~(k-1)/a

We claim that every term of the sum in (7.2.23) is positive. Indeed,

~(~k-1)/~

/ opl(s) sin,~sds = J ~(s) sinAsds

2~r(k-1)/A 2~(k-1)/A

q~l (s) sin As ds.

Upon substituting s + ~r/A for A the second integral transforms into the
following ones:

2~r(k-1)/A

(Ih(s) sin As ds = sin as es.

Due to the strict decrease of the function 4p~ on the segment [0, T] it
remains to note that

- + > 0

and sin As > 0 on the segments [2~’(k- 1)/A, ~/(2k- 1)/A]. In accordafice
with what has been said, the following result is obtained.

Zorollary 7.2.3 Let X be a complex Hilbert space and A = iA1, where
A1 is a self-adjoint operator in the space X. If, in. addition, the function
(I) ~ el[0, T] i8 nonnegative and strictly increasing on the segment [0, T],
then a solution of the inverse problem (7.2.1)-(7.2.4) exists and is unique
for any admissible input data.
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7.3 Two-point inverse problems in Banach lattices

Let X be a Banach lattice, that is, a Banach space equipped with the
partial ordering relation _<; meaning that any pair of its elements f, g E X
has the least upper bound sup (f, g) and the greatest lower bound
inS (f, g). In this case the linear operations artd norm are,consistent with
the partial ordering relation as follows:

(1) f <_ h implies S + h <_ g + h for any h E X;

(2) if f >_ O, then A f >_ 0 for any number A >_ O;

(3) If[ <_ [gl implies [[f[[

We note in passing that item (3) involves the absolute value of the
element f in the sense of the relation

ISl = sup(S,-S).

Before proceeding, it will be sensible to outline some relevant information
which will be needed in the sequel. More a detailed exposition of Banach
lattices is available in Arendt et al. (1986)~ Batty and Robinson (1984),
Birkhoff (1967), Clement et al. (1987), Kantorovich and Akilov (1977),
Krasnoselskii (1962), Schaefer (1974). Any element f e X admits 
dan’s decomposition

f

where the elements S+ _> 0 and f- _> 0 are defined to be

S+ = sup (f, 0), S- = sup (-S, 0).
These members are involved in the useful relations

(7.3.1) [f[ = f++f-, inf(f+,f -) =0.

The set X+ consisting of all nonnegative elements of the space X forms a
closed cone of the space X . Any functional from X* is said to be positive
if it takes on nonnegative values on each element of the set X+. For any
element f > 0 there exists a positive functional ~ ~ X* such that p(f) = 
thereby justifying that a nonnegative element of the space X equals zero if
and only if all of the positive functionals vanish on this element.

Lemma 7.3.1. Iff e C([a,b]; X+), then

b

(7.3.2) If(t) dt O.

Moreover, if the integral in (7.3.2) becomes zero, then the function f is
identically equal to zero on the. segment [a, hi.
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Proof By assumption, the function f takes nonnegative values only. Hence
the Riemann sums for the integral in (7.3.2) are also nonnegative. Then
so is the integral itself as a limit of such sums, since the cone X+ is closed.
This proves the first assertion of the lemma.

Equating now integral (7.3.2) to zero we assume that there is at least
one point to E [a, b] at which f(to) > 0 and have occasion to use a positive
functional ~ E X* such that

~( f(to)) 

Since 7~(f(t)) >_ 0 for any t ~ [a, b], the inequality

b

f f(t)) >.o

holds. On the other hand,

The contradiction obtained shows that the above assumption fails to be
true and in this case the function f is identically equal to zero on the
segment [a, hi, thereby completing the proof of the lemma."

In later discussions we shall need the concepts of positive operator
and positive semigroup. An operator U ~ £(X) is said to be positive if
U(X+) C X+. The positiveness of the operator U will be alw.a_ys indicated
by the relation U >_ 0. A semigroup V is said to be positive if the operator
V(t) >_ for any t _>0. Advanced theory of positive ope rators andpositive
semigroups is available in Arendt et al. (1986), Batty and Robinson (1984),
Clement et al. (1987).

We now consider in the Banach lattice X the two-poin.t inverse prob-
lem of finding a function u ~ C1([0, T]; X) and an element p ~ X from
the set of relations

(7.3.3) u’(t)=Au(t)+O(t)p+F(t), 0<t<T,

(7.3.4) u(0) = u0,

(7.3.5) u(T) = u~ 
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for all admissible input data

Uo, U, 67)(A), F6CI([O,T];X) +C([O,T];7)(A)).

Theorem 7.3.1 One assumes that the spectrum of the operator A is located
in the half-plane ()~: Re)~ < 0 and th is operator generates a positive
semigroup. If

(I) e ~ ([0, T], £(X))

and for any t ~ [0, T]

¯ (t) > o, ~’(t) > o,

then a solution u, p of the inverse problem (7.3.3)-(7.3.5
the constraints

¯ (T)-1 e ;(X), ¯ (T)-I _> 0

is unique under

Proof The theorem will be proved if we succeed in showing that the inverse
problem (7.3.3)-(7.3.5) with zero input data u0, ul, F --- 0 can have 
trivial solution u = 0, p = 0 only. To that end, the following system

(7.3.6) u’(t) = A u(t) + ~(t)p, 0 < t < T,

(7.3.7) u(o) = 

(7.3.8) u(T) : 

complements later discussions. In conformity with the results of Section
7.1, relations (7.3.6)-(7.3.8) take place if and only 

t

(7.3.9) u(t) = / V(t - s)~(s)p 

where V(t) denotes, as usual, the semigroup generated by the operator A
and the element p satisfies the equation

(7.3.10) B~, : 0,
where the operator B acts in accordance with the ~:ule

T

(7.3.11) Bp = / V(T ds.

0
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Via Jordan’s decomposition p = p+-p- of the element p in the Banach
lattice X we are led to the two associated Cauchy problems

f u’+(t) = Au+(t)+~(t)p +, O<t <T,
(7.3.12) u+(0) = 

and

u’_(t) Au_(t)+¢(t)p-, 0<t<T,
(7.3.13)

u_(0) = 

whose solutions are given by the formulae

t

u+(~) = / y(~ - s)~(s)p+ 
0

and
t

~_ (t) = ] v(t - s) ~(s) ~,
0

respectively. From the theory of semigroups we know that for any f 6
C1 ([0, T]; X) the function

t

u(t) = / V(t- s)f(s) 
0

is continuously differentiable on the segment [0, T] and

t

u’(t) = ] V(t - s) f’(s) ds + V(~) 
0

From such reasoning it seems clear that

T

u’+ (T) = ] V(T - 8) ~’(s) p+ d8 + ¢(0) p+,
0

.t(T) =

T

f V(T - s) ~’(s)p-
0

ds + V(T) ~(0) p-.
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Recall that the elements p÷ and p- are nonnegative, while the operators
~(t), ~’(t) and the semigroup V(t) are positive. Hence, from the preceding
formulae and Lemma 7.3.1 it follows that

(7.3.14) u~+(T) >_ u’_(T) >_ 

Observe that on account of (7.3.12)-(7.3.13) the function w = u+ 
satisfies the Cauchy problem

w’(t) = Aw(t)+g;(t)p, O<t (7.3.15) w(0) = 

and, in so doing, can be written in the form

t

w(t) = / V(t - s) g;(s)p 
0

With the aid of equalities (7.3.10)-(7.3.11) we find 

w(T) : 

whence the coincidence of u+ and u_ at the moment l : T is obvious. In
what follows we will use a common symbol for the final values of u+ and

~ = u+(T) = u_(T).

Upon substituting t = T into (7.3.12) and (7.3.13) we 

u~+(T) -- m ~ + ~(T) 

u’_(T) = A ~ + ¢;(T) 

On the strength of (7.3.14) the preceding relations imply that

and

so that

(7.3.16)

¯ (T) p+ _> -A~

-A~ _~ inf(~(T)p +, c~(T)p-).
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The value z = inf ((I)(T)p+, (I)(T)p-) is aimed to show that the 
side of (7.3.16) equals zero. Indeed, > 0, sin ce the elements p+ a nd p-
are nonnegative and the operator ~(T) is positive. On the other hand,’ 
the definition of greatest lower bound we derive the inequalities

z < ~(T)p+

and
z < ~(T)p-,

yielding, due to the positiveness of the operator (I)(T) -1, the relations

9(T) -1 z < p+

and

~(T) -I z _<

Combination of the last estimates gives

~(T)-iz _< inf (p+, ;~-).

We are led by (7.3.1) to the inequality qb(T)-I z _< 0, giving z _< 0, because

the operator ~(T) is positive. This serves as a basis for the equality z = 
P~eturning to (7.3.16) we see that

(7.3.17) A~ _> 0.

From the initial assumptions on the spectrum of the operator A and spec-

tral properties of generators of strongly continuous positive semigroups

it follows that the spectrum of the operator A lies, in fact, in a half-

plane ReA _< -6, where 6 > 0. Furthermore, in that case the resoIvent

( A I - A ) -i is a positive operator in the domain Re A > -6. In particular~

the operator -A-I is also positive. Hence, ~ _< 0 by virtue of (7.3.17). 

the other hand~

T

(7.3.1s) ~ = u+(T) = / v(~- ~) ~(~) d~,
0

since the function u+(Z) solves the Cauchy problem (7.3.12). Recall 

the element p+ is nonnegative, while the operator ~(~) and the semigroup

V are positive. By Lemma 7.3.1 formula (7.3.18) implies the inequality

~ >_ 0, giving ~ -- 0 in the case which interests us. Observe that the
integral in (7.3.18) equals zero and the integrand

f(t) : V(T- t) ¢2(t)p+
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is a continuous function with values in X+. On account of Lemma 7.3.1 this
function is identically equal to zero on the segment [0, T] and, in particular,

0 : f(T) : ~(T) 

implying that p+ = 0, because the operator ¢(T) is invertible. Along
similar lines, the equality

T

u_(T) = J V(T- s)~(s)p- 
0

in combination with Lemma 7.3.1 assures us of the validity of the equality
p- = 0. Consequently, having stipulated condition (7.3.9), the element
p = p+ - p- and the function u are equal to zero, thereby completing the
proof of the theorem. ̄

Corollary 7.3.1 ff under the conditions of Theorem 7.3.1 the semigroup
generated by the operator A is compact, then a solulion u, p of the inverse
problem (7.3.3)-(7.3.5) exists and is unique for any admissible input data.

Proof To prove this assertion, we first refer to Theorem 7.3.1 and thus
ensure the uniqueness here. On the other hand, by Theorem 7.1.3 of Section
7.1 the solvability of the inverse problem (7.3.3)-(7.3.5) is of Fredholm’s
character, due to which the desired result immediately follows from the
uniqueness property. ¯

In concluding this section we note that if the operator A generates a
strongly continuous semigroup, then its spectrum is located in a half-plane
{ ,~: Re A < w } and by virtue of the conditions of Theorem 7.3.1 some
restrictions on this operator do arise naturally. In trying to overcome the
difficulties involved the substitution u(t) = v(t) ~ helps set up the inverse
problem (7.3.3)-(7.3.5) as follows:

(7.3.19)

v’(t) = A1 v(t) + ¢~l(t)p+ F~(t),

v(O) = vo,
v(T) 

0<t<T,
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where

Ax = A-wI,

,~(~) : ,~(~)~-~,

r,(t) r( t) e -"~t,

By applying the results obtained in Theorem 7.3.1 and Corollar)~ 7.3.1 to
problem (7.3.19) we arrive at the following assertions.

Corollary 7.3.2 Let the spectrum of the operator A lie in a half-plane
{ Re ~ < w } and A be the generator of a positive scmigroup. One’assumes,
in addition, that for any t ¯ [0, T]

¢ ¯ C~ ([0, ~1; ~(X)) 

~(t) >_ 0 and ~’(t)-w ~2(t) >_ O. If -1 ¯ I:( X)and 42(T)-1 >_ O, then
a solution u, p of the inverse problem (7.3.3)-(7.3.5) unique.

Corollary 7.3.3 If under the conditions of Corollary 7.3.2 the semigroup
generated by the operator A is compact, then a solution of the inverse prob-
lem (7.3.3)-(7.3.5) exists and is unique for any admissible input data.





Chapter 8

Inverse Problems for

~f Second Order

Equations

8.1 Cauchy problem for semilinear hyperbolic equations

In Banach spaces X and Y we deal with a closed linear operator A with a
dense domain, the elements u0, ul E X and the mappings

F: [O,T]xXxXxY~--~X

and

B: X~Y, ¢: [0, T]~Y.

It is required to recover a pair of the functions

~ e c2([0, T]; x), p e c([o, T]; ~),
523
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which comply with the following relations:

(8.1.1) u"(t) =Au(t)

+ F(t, ~L(t), u’(t), p(t)), 0 

(8.1.2) u(0) = Uo, u’(0) = ul 

(8.1.3)
B u(t) = ¢(t), 0 < t < 

The basic restriction imposed on the bperator A is connected with the
requirement for the linear Cauchy (direct) problem

(8.1.4) u"(t) = Au(t)+F(t), 0<t

(8.1.5) u(0) = Uo, u’(0) = u~,

to be well-posed. Therefore, .the operator A is supposed to generate a
strongly continuous cosine function C(t), that is, an operator function
which is defined for all t E R with values in the space £(X) is continuous
on the real line R in the strong topology of the space £(X) and is subject
to the following two conditions:

(1) C(0) 

(2) c(t + 8) + c(t - s) = 2 c(t) C(s) for a~l 
It should be noted that the operator A can be recovered from its

cosine function as a strong second derivative at zero

A z = C"(0) 

with the domain V(A) = {x: C(t) x C2(R)}. Re call th at th e Cauchy
problem (8.1.4)-(8.1.5) is uniformly well-posed if and only if the operator
A generates a strongly continuous cosine function. In the sequel we will
exploit some facts concerning the solvalsility of the Cauchy problem and
relevant elements of the theory of cosine functions. For more detail we
recommend to see Fattorini (1969a,b), Ivanov et al. (1995), Kisynski (1972),
Kurepa (1982), Lutz (1982), Travis and Webb (1978), Vasiliev (1990).

The cosine function C(t) is associated’-with the sine function

t

s(t) x = f c(8) 
0
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and the subspace

(8.1.6) ~7 = {x: C(t) 

which becomes a Banach space with the appropriate norm

O<t<l

There exist two constants M > 1 and w > 0 such that the cosine and sine
operator functions satisfy on the real line the appropriate estimates

(8.1.8) Ilc(t)ll <_ M exp(wt), Ils(t)H <_ Mltlexp(wt).

For the operator A to generate a strongly continuous cosine function sat-
isfying estimate (8.1.8) it is necessary and sufficient that any number 
with ,~ > w complies with the inclusion 12 ¯ p(A) and the collection of
inequalities

dn Mn!
~-~ [~R(~2’A)] -< (~_~)~+1 n=0, 1,2,...,

where R()~,A) = ()~I- A)-1 refers to the resolvent of the operator A.
Any self-adjoint operator in a Hilbert space generates a str’ongly continuous
cosine f unction if and only if this operator is semibounded from above.

For any Uo e T)(A), ul ¯ E, F 1([0, T]; X) UC([0, T]; V( A)) 
solution of the Cauchy problem (8.1.4)-(8.1.5) exists and is unique in 
class of functions

~ ̄  c2([o, T]; x) ~ C~([O, T]; Z) ~ C([O, V(A)

Moreover, this solutions is given by the formula

(8.1.9)

t

~,(t) = c(t) ~o + s(t) ~,~ + f s(t - s) 
0

In real-life situations there is a need for certain reduction of the governing
equation of the second order to a first order equation. One way of proceed-
ing is due to Kisynski (1972) and involves the Banach space A" = E x 
and the operator
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with the domain ~(.A) = /)(A) x E. If the operator A is the generator
of the strongly continuous cosine function C(t) associated with the sine
function S(t), then the operator A will generate in the space X the strongly
continuous group

(8.1.11)

Upon substituting

(8.1.1~)

(c(~)s(~)~v(t) : AS(~) C(~)]

iT(t) = F(t ’ Wo = 

the Cauchy problem (8.1.4)-(8.1.5) amounts to the Cauchy problem asso-
ciated with the equation of the first order

w’(t) = A w(t) + iT(t), 0 < t 
(8.1.13)

w(O) w0.

Without loss of generality the operator A is supposed to be invertible.
Indeed, making in equation (8.1.1) the replacement

u(t) = v(t) exp (~ t)

with any A being still subject to the inclusion A~ E p(A) we set up another
inverse problem for the functions v and p

O<t<T,

v’(0) = vl,

0<t <T,

v"(t) = A~ v(t) + F~(t, v(t), v’(t), 

v(O) = vo,

B v(t) = ¢~(t),

where

Fx(t,v, vl,p) = exp(-At)

x F(t, exp(At)v, exp(At)(vl+Av),p)-2Av,,

VO ~ ItO 1 Vl ~ Ul -- A u0 1

~b~(t) = exp (-,~t) ~fl(t),

Aa = A-I~I.
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The emerging inverse problem is of the same type as the initial one, but
here the operator A is invertible and generates a strongly continuous cosine
function.

For the given function ¢ ¯ C2([0, T]; Y) and element u0 ¯ ~D(BA)
the element Zo is defined to be

(8.1.14) z0 = ¢"(0) BAuo - BFl(O, uo ,ux),

where F1 is involved in the approved decomposition

(8.1.15) F(t,u,v,p) = F~(t,u,v)+ F2(t,u,v,p).

With these ingredients, we impose the following conditions:

(A) the equation B F2(O, uo,ul,p) = Zo with respect to p has a unique
solution Po ̄  Y;

(B) there exists a mapping

Fa: [O, T] x Y x Y x Y H Y

such that

(8.1.16) B F2(t,u,v,p) = Fa(t, Bu, Bv,p);

(C) there is a number R > 0 such that for any t ¯ [0, T] the mapping
z = Fa(t, ¢(t), ¢’(t), p) as afuncti(~n ofp basin the ballSv(po, R)
the in verse

(8.1.17) p = ~(t,z).

Let the operator B comply with

(8.1.18) B ¯ £(:D(A’~), V),

where m is a nonnegative integer and the manifold ~.(A"~) is equipped
with the graph norm of the operator A"~. Extra smoothness conditions are
required to be valid by relating the operator A to be invertible:

(D) there is number R > 0 such that onthemanifold

So = {(t,u,v,p):O<t <T,
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the functions F1 and F~ are continuous in t and ~atisfy the Lipschitz
condition with respect to (u, v,p) in the norm of the space X. On
the manifold

the functions

and

IIv- ulllE ~ n, IIp-;o IIy ~ R}

Fl(t, A-lu, V)

F2(t, A-lu, v,p)
are continuous in t and satisfy the Lipschitz condition with respect
to (u, v,p) in the norm of the space E. On the manifold

]1 v - Am ~1 I1~ -< ~, II p - po I1,, _< ~ }
both functions

and

AmFl(t,A-m-lu,.A-mv)

AmF~(t,A-’~-~u,A-~v)

are continuous in t and satisfy the Lipschitz condition with respect
to (u, ~,p) in the norm of the space E;

(E) there is a value R > 0 such that on the manifold

Sy(zo,R,T) {( t,z): 0<t<T, II Z- zolly < R }
the mapping (8.1.17) is continuous in t and satisfies the Lipschitz
condition in z.

Theorem 8.1.1 Let the operator A generate a strongly continuous cosine
function in the space X, A-1 e £(X) and condition (8.1.18) hold. If
the inclusions uo E :D(Am+I), ul ~ :D(Am) and Am ul ~ E occur, where
the space E is the same as in (8.1.6), and all the conditions (A)-(E) 
fulfilled, lhen there ezists a number T~ > 0 such lhat on the segment [0,
a solution u, p of the inverse problem (8.1.1)-(8.1.3) exists and is unique
in the class of functions

~ ~ c~([o, :q]; x), ; e c([o, ~]; Y).
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Proof We are led by (8.1.12) 

~(t)= , ~-(t,~,p) 

529

(u0)W0 ~
Ul

thereby reducing (8.1.1)-(8.1.2) to the Cauchy problem for the first order
equation

(8.1.19) ~’(t) = ~(t) 

0<t<T,

(8.1.20) w(0) = w0,

where the operator .A is specified by (8.1.10).
Plain calculations show that the operator A is invertible and

0 ’

Because of its structure, for each nonnegative integer n we thus have

and

(8.1.21) .A2n+1 f’(t, ,A-2n-l(zl, z2), 

= (A~(~’A-"-lz2’A-~z~’p))o ¯
By the initial assumptions relation (8.1.21) yields the inclusion

w0 ~ V(A~m+~),

due to which the function 5r must satisfy the conditions of Theorem 6.5.2
with 2 m in place of m. For all sufficiently small values T a solution of
problem (8.1.19)-(8.1.20) is subject to the following relations:

{
~ ~ c([o, TIp V(~+~))

(8.1.22) w’ e C([0, TIP V(.A2m)),

(A2m w(t))’ ~m
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which serve to motivate that

u e c1 ([0, T]; V(Am))

and
( "~ u(t))’ = "~u’(t ),

since
g)(A2"~) = 2)(A’~) x 2)(A’~).

From (8.1.18)it follows that for each solutfon of problem (8.1.1)-(8.1.3)

(8.1.23) B ~’(t) = ¢’(t), 0 < t < T.

Common practice involves the operator

and the function ~(t) = ¢’(t), by means of which it is easily verified 
condition (8.1.3) is equivalent on the strength of (8.1.23) to the following
one:

(8.1.24) 13w(t) = ~(t), 0 < t < T.

Having stipulated condition (8.1.18), the inclusion

occurs and provides reason enough to reduce the inverse problem (8.1.1)-
(8.1.3) to the inverse problem (6.5.1)-(6.5.a) we have posed in Section 6.5
for a first order equation. Under the conditions of Theorem 8.1.1 problein
(8.1.19)-(8.1.20), (8.1.24) satisfies the premises of Theorem 8.5.3 with 
in place of m. Thus, the desired assertion is an immediate implication of
Theorem 6.5.3, thereby completing the proof of the theorem.I

Of special interest is the case when the function F invol%d in (8.1.1)
is linear with respect to the variables u, u’ and p, that is,

F(I, tt, ~tt, p) = L1 (t) ~ -~-L2 (~) t -~L3 (t)p -~

where for each fixed numbers t ¯ [0, T] the operators L~(t) ¯ Z;(E, 
L~(t) ¯ £(X), La(t) £(Y,X) and the value F(t) ¯ X.All this enables
us to prove the unique solvability of the inverse problem concerned on the
whole segment [0, T].
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Theorem 8.1.2 Let the operator A generate a strongly continuous co-
sine function in the space X, A-1 ¯ ~(X), condition (8.1.18) hold, Uo ̄
:D(A’~+I), Ul ¯ ~P(A’~) and A"~ ul ¯ E, where the space E is the same as
in (8.1.6). One assumes, in addilion, that ¢ ¯ C2([0, T]; Y ), B Uo = ¢(0)
and Bul = ¢’(0). Let representation (8.1.25) take place with the op-
erator functions L1 ¯ C([0, T]; ~.(E,X)), -~ ¯ C([ 0, T]; £(X,E)),
A"~ L~ A-’~-1 ¯ C([0, T]; E(X, E)),

L~ ¯ C([0, T]; £(X) £(E)), A"~ L~ A-’~ ¯ C([0, T]; £(E))

and
A"~ L3 ¯ C([O, T]; £(Y,X)).

If the function A’~F belongs to the space C([0, T]; E), the operator B L3(t)
is invertible for each t ¯ [0, T] and

(BL3)-’ ¯ C([0, T]; £(Y)),

then a solution u, p of the inverse problem (8.1.1)-(8.1.3). exists and is
unique in the class of functions

u ¯ C2([0, T]; X), p ¯ C([0, T]; 

Proof Exploiting the fact that the inverse problem (8.1.1)-(8.1.3) can 
reduced to problem (8.1.19)-(8.1.20), (8.1.24) we may attempt the function
:P(t, w,p) arising from (8.1.19)in the form

(8.1.26) Jr(t, w,p) = £1(t) w + £~(t)p + 

where

/:~(t)p= L~(t)p 

0 )
wl + L2(t) w2 

(o) (tl ¯

It is straightforward to verify that

.A~I(t).A_I
(L2(t)

Ll(t)n-1)
= 0 0 ’

~l(t).A -2m-1 _--
(A’~

L~(i) -~

0

( A~ L~(t) A~+~ £~(t)p 
0 ’

A=m+~ ~(t)=

A’* LI(t)A-’~- ~)
0 ’

B L~(t) = B L3(t) 
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Now, by assumption, problem (8.1.19)-(8.1.20), (8.1.24), (8.1.26) satisfies
all the conditions of Theorem 6.5.4 with replacing m by 2 m and so the
desired assertion is an immediate implication of Theorem 6.5.4. Thus, we
complete the proof of the theorem. ̄

Assume now that the smoothing effect of the operator B is well-
characterized by the inclusions

(8.1.27) B ¯ £(X,Y), BA ¯ £(E,Y).

In such a setting it is sensible to introduce the notion of weak solution
and there is a need for some reduction. With the aid of relations (8.1.12)
problem (8.1.4)-(8.1.5) amounts to problem (8.1.13). In view of this, 
function u is called a weak solution of problem (8.1.4)-(8.1.5) if the ft~nc-
tion w gives a continuous solution of the reduced problem (8.1.13). 
stated in Section 5.2, a continuous solution of problem (8.1.13) exists and
is unique for any w0 ̄  X and any ~- ¯ C([0, T]; X). Furthermore, this
solution is given by the formula

w(t) = v(t) ~o + / w(t - s) ~:(~) 
0

where V(t) refers to the semigroup generated by the operator ,4. As a
matter of fact, V(t) is a group and is representable by (8.1.11), establishing
the appropriate link with the cosine function of the operator A. Coming
back to problem (8.1.4)-(8.1.5) we observe that its weak solution is nothing
more than a function u being continuously differentiable on the segment
[0, T] and solving equation (8.1.4) in a sense of distributions. This solution
exists and is unique for any u0 ̄  E, ul ¯ X and F ¯ C([0, T]; X ), and 
given by formula (8.1.9) as follows:

t

u(t) = c(t) uo + s(t) ul + / s(t - ds,

0

t

(8.1.28) u’(t) = AS(t)uo +C(t)u, + / C(t - ds.

0

The concept of weak solution of the inverse problem at hand needs certain
clarification. A pair of the functions

u ¯ CI([O,T]; X), p ¯ C([O, T]; Y)

so that
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is said to be a weak solution of the inverse problem (8.1.1)-(8.1.3) if 
the function

F(t) = r(t, u(t), u’(t),p(t))

the function u gives a weak solution of the direct problem (8.1.4)-(8.1.5)
and relation (8.1.3) is satisfied in a pointwise manner. It is easy to verify
that a pair of the functions u, p gives a weak solution of the inverse problem
(8.1.1)-(8.1.3) if and only if the pair w, p as the outcome of the reduction
procedure (8.1.12) is a continuous solution of the inverse problem (8.1.19)-
(8.1.20), (8.1.24) in the sense of the definition of Section 

The next step is to redefine the element z0 involved in condition (A)
by means of the relation

(8.1.29) z0 = ¢"(0) B A Uo- BFI(O, no,

thereby excluding (8.1.15) from further consideration, and replace condi-
tion (D) by the following one:

(D1) there exists a number R > Osuch that on the manifold So the
functions FI and F~ are continuous in t and satisfy the Lipschitz
condition with respect to (u, v, p).

Recall that the manifold S0 was defined earlier in condition (D) of the
present section.

Theorem 8.1.3 Let the operator A generate a strongly continuous cosine
function in the space X, conditions (8.1.27) hold, uo G E, ut E X, ¢ G
C2([0, T]; Y), Bu0 = ¢(0) and Bu~ = ¢’(0). Under conditions (A)-(C),
(D1) and (E) there exists a value TI > 0 such that on the segment [0, T~]
a weak solution u, p of the inverse problem (8.1.1)-(8.1.3) exists and is
unique.

Proof As indicated above, replacement (8.1.12) may be of help in reducing
the question of existence and uniqueness of a weak solution of the inverse
problem (8.1.1)-(8.1.3) to the question of existence and uniqueness 
continuous solution of the inverse problem (8.1.19)-(8.1.20), (8.1.24). 
condition (8.1.27) it seems clear that the inclusions

hold true, since

As can readily be observed, the conditions of Theorem 6.3.1 are fulfilled
and assure us of the validity of the desired assertion.~
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Following the same procedure one can establish the conditions under
which the function u solving the inverse problem (8.1.1)-(8.1.3) is twice
continuously differentiable. Before giving further motivations, let us replace
conditions (D1) and (E) by the following ones:

(D2) there exists a number R > 0 such that the functions F1 and F2 as
mappings from So into X are Frechet differentiable and their partial
derivatives in every direction are continuous in t and satisfy the
Lipscbitz condition with respect to (u, v, p) in the operator norm;

(E2) there exists a number R > 0 such that the function defined by
(8.1.17) is Frechet differentiable as a mapping from Sy(zo,R,T)
into Y and its partial derivatives Ot and ~z are continuous in t and
satisfy the Lipschit~ condition with respect to z in the operator
norm.

By simply applying Theorem 6.3.2 to the inverse problem (8.1.19)-
(8.1.20), (8.1.24) we arrive at the following assertion.

Corollary 8.1.1 Let the operator A generate a strongly continuous cosine
function in the space X, conditions (8.1.27) hold, uo ¯ D(A), ul ¯ 
¢ ¯ Ca(J0, ~; Y), Buo = ¢(0) and Bul = ¢’(0). Under conditions (A)-
(C), (02) and (E2) there exists a value T1 > 0 such that on the segment
[0, T~] a solution u, p of the inverse problem (8.1.1)-(8.1.3) exists and is
unique in the class of functions

u ¯ 02([0, T~]; X) ~ O([O, T~]; D(A)), v ̄ :q]; Y).

We begin by investigating the linear case (8.1.25) and approving for
further development the same framework as we dealt before. To obtain
here the solvability of the inverse problem concerned on the whole seg-
ment [0, T], we apply Theorem 6.4.1 of Section 6.4 to the inverse problem
(8.1.19)-(8.1.20), (8.1.24), (8.1.26), whose use permits us to establish 
following proposition.

Corollary 8.1.2 Let the operator A generate a strongly continuous co-
sine function in the space X, conditions (8.1.27) hold, the inclusions
Uo ̄  E, ul ¯ X and ~b ¯ C~([0, T]; Y) occur and the equalities

= ¢(0), ¢’(0)

hold. Let representation (6.1.25) hold with the operator functions

L~ ¯ C([0, T]; ~(E, X)), L2 ¯ Ci[0, T]; C(X))
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and

L3 ̄  C([0, T]; £(V, X)).

If the function F belongs to the space C([0, T]; X ), the operator B L3(t)
in the space Y is invertible for each t ¯ [0, T] and

(BL~)-I ¯ C([0, 

then a weak solution u, p of the inverse problem (8.1.1)-(8.1.3) exists and
is unique on the whole segment [0, T].

One may wonder when a weak solution becomes differentiable. The
answer to this is obtained by applying Theorem 6.4.2 to the inverse problem
(8.1.19)-(8.1.20), (8.1.24), (8.1.26).

Corollary 8.1.3 Let the operator A generate a strongly continuous cosine
function in the space X, condition (8.1.27) hold, the inclusions Uo ̄  ~D(A),
ul ̄  E an~ ¢ ̄  C3([0, T]; Y) occur an~

B u0 = ¢(0), B ~1 = ¢’(0).

Let representation (8.1.25) take place with the operator functions L1 ̄
C1 ([0, T]; I:(E,X)), L2 C1([0, T] ; ~; (X)) and La. ¯ C1([0 , T]; £(Y,X)).
If the function F belongs to the space C1([0, T]; X ), the operator B L~(t)
in the space Y is invertible for each t E [0, T] and

(BL 3)-1 ¯ C([0, T]; £(V)) 

then on the segment [0, T] a solution u, p of the inverse problem (8.1.1)-
(8.1.3) exists and is unique in the class of functions

u e C~([0, T]; X) N C1([0, T]; E) N C([0, T]; :D(A)),

; e c1 ([0, T]; v).

In just the same way as we did for the first order equations it is plain
to derive an equation "in variations" for the inverse problem (8.1.1)-
(8.1.3). Rigorous assertions follow from Corollary 6.4.2 and are formulated
below.
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Corollary 8.1.4 Lel, in addition to the conditions of Corollary 8.1.1,
the functions F1 and F: be twice Frechet differenliable on the manifold So
and the function defined by (8.1.17) be twice Frechet differentiable on the
manifold Sy(Zo,R,T). /f¢ ¯ C4([0, T]; Y), ul ¯ D(A) 

Auo+ F(O, uo,ul,po) ¯ 

then there exists a value 0 < T1 <_ T such that on the segment [0, T1] the

functions

~ ̄  c~([o, T,]; x)
and

v ̄  c2([0, T1]; Y).
Moreover, the functions v -- up and q = pl give a solution of the inverse
problem

(8.1.30)

v"(t) = A v(t) + KI (t)v(t) + K~(t)v’(t) + I(3(t)q(t) 

v(0) = vo, v,(0) v~,
B v(t) = g(t),

where

Kl(t) = Fu(t, u(t), u’(t),p(t)),

~;~(t) = r., (t, u(t), ,~’(t), ~(t)),

Ka(t) = Fp(t, u(t), u’(t),.p(t)),

h(t) = Ft(t, u(t), u’(t),p(t)),

VO "~ Ul,
~)1 -= Auo+ F(O, uo,ua,po),

~(t) = ¢’(t).

Corollary 8.1.5 Let, in addition to the conditions of Corollary 8.1.3,
L, ¯ C2([0, T];£(E,X)),L~ C2([0, T];£.(X)), L3 C~([0, T];£. (Y,X))
and F ¯ C2([0, T]; X), ¢ ¯ C4([0, T]; Y ), ul ¯ 73(A),

A Uo + L~ (0) Uo + L~(0) I --~L~i0) Po +F(0) ¯ E .
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Then u ¯ C3([0, T]; X),
q = p~ give a solution of the inverse problem (8.1.30) wi~h

h’~(t) = L~(t), K~(t) : L:(t), h’~(t) L3(t),

h(t) = L’~ (t)u(t) + L’~(t)u’(t) 

Vo = u~, v~ = Auo + L~(O) uo + L~(O)u~ + L3(O)po + 

g(t) ¢’(t).

By successively applying Corollaries 6.1.4-6.1.5 it is not difficult to
derive the conditions under which solutions of the corresponding inverse
problems as smooth as we like.

8.2 Two-point inverse problems for equations of hyperbolic type

We consider in a Banach space X the inverse problem for the hyperbolic
equation of the second order

(8.2.1) u"(t) = Au(t)+(b(t)p+. 0<t<T,

(8.2.2) u(0) = ~0, ~’(0) 

(8.2.3) u(T) = u~.

Being concerned with the operator A, tt~e operator function ~(t) with
values in the space £(X), the function F with values in the space X and the
elements u0, ua and u~, we are looking for a function u ¯ C~ ([0, T]; X ) 
C([0, T]; D(A)) and an element p e X.. Equation (8.2.1) is said 
hyperbolic if the operator A. generates a, strongly continuous cosine
function. As in Section 8.1 the main attention in the study of the inverse
problem (8.2.1)-(8.2.3) is paid to the question of well-posedness of 
direct problem

(8.2.4)

(8.2.5)

u"(t) = Au(t)+f(t), O<t 

~(0) = ~o, ~’(0) = 

In order to retain the notations of Section 8.1 we will use in this section
the symbol C(t) for the cosine function generated by the operator A and
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the symbol S(t) for the associated sir)e function. The subspace comprising
all continuously differentiable vectors of the cosine function is denoted by
E. This subspace with the accompanying norm (8.1.7) becomes a Banach
space. If u0 e ~(A), ul e E and f e Cl([0, T]; X) + C([0, T]; 7?(A)),
then a solution of the Cauchy problem (8.2.4)-(8.2.5) exists and is unique
in the class of functions

u e C2([0, T]; X) {"1 C([0, T];/)(A))

(for more detail see Fattorini (1969a,b), Kurepa (1982), Travis and 
(1978), Vasiliev et al. (1990)). Eurthermore, this solution is expressed 
(5.3.12) of Section 5.3 as follows:

(8.2.6) u(t) = C(t) Uo + S(t) ~, + / S(t - s). ds.

o

Note that (8.2.1) and (8.2.2) coincide with (8.2.4) and (8.2.5), respectively,
in one particular case when

(8.2.7) J’(t) = ~(t) p + F(t).

The inverse problem (8.2.1)-(8.2.3) is ~olvable only under the agree-
ment u~ E D(A). In what follows we keep ̄  E 1 ([0, T ]; X ). In that cas
for any p ~ X, the function f specified by (8.2.7) belongs to the space
C1([0, T]; X) + C([0, T]; ~D(A)) if and only if so does the function 
this regard, it will be sensible to introduce the notion of admissible input
data. By the input data of the inverse problem concerned we mean the
elements u0, ul, u~ and the function F.

Definition 8.2.1 The input data of the inverse problem (8.2.1)-(8.2.3) is
said to be admissible if uo, u~ ~ 7)(A), ul ~ E 

F e C1 ([0, T]; X ) + C([0, T]; 77(A)) 

We note in passing that for any admissible input data the inverse
problem (8.2.1)-(8.2.3) reduces to a single equation for the unknown p. 
deed, if this element is sought by substituting into (8.2.1), then the function
u is given by formulae (8.2.7)-(8.2.8) as a solution of the direct problem
(8.2.1)-(8.2.2). On the other hand, conditi6n (8.2.3) is equivalent to 
tion (8.2.6) for t = T with u2 in place of u(T), that is,

T

(8.2.8) u~ : C(T) Uo + S(T) u, + / S(t - s) [ 42(s) F(s)]+ ds,

o
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where all the terms are known except for the element p. Equation (8.2.8)
can be rewritten as

(8.2.9) B p = g,

where

(8.2.10)

T

B = IS(T- s)¢~(s) 
o

(8.2.11) g : u~ - C(T) uo - S(T) 

T

- IS(T- s) F(s)
o

The integral on the right-hand side of (8.2.10) is understood in the sense
of the strong topology of the space £(X). True, it is to be shown that
the element g defined by (8.2.11) belongs to the manifold 7)(A) for 
admissible input data. Indeed, from the theory of cosine functions (see
Fattorini (1969a,b), Kurepa (1982), Travis and Webb (1978)) it is 
that

(8.2.12) A g = A us - C(T) A uo - A S(T) 

- J C(T - s) F[(s) 

- C(T) F1 (0) + F1 

T

- fS(T - s) A F2(s) ds

for the decomposition F = Fi + F2 with the members

F1 ̄ C1([0, T]; x)

and

F~ ̄ C([0, r]; ?())).
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Since AS(T) E £(E, forany value T, r elation (8.2 .12) yiel ds the esti
mate

(8.2.13)

+ II F,[lcl([O,T];X) II Fdlc(io,T];~(3))),

where the constant c depends only on T and the operator A. If the ad-
missible input data of the inverse problem concerned include the elements

Uo = 0 and ul = 0 and the function F = 0, then the element g coincides
with u2 and, therefore, may be arbitrarily chosen from the manifold D(A).
That is why the question of solvability of the inverse problem (8.2.1)-(8.2.3)
for any admissible input data and the question of the solution uniqueness
are equivalent to the possibility of the occurrence of the inclusion

B-1 e £(7)(A), 

Here :D(A) is endowed with the graph norm of the operator A. The final
conclusion immediately follows from the Banach theorem on closed opera-
tor.

Corollary 8.2.1 ff the inverse problem (8.2.1)-(8.2.3) is uniquely solvable
for any admissible input data Uo, u~ ~ D(A), ul ~ E and the decomposi-
tion F = F1 + F~ with

F, e C1([0, T]; X), F~ e C([0, T]; D(A)),

then the stability estimates are valid:

(8.2.14) Ilullc~(to, rl;x) <c ([[Uoll~(A)÷ I[*’,ll~ ’+ II~=ll~(a)

(8.2.15) Ilullc([o,rl;~(a)) ~c (lluoll~(A) +llulll~ + ll~ll~(A)

(8.2.16) IIPll 5c (ll u011v(A)+ Ilu~llE + II ~=[[VCA)



8.2. Two-point inverse problems for equations of hyperbolic type 541

Proof A simple observation may be of help in verifying this assertion. ;fhe
conditions imposed above are equivalent to the inclusion

¯ c(v(a),x),

implying that
II p II _< M II g

with constant M -- II B-111¯ Combination of the preceding inequality and
(8.2.13) gives (8.2.16). Exploiting some facts from the theory of cosine func-
tions and using the decomposition f --- fl + f2, valid for fl ¯ C1 ([0, T]; X 

and f2 ¯ C([0, T]; D(A)), it is plain to show by minor manipulations 
the function u defined by (8.2.6) satisfies the relations

t

u"(t) = C(t) A uo + A S(t) u, + / C(t - s) 
0

t

+ C(t) f~(O) + / S(t - s) A f~(s) ds 
0

(8.2.18)
t

A u(t) = C(t) A Uo + A S(t) ul + / C(t - s) 
0

t

+ C(t) f~ (0) 
0

S(t - s) A f2(s) ds - f~(t)

(see Fat~orini (1969a,b), Kurepa (1982), Travis and Webb (1978)). 
these together with the representations f~ = (I,(t) p+F~ (t) and f2 (t) F~(t)
and involving estimate (8.2.16), we derive estimates (8.2.14)-(8.2.15) 
(8.2.17)-(8.2.18), respectively.

There seem to be at least two possible ways of reducing (8.2.9) to 
second kind equation. Each of them necessitates imposing different restric-
tions on the operator function ~.

[,emma 8.2.1 /.f ¢I, ¯ (Jl([0, T]; £(X)), .the operator ~(t) is invertible
and ~(T)-~ ¯ E(X), ~ p̄(A), th en equation (8.2.9) is equivalent to the
following one:

(8.2.19) p- Blp = ga ,
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T

+ C(T) V(O)),

Proof Since ,~2 E p(A) and g E D(A), equation (8.2.9) is equivalent 

(8.2.20) (A-,~2I)Bp= (A-,~2I)g.

From the theory of cosine functions it is known that relations (8.2.6) and
(8.2.18) with u0 = 0, ul = 0 and f2 = 0 are followed by

t t

(8.2.21) A/ S(t-s) f,(s)ds=/ C(t-s) f;(s)ds
o o

+ c(t) fl (o) - fl 
if the function f~ belongs to the space C1 ([0, T]; X) (Fattorini (1969a,b),
Kurepa (1982), Travis and Webb (1978)). By inserting t -- T f~(t ) =
O(t)p both in (8.2.21) we establish the relationship

T T

(8.2.22) A / S(T-s)O(s)p ds C(T- s) q/(s)p ds

o o

+ C(T) ~(0) p - ~(T) 

Recall that the operator B was specified by (8.2.10). Then, in view 
(8.2.22), equation (8.2.20) becomes

T

(8.2.23) C(T- s) qS’(s) p ds + C(T) ~P( P
o

T

- O(T) p- ~ / S(T- s) 
o

p ds

= (A-~)~.
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After that, we are able to collect the integral terms in (8.2.23) and ap-
ply then the operator (I)(T) -1 to the resulting relation, yielding equation
(8.2.19) and thereby completing the proof of the lemma..

Lemma 8.2.2 If alp e C2([0, T];/:(X)), ~he operalor

(8.2.24) D = ,~(T) - C(T) 

is invertible and D-~ ~ £(X), ,~2 ~ p(A), then equation (8.2.9) is equiva-
lenl to the following one:

(8.2.25)

where.

B~= D-i(

p- B~ p = g~ ,

T

0

g2 = -D-I ( A- )~2 I) 

Proof With the inclusions ,~2 E p(A) and g E 79(A) in view, we deduce
that equation (8.2.9) is equivalent to (8.2.20). We are going to show 
if the function fl G C2([0, T]; X), then

t

(8.2.26) A / S(t - s) fl(s) 
0

t

: / S(t- s)fff(s)
0

ds + C(t) fl(O) + S(t) f~(O) 

With this aim, let us transform the integral term on right-hand side of
(8.2.21) in a natural way. By definition, the sine function is strongly con-
tinuously differentiable and S’(t) = C(t). By the we/l-established rules
from calculus we find that

C(t-s) f~(s) = - -~s S(t-s) 

_ d
ds

+ s(t - s) ff’(s),
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which can be integrated over s from 0 to t. The outcome of this is

t t

c(t - ~) ~(~) d~ = - S(t - ~) f;(~) + S(t ~)~’~’(~)
0 0

t

= s(t) f;(o) + / s(t - ~) 
0

ds.

ds

Upon substituting the final result into the right-hand side of (8.2.21) 
are led by minor manipulations to (8.2.26).

By merely setting t : T and fl (t) = ~(t)p both in (8.2.26) we 
at the chain of relations

T

AB p = A ]S(T-s) O(s)pds
0

= / S(T - s) ¢"(,) ds + C(T) ~(0) 

+ s(,) ~’(o) ~ - O(T) p.

Let us substitute the preceding representation for the operator A B into
equation (8.2.20). This procedure permits us to write a final result 
follows:

T

0

p ds+ S(T)~’(O)p

- [O(T)-C(T)q~(0)]p = (A’-ASI)g.

Applying the operator D-1 = [O(T)- C(T)q~(0)]-i to both sides of the
governing equation yields (8.2.25), thereby completing the proof of the
lemma. II

As indicated in Section 8.1, there are constants M _> 1 and ¢o _> 0
such that the operator functions C(t) and S(t) obey the estimates

(8.2.27) IIC(t)ll exv (wt) Ils(t)ll ~ M It l exp (~t),
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which are followed by

where the operators B1 and B~ arose from Lemmas 8.2.1-8.2.2, respectively.
This provides support for decision-making that the bounds II B~ II < 1 and

II B~ N < 1 are sufficient for equations (8.2.19) and (8.2.20) to be uniquely
solvable for any right-hand sides. Thus, we arrive at the following asser-
tions.

Corollary 8.2.2 If under the conditions of Lemma 8.2.1 both estimates
(8.2.27) take place and

II <I>(T)-~I,
T

+is, I~ (T- ~)II ~(~)11) exp (w (T s)) ds

+11@(0)11 exp(~:v < ~,

then a solutwn u, p of the inverse problem (8.2.1)-(8.2.3) ezisls and is
unique for any admissible inpul data.

Corollary 8.2.3 If under the conditions of Lemma 8.2.2 both estimates
(8.2.27) hold and

T

exp (w (T - s)) 

/)1+TII@’(0)II exp(wT < ~ ,
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then a solution u, p of the inverse problem (8.2.1)-(8.2.3) ezists and is
unique.

In light of some peculiarities of the cosine function equation (8.2.25)
will be much more convenient in later discussions than equation (8.2.19).
For the same reason as before it is interesting to establish the conditions
under which the operator D specified by (8.2.24) becomes invertible.

Lemma 8.2.3 Let the operator ¢(T) be invertible and

ti(T) -1 ~ ~(X).

in addition, that

I] C(T) ti(O) ~(T)-I]] 

Then the operator D specified by (8.2.24) is invertible. Moreover, the in-
clusion D-1 ~ £(X) occurs and the estimate is valid:

(8.2.29) 1 - II C(T) ~(0) ti(T)-lll 

Proof Owing to the inclusion ti(T) -1 ~ £(X) relation (8.2.24) implies
that

D -- (I - C(T) ti(0) ti(T) -1 )

Because of (8.2.28), the operator D1 = I - C(T) ti(0) ti(T)- 1 is invertible
in the space £(X) and

011 = E [ C(T)ti(O)q~(T)-~ ]~’

yielding

II D;~II < ~ II C(T) ~(0) ti(T)-~ll’~ =
~----0

1 - I] C(T) q)(O) ti(T)-~ll "

Since D : D1 ti(T), the relationship -1 : (I )(T) -~ D~-~ is simple to

follow. In accordance with what has been said, we thus have

IID-~II _< Ilti(T)-lll¯

which assures us of the validity of estimate (8.2.29) and thereby completes
the proof of the lemma.,
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It is worth noting that in the general case the set of all solutions of
the inverse problem (8.2.1)-(8.2.3) with zero input data may not coincide
with zero subspace in C2([0, T]; X) x X. To understand the nature 
the obstacle involved more deeply, we give one possible example. Let the
operator A have an eigenvector e with associated eigenvalue ~ > 0 and a
numerical function ¢ satisfy the condition

T

0

sin (x/-L-~(T- s)) ds = O .

We identify the value 4p(t) with the operator of multiplication by the num-
ber ¯ (t) in the space X and pass to the inverse problem (8.2.1)-(8.2.3). 
is straightforward to verify that the function u and the element p such that

sin (v’~-X(t - s)) ~(s) ds~
e, p=e

give a nontrivial solution of problem (8.2.1)-(8.2.3) with zero input 
u0 = 0, ul = 0, u2 = 0 and F = 0. Equation (8.6.25) may be of help 
obtaining the conditions of Fredholm’s solvability of the inverse problem
at hand.

Theorem 8.2.1 If the operator A generates a strongly continuous cosine
function, whose associated sine function is compact, that is, the operator
S(t) is compact for each 

¯ ¯ C2([0, T]; £(X)),

the operator D specified by (8.2.24) is invertible, 0-1 ¯ £(X), ~2 ̄  p(A)
and h = -D-1 ( A - S I ) g,where the element g is givenby for mula
(8.2.11), then the following assertions are valid:

(1) for the inverse problem (8.2.1)-(8.2.3) be solvable for any ad-
missible input data it is necessary and sufficient that it has only a
trivial solution under the zero input data;

(2) the set of all solutions of the inverse problem (8.2.1)-(8.2.3) with
ze~:o input data forms in the space C2([0, T]; X) x X a finite-

dimensional subspace;

(3) there exist elements Ii, 12, ... , In ¯ X* such that the inverse prob-
lem (8.2.1)-(8.2.3) is solvable if and only ifli(h) = O, 1 < i < 
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Proof By Lemma 8.2.2 the inverse problem at hand reduces to equation
(8.2.25). It is well-known that the sine function S(t) is continuous on the
real line R in the operator topology of the space £(X), in which the set
of compact operators constitutes a closed two-sided ideal. In view of this,
the operator

T

B’ = / S(T - s) [~"(s) - ~ ~(s)] ds

0

is compact as a limit in the space £(X) of the corresponding Riemann
stuns. These are compact, since S(t) is compact.

On the same grounds as before, the operators

B" = S(T) ~’(0)

and

: D-I(B, +B,,)
are compact and, therefore, equation (8.2.25) can be analysed from the
standpoint of Fredholm’s theory.

The element h arising from the conditions of the theorem coincides
with the right-hand side g2 of equation (8.2.25) and can run over the entire
space along with the element g over the manifold ~D(A). Thus, the solv-
ability of the inverse problem (8.2.1)-(8.2.3) for any admissible input 
is equivalent to the question whether equation (8.2.25) is solvable for each
g2 E X and the first desired assertion follows from Fredholm’s alternative.

In the case when the input data are zero, g2 = 0 and the set of all solu-
tions to equation (8.2.25) coincides with the characteristic subspace of the
operator B~ if one associates this subspace with the unit eigenvalue. Since
the operator B~ is compact, the characteristic subspace just mentioned
pears to be finite-dimensional. It remains to note that the function u and
the element p are related by the linear formula

u(t) 
t

f s(t 
0

leading to the second assertion. In conformity with Fredholm’s theory,
equation (8.2.25) is solvable if and only if l~(g~) = 0, 1 < i < n, where
{ l~ }~=1 is a basis of the finite-dimensional space comprising all solutions
to the homogeneous adjoint equation l - B~ 1 = 0. This proves the third
assertion and thereby completes the proof of the theorem.~
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Quite often, one can encounter situations in which the cosine function
generated by the operator A obeys estimate (8.2.27) with M = 1 and w = 
In that case Lemma 8.2.3 implies that the operator specified by (8.2.24) 
invertible if

(8.2.30) II < 1.

Thus, we come to the following proposition.

Corollary 8.2.4 Let the operator A generate a strongly continuous cosine
function, whose associated sine function is compact, that is, for which the
operator S(t) is compact for each t, and estimate (8.2.27) with M = 1 and
w = 0 be valid together with estimate (8.2.30). [f O e C2([0, T];£(X)),
,~ 2 E p( A ) and h = - -1 (A - ,~2 I) g, where theelement 9 isdefin ed by

(8.2.11), then the inverse problem (8.2.1)-(8.2.3) is of Fredholm’s type, that
is, the assertions of items (1)-(3) of Theorem 8.2.1 are true.

Equation (8.2.1) can find a wide range of applications when the oper-
ator A in the Hilbert space X is unbounded, self-adjoint and nonpositive.
Such an operator always generates a strongly continuous cosine function
satisfying estimate (8.2.27) with M = 1 and w = 0. For the associated
sine function to be compact it suffices that the spectrum of the operator is
discrete. Corollary 8.2.4 can serve as a basis for this type of situation.

Corollary 8.2.5 Let the operator A be u~bounded, self-adjoint and non-
positive and ils spectrum be purely discrete i~z the Hilbert space X. If

¢ e c2([0, T]; ¯ (T) ~ £(X)

and the estimate

I1’~(o) ~I’(T)-all < 1

is valid, then the inverse problem (8.2.1)-(8.2.3) is of Fredholm’s type.

It is very interesting to compare the results just established with those
of Theorem 7.1.3 from Section 7.1. Suppose that in the HUbert space X
the operator A is unbounded, self-adjoint and negative and its spectrum is
discrete. Every such operator generates both an exponentially decreasing
contraction semigroup and a cosine function, whose associated sine func-
tion is compact and satisfies (8.2.27) with M = 1 and’ w = 0. If ¯ is smooth
and ~(T)-1 f~ £(X), then the inverse problem (7.1.1)-(7.1.4) for the 
order equation is of Fredholm’s character. At the same time for the inverse
problem (8.2.1)-(8.2.3) to be of Fredholm’s character it is required, in addi-
tion, that condition (8.2.30) is also satisfied. When condition (8.2.30) falls



55o 8. Inverse Problems for Equations of Second Order

to hold, the inverse problem (8.2.1)-(8.2.3) is not of Fredholm’s character.
The following example confirms our statement. We introduce in the space
X = L~(O, l) the operator Au = u" with the domain

o

7)(A) = W~(0, l) A W~(0, 

whose aim is to demonstrate that problem (8.2.1)-(8.2.3) is not of Fred-
holm’s character for ~(t) -- I.

We note in passing that for O(t) = I and A-1 E £(X) the operator
D = I - C(T) is invertible if and only if problem (8.2.1)-(8.2.3) is well-
posed. Indeed, in that case all the conditions of Lemma 8.2.1 are satisfied.
We are led by merely setting ,~ = 0 to

B, : C(T),

which makes it possible to reduce equation (8.2.25) to the following one:

p- C(T)p g, .

Corollary 8.2.6 If the operator A generates a strongly continuous cosine
function C(t) in the Banach space X, O(t) -- I and 0 ~ p(A), then 
inverse problem (8.2.1)-(8.2.3) is uniquely solvable for any admissible input
data if and only if 1 ~ p(C(T)).

We now assume that X is the Hilbert space and the operator A is
self-adjoint and semibounded from above. For any numerical function O,
the value ~(t) will be identified with the operator of multiplication by the
number O(t) in the space X. The function p(~) on the negative semi-axis
is defined by

(8.2.-31) ~(A) 

T
1

/ O(s)
0

sin (,f2-~ (T - s)) ds.

Note that we might extend the function ~o from the negative semi-axis to
compose an entire function of the complex variable ,L If, in particular,
q~(t) ~ 0, then the zeroes of the function ~ are isolated.

In what follows we denote by E)‘ the spectral resolution of unity
of the operator A. Within this notation, we write down

dE),,
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where b is a real number. Therefore, the main functions in question become

c(t) = cos (,/:--X t), S(t) -- 
~ sin( x/2-~ t)

and equation (8.2.9) involves

T

f ~(s)
0

sin (x/-L~ (T- s )) ds.

In that case B = ~(A), where ~ stands for the analytical continuation of
the function defined by (8.2.31). In this line, the solvability of equation
(8.2.9) can be derived from Lemma 7.2.1 of Section 7.2. Thus, we obtain
the following result.

Theorem 8.2.2 If the operator A is self-adjoint and semibounded from
above in the Hilbert space X, (~ E C1[0, T] and ¢(t) ~ O, then the following
assertions are valid:

(1) the inverse problem (8.2.1)-(8.2.3) with the fixed admissible input
data no, ul, u2, F is solvable if and only if

(8.2.32) J I~,(A)I-~ d(~xg, g) 

where Ea is the spectral resolution of unity of the operator A, (p is
defined by (8.2.31) and the element g is given by (8.2.11);

(2) if the inverse problem (8.2.1)-(8.2.3) is solvable, then its solution is
unique if and only if the point spectrum of the operator A contains
no zeroes of the entire function ~ defined by (8.2.31).

We cite below sufficient conditions under which items (1)-(2) of 
preceding theorem will be true. Since the spectrum of any self-adjoint
operator is located on the real axis, the assertion of item (2) will be proved
if we succeed in showing that the function ~ has no real zeroes. This is
certainly true for the case when the function q~ is nonnegative and strictly
increasing on the segment [0, T]. Indeed, for any positive A

T
1 /(i,(s) sh(v~(T_s)) ds > 0

~(a) = ~
o
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and so the function ~ has no positive zeroes. Moreover,

T

~,(0) = f(T- s) ~(s) ds 
0

For I < 0 set
¯ ,(s) : ~(T- s)

and substitute T - s for s in the integral involving the function ~, whose
use permits us to write down

T

~(,~) = ~ Ol(S) sin (v/-Z-~s) ds.

Recall that the positivity of the right-hand side of the above expression has
been already justified in deriving inequality (7.2.22) obtained in Section 7.2.

Integrating by parts in (8.2.31) and making the substitution T- s for
s, we establish one useful representation

1 cos ~T))
(8.2.33) ~(~) : ](~(T)-~(0) 

T
1 f ~’(T-s)cos(~s) 

0

By the Riemann lemma relation (8.2.33) implies, as A ~ -~, that

1 O(T)-O(0)cos(~T)+o (s.~.34) ~(~) = 

whence it follows that the inequality

]~(0)~ < ~¢(T)~

ensures, as A ~ -~ the wlidity of the estimate
C

~ ~(~)] 

Therefore, there is a sufficiently large number D > 0 such that

-D -D

(8.2.35) I~(a)l-2d(E~g, g) _< V la d(E~, 

1 j,g d(E~g, g)
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and all the integrals in (8.2.35) are finite. This is due to the fact that
g E :D(A). If, in addition, the spectrum of the operator A contains 
zeroes of the function ~, then the integral

b

is also finite. This implies the validity of the assertion of item (1) of The-
orem 8.2.2 and leads us to the following statement.

Corollary 8.2.7 If the operator A is self-adjoint and semibounded from
above in the Hilbert space X and the function q~ ~ C1[0, T] is nonnegative
and strictly increasing on the segment [0, T], then a solution u, p of the
inverse problem (8.2.1)-(8.2.3) exists and is unique for any admissible input
data.

Of special interest is one particular case where ~(t) = 1. By calculat-
ing the integral in (8.2.31) we deduce that

{
1-cos(v/~-~T)--- ,

: T2
2 ’

,~:0.

Let us introduce the set of points

(8.2.36) Z -- (cos (x/-L--~T): Aea(A),A7£O}.

If 1 ~ Z, then the conditions of item (2) of Theorem 8.2.2 are satisfied.
Under the stronger condition 1 ~ 2, where 2 is the closure of the set Z,
the estimate I ~(,~)1 _> c/I ,~ I is valid on the spectrum of the operator A as
,~ -+ -ee. Thus, the integral in (8.2.32) is finite by virtue of the inclusion
g ~ D(A), leading to another conclusion.

Corollary 8.2.8 If the operator A is self-adjoint and semibounded from
above in the Hilberl space X, (~(t) =_ 1 and 1 ~ 2, where the set Z 
prescribed by (8.2.36), then a solution u, p of the inverse problem (8.2.1)-
(8.2.3) exists and is unique for any admissible input data.

Consider now the inverse problem (8.2.1)-(8.2.3)in the case when 
spectrum of the operator A is purely discrete. Let { e~}~=1 be an orthonor-
real basis of the space X consisting of the eigenvectors of the operator A
and

Ae~ =,~kek.
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Then the elements g and p .can, be represented as follows:

g = g~e~, p = p~e~,
k--1

thus causing an alternative form of equation (8.2.9) T(A)p = g in connec-
tion with the infinite system of equations

(8.2.37) ~(Ak)pk : g~, k : 1, 2, ....

Because of (8.2.37), a solution to equation (8.2.9) is unique. Then a solution
of the inverse problem at hand will be unique if and.only if ~(,~) ¢ 0 for
each k. This coincides with the assertion of item (2) of Theorem 8.2.2.

In conformity with the spectral theory of self-adjoint operators,

k=l

if the series on the right-hand side contains only those terms for which
g~ ¢ 0. When all the terms should be taken into account, we write down
~ ¯ 0 = 0. In light of the results from item (1) of Theorem 8.2.2 the
convergence of the series on the right-hand side of (8.2.38) is equivalent
to the solvability of equation (8.2.9) and consequently the solvability 
the inverse problem. The same condition can be derived from the system
(8.2.37). Indeed, if equation (8.2.9) is solv/tble, then so is every equation
from the collection (8.2.37). Therefore, if g~ # 0 for some k, then a similar
relation will be true for the value ~(,~) with the same subscript k, so that

gk"(8.2.39) -

and the remaining components of the vector p may be arbitrarily chosen.
The series on the right-hand side of (8.2.38) is a sum of the squares 
only those components Pk for which gk ¢ 0. On the other hand, the sum
containing the squares of all components of the vector p is finite, since it is
equal to its norm squared. Thus, the series in (8.2.39) is convergent.

Conversely, if the series in (8.2.38) is convergent, then one can de-
fine, in complete agreement with (8.2.39), all of those values Pk for which
~(,~) ¢ 0 and take the remaining values with ~(,~) = 0 to be zero. 
this is the case, the sequence { p~ }~=1 satisfies the system (8.2.37) and the
convergence of the series in (8.2.38) provides the existence of such a vector
p, whose components are equal to the values pk.
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By means of the Fourier method one can derive for the solution to
equation (8.2.9) the explicit formula

(8.2.40) p = E (g,

which may be of help in approximating the element p.
The preceding example with the space X = L~(0, l), the governing

equation A u = u", the domain

0
V(A) = W (O, W (O, 

and the function (I)(t) -- 1 involved helps clarify what is done. Observe
that in such a setting the spectrum of the operator A is purely discrete,
that is,

(8.2.41) A~ =-(rrk/1)2, k= 1,~,....

The values

give zeroes of the function 9~ defined by (8.2.31). If the ratio T/l is rational,
both sequences (8.2.41) and (8.2.42) have an infinite number of the coin-
ciding terms. Thus, the uniqueness of the" inverse problem (8.2.1)-(8.2.3)
is violated. What is more, it follows from relations (8.2.37) that the space
of all solutions to equation (8.2.9) for ~he case g = 0, corresponding, 
particular, to the zero input data, is infinit.e-dimensional and so the in-
verse problem (8.2.1)-(8.2.3) fails to be of Fredhohn’s type. If the ratio
T/I is irrational, then sequences (8.2.41) and (8.2.42) are not intersecting.
This serves to motivate the uniqueness of a solution of the inverse prob-
lem (8.2.1)-(8.2.3). Also, the inverse problem concerned will be solvable
on a dense set once we use any linear combination of the eigenvectors of
the operator A instead of g. On the other hand, when the subscripg k is
large enough, the distance between ~ and #~ can be’made as small as we
like. This provides support for the view that the series in (8.2.38) does not
converge for some g ~ 7:)(A), thereby justifying that the inverse problem
(8.2.1)-(8.2.3) fails to be of Fredholm’s character.

Let us consider one more example with X = L:(0, l) and Au = u".
Here the domain D(A) consists of all functions u ~ W~(0, l) with 
boundary values u(0) u’ (l) = 0. Forthe caseO(t) = 1 t hespectrum of
the operator A is of the form

(8.2.43) Aa=-((2k+l)rr/21)~, k= 1,2,...,
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and the zeroes of the function ~ are given by formula (8.2.42). If the ratio
T/l is irrational, then, as before, a solution of the inverse problem exists
and is unique only for a certain dense set of admissible input data (not for
all of these data) and there is no reason here for Fredholm’s character.

In this regard, one thing is worth noting. In the present and prededing
examples we have 1 E Z, where the set Z is prescribed in (8.2.36), a:nd,
consequently, the number ~ = 1 enters the continuous spectrum of the
operator C(T).

Allowing the ratio T/1 to be rational of the form

T 2k+l
(8.2.44)

l - 4n

we find that ~ = #~. Having multiplied the numerator and the denom-
inator by one and the same odd number the fraction on the right-hand
side of (8.2.44) is once again of this type. Thus, there exists an infinite
number of pairs (k, n) such that (8.2.44~ takes place. All this reflects 
situation in which the number A = 1 is an eigenvalue of the operator C(T)
of infinite multiplicity. If this happens, a solution of the inverse problem is
nonunique and the space of its solutions with zero input data turns out to
be infinite-dimensional.

When the ratio T/l is rational, but representation (8.2.44) fails 
hold, none of the numbers of the type (8.2.43) falls into the set of zeroes 
the function ~. If so, 1 ~ 2, since the set Z is discrete and finite. Moreover,
as A -~ -c~ the function

: (1 

obeys on the spectrum of the operator A the estimate ]~,(~)[ _> c/I,~ [,
implying that the integral in (8.2.32) is finite for each g E ~)(A). For 
reason the inverse problem (8.2.1)-(8.2.3)is well-posed. If, for example,
T = 2 l, condition (8.2.44) is violated, so that the inverse problem concerned
is well-posed. It is straightforward to verify that C(T) = -I, S(T) = 0 and
all the conditions of Corollary 8.2.6 hold true. Equation (8.2.19) becomes
p- C(T)p = gl, from which the element p can be found in the explicit
form as follows:

1p= -~ gl = -Ag.
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8.3 Two-point inverse problems for equations of the elliptic type

We consider in a Banach space X the inverse problem

(8.3.1) u"(t) = Au(t) + ~(t) p+ F(t), 0 

(8.3.2) u(0) = =

au(T) + /gu’(T) : u~,

where A is a closed linear operator with a dense domain,

¯ : [o, T] F:[O, T]~-~ X ;

the values u0, ul, u2 E X and real numbers a, ~3 are such that ff2"1-~2 ¢ 0.
Throughout the entire section, equation (8.3.1) is supposed to be el-

liptic, meaning the positivity of the operator A. By definition, its resolvent
set contains all positive numbers and for any A > 0 the estimate is valid:

C

A+AI)-I <- I+A

When the operator A happens to be positive, it is possible to define its
fractional powers. Moreover, the operator -A~/2 generates a strongly
continuous analytic semigroup V(t). In each such case the spectral
radius of the operator V(t) is less than 1 for any t > 0 (for more detail
see Krein (1967), Krein and Laptev (1962, 1966a, b)) and so the operator
I- V(t) is invertible for any t > 0. We are now interested in finding a
function u E C2([0, T]; X) ~1Cl([0, and an element p e X
from relations (8.3.1)-(8.3.2).

Before proceeding to careful analysis, we give some necesgary condi-
tions for the preceding inverse problem to b~ solvable:

Uo ~ D(A), ul ~ D(A~/2).

The element u~ ~ D(A) for/~ = 0 and u~ ~ ~)(A1/2) for other cases.
As a direct problem associated with equation (8.3.1) the boundary

value problem is given first:

(8.3.3) u"(t) = Au(t) f( t), 0 < t < T,

(8.3.4) u(0) = uo, o~ u(T) + u’ (T) = u~

In the sequel we shall need as yet the operator

(8.3.5) A(T) c~(I-V(2T))+~3A1/2(I+V(2T)).
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As stated in Krein and Laptev (1962, 1966a), the direct problem (8.3.3)-
(8.3.4) will be well-posed once we require that

(8.3.6) A(T)-’ e £(X).

Under this agreement one can find the corresponding Green function

1
A(T) -1 {(flI- aA-’/2)(8.3.7) G(t, s) = - 

x [V(2T-t-s)-V(2T-It-sl)]

+ (flI +aA-1D) [V(It-sl)- V(.t + }

Observe that condition (8.3.6) is fulfilled in the particular cases a = 0 
fl = 0 as an immediate implication of the estimate r( V(2 T)) < 1, where
r denotes, as usual, the spectral radius.

In the case when fl # 0 the domains of the operators A(T) and A
coincide. Furthermore, by the Banach theorem on closed graph condition
(8.3.6) ensures for fl ~ 0 that

(8.3.8) A~/~ A(T)-1 ff /~(X).

To derive the formula for the inverse problem solution, it will be sensible
to introduce the new elements

f a= A(T) -~ [(aI+flAU2) uo-V(T)u2],(8.3.9)
b= A(T) -~[u2-(aI-flA 1/2) V(T)uo].

From the theory of semigroups it is known that the operator A commutates
with the semigroup V(t) and thereby with the operator A(T). From such
reasoning it seems clear that the elements

(8.3.10) a, b ~ ~(A).

For fl = 0 inclusion (8.3.10) follows immediately from the belonging of the
elements u0 and u~ to the manifold/)(A). For fl :~ 0 the validity of (8.3.10)
is ensured by the inclusions u0 E ~9(A), u~ ~ I)(A~/~) and (8.3.8).

Assume now that the function f satisfies on the segment [0, T] either
H61der’s condition in the norm of the space X or

f, AU2f e C([0, T]; X).
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It was shown by Krein (1967), Krein and Laptev (1962, 1966a) that under
these constraints a solution u of the direct problem (8.3.3)-(8.3.4) exists
and is unique in the class of functions

u e c2([0, T]; X) fl C1([0, 

Moreover, this solution is given by the formula

(8.3.11)

T

u(t) = V(t) a+ V(T-t)b+ JG(t,s)f(s) 
0

so that

(8.3.12)

T

u’(t) = -V(t) 1/2 a+ V(T- t) 1/2b + JGt(t ,s ) f(s) d
0

Let us introduce the notion of admissible input data which will be
needed in the sequel. In what follows we assume that the function
with values in the space £(X) satisfies HSlder’s condition on the segment

Definition 8.3.1 The elements Uo, Ul, U2 and the function F are referred
to as the admissible input data of the inverse problem (8.3.1)-(8.3.2) if
Uo E 7P(A), ul ~ D(AII~), the element us belongs either D(A) for ~3 
~)(A1/2) for fl ~ O, the function F admits the decomposition F = Fa + F~,
where Fa satisfies on the segment [0, T] H61der’s condition in the norm of
the space X and F~, A1/2 F~ ~ C([0, T]; X).

We note in passing that the admissible input data may be involved in
formulae (8.3.11)-(8.3.12) by merely setting

(8.3.13) f(t) = ~(t) p+ F(t).

Likewise, the inverse problem (8.3.1)-(8.3.2) can be reduced to a single
equation for the element p as before. Substitution of (8.3.13) into (8.3.12)
could be useful in deriving this equation by successively applying t = 0 and
ua in place of u~(0). The outcome of this 

(8.3.14) B p = g,
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where

(8.3.15)

(8.3.16)

T

B ds,
0

g : U1 AC A1/2 a - V(T) A1/2 b

T

- f a,(o, s) r(8) 
o

In conformity with semigroup tiaeory the inclusion g E D(A1/2) shall enter
into force for any admissible input data. Moreover, we claim that the
element g runs over the entire manifold D(A1/2) for the varying admissible
input data. Indeed, the values u0 = 0, u2 = 0 and F = 0 lead to the
equality g = ul, which confirms our statement.

It is easy to verify that a pair { u, p } gives a solution of the inverse
problem (8.3.1)-(8.3.2) if the element p satisfies equation (8.3.14) and 
function u is given by formula (8.3.11) with f(t) = O(t)p + F(t) incorpo-
rated. In particular, one can prove that the unique solvability of the inverse
problem (8.3.1)-(8.3.2) is equivalent to the question whether the operator
B is invertible and

V( B-’) : 

Of special interest is one particular case where O(t) = I. For this, the
integral in (8.3.15) can be calculated without difficulties, thus giving the
explicit formula for a solution to equation (8.3.14).

Theorem 8.3.1 If the operator A is positive, ~(t) -- I and the inclusions
A(T)-1 and A(T/2)-1 E £(X) occur, then for any admissible input data
a solution u, p of the inverse problem exists iznd is unique. In this case the
element p is given by the formula

(8.3.17) p = -(I- V(T))-~ 1/2 A(T/2) -1A(T) g,

where g is defined by (8.3.16), (8.3.9) and (8.3.7).

Proof Recall that the element p can be recovered from equation (8.3.14).
From (8.3.7) it follows that

Gt(O,s) = - I/2 A(T) -~ { (/3I- ~A-1/2)

x V(2T-s) +(t3I+o~A -1/2) V(s)}.
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The well-known formula from semigroup theory is used to deduce that for
any nonnegative numbers tl and t2

(8.3.18)

yielding

A1/~ / V(s) ds = V(tl)- V(t~),
t,

T

A1/2 /V(s) ds = ViO)- V(T) = I- V(T).
o

Since the operators A~/~ and A(T) are commuting, we arrive at the chain
of relations

T

- A~/’ A(T)-~ (fl I + a -1/2 ) A1/~ / V(s) ds

o

AUrA(T)-~

AU2 A(T)- 

A~/~ A(T)-~

A1/2 A(T)-~

A~/~ A(T)-~

(flI+aA-1/2) ( I- V(T))

A’/~ a(T)-~ [~ (~-’~ - ~-~/~ V(T))

+ ~ (i + V(T))] - V(T))
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= -- AI/2A(T) -1 [e~ (I- V(T)) 1/2

× (i + v(T))] A-l/2 (z- V(T))

= - A1/~ A(T)-~ A(T/2) -1/~ ( I- V (T)),

T

A~/2 / Gt(O,s) ds = ~/2 A(T)-~ A(T/2) A- ~/2(I- V(T)).(8.3.19)

0

Note that the operator A~/2 is invertible and the inclusion g ~ ~(A~/~) oc-
curs. Because of these facts, equation (8.3.!4) is equivalent to the following
one:

Al/~Bp = .A~/ 2g,

which leads by (8.3.19) 

-A~/~ A(T)-1 A(T/2) -~/~ ( I- V (T)) p ~/~ g,

whence formula (8.3.17) immediately follows. This completes the proof 
the theorem..

Under several additional assumptions equation (8.3.14) reduces to 
second kind equation. A key role here is played by the operator

(8.3.20) 5(T) = o~ (I+ V(2T)) +/3A1/2 (I- V(2T)),

being still subject to the relation

(8.3.21) ~(~)-1 e ~(X).

It should be noted that for the fulfilment of condition (8.3.21) it is sufficient
that either a = 0 or /3= 0. For /3 ¢ 0 the domain of the operator 5(T)
coincides with D(A1/2) and in this case by the Banach theorem on closed
graph condition (8.3.21) implies that

(8.3.22) A112 5(T) -1 ~ ~(X).

Lemma 8.3.1 If the operator A is positive, conditions (8.3.6) and (8.3.21)
hold, the function ¢ ~ C~ ([0, T]; £(X)) and the operator

¯(o) e c(x),
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then for any admissible input data equation (8.3.14) is equivalent to the
following one:

p- B1 p = gl ,

(8.3.24)

(8.3.25)

T

0

+~6(T)-~ 

T

91 : - ~(0)-~ A1/2 5(T)-~ A(T) 

Proof As we have mentioned above, if the operator .4 generates a strongly
continuous semigroup V(t), then for any continuously differentiable func-
tion f we get

t t

0 0

By means of the function f(s) = g(t - we establish for any continuously
differentiable function g one useful relationship:

(8.a.~6)
t t

A f v(s)g(~)as : -f v(.)g’(s) v(t)~(t)-~(o).
0 0

Moreover, from formula (8.3.26.) it follows that

(8.3.27)

t

0
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The function gl(s) = g(2t-s) is aimed to justify this and deduce in passing
that

t 2t

~

0 0

and, because of (8.3.26),

t 2t

,4/ V(2t-s)g(s) ds 

o o

t

V(s) gt(s) ds - ~ / V(s) g~(s) 
0

2t

v(~) g’~(~) ~ + v(~t) e~(~t) 

t

v(~) g’~(~) ~ - v(t) g~(t) 

2t

= / V(s) g’(2t - s) ds + V(2t) 
0

t

- f v(~) ~’(~t - s) d~ ~ V(t) 
0

2t

= / V(s) f(2t - s) ds V(2t) g( O) - V(t) g(

t

=./v(~t - ~) ~’(~) d~ + V(~t) 9(0) - V(t) a(t),
0

thereby justifying formula (8.3.27).
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As stated above, for any admissible input data the element g defined
by (8.3.16) belongs to the manifold ~)(A 1/2) and, since the operator A1/~

is invertible, equation (8.3.14) is equivalent to the following one:

(8.3.28) A~/~ t3 p = A1/2 g.

Combination of (8.3.15) and the equality

(8.3.29) Gt(O,s) = A~/~ A(T)-~ {(/~I-c~A-~/~)

x v(~r- ,)+ (ZI+ .A-’/"-)

gives

T

A~/2Bp =A1/~ / Gt(O,s)O(s)p 
o

= - Ai/~A(T) -~ (flI- aA-~/~) A~/~

T

× / V(2T - s) ~(s) ds
o

- A1/2 ~(T)-x (ZI + o~A-"~)

T

A~n f v(s).~(s)~ 
0

By successively applying formulae (8.3.26) and (8.3.27) to the couple
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A = -A1/2 and g(t) = o;(t) wearr ive at thechai n of r ela tions
T

A1/2 B p = A1/~ A(T)-I ( fl I - ct A-1/2) [ / V(gT- s) gp’(8) 

+ V(2T) qs(0)p V(T) q~(T) p]

+ A~/~ A(T) -~ (flI + c~A-1/~)

T

x [-/V(s)42’(s)pds+V(T)<~(T)p-4~(O)p]

o

T

O.

+ aA-~/2 (2 V(T)c~(T)p

T

-- A~/~A(T) -1 (aA-1/~ (i + V(2T)) + fl (I- V(2T))O(0)p

T

:A ~D A(T) -:~ [~ f [V(2T- s)- V(s)] O’(s)p 

o

T

\ix +’(+)v A1/~ A(T)-1 6(T) A-1/2 ~(O) 

We are led by substituting ~his expression into the left-hand side of (8.3.28)
and applying then the operator

,~(0) -1 A~/2 6(T) -1 A(T)A-~/~

to both sides of the resulting relation to i8.3.23), thereby completing the
proof of the lemma."
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It is worth noting here that, in general, a solution of the inverse prob-
lem (8.3.1)-(8.3.2) is not obliged to be unique. The inverse problem

f u"(t) = Au(t)+(P(t)p,
(8.3.30)

u(0) = O, u’(0) = u(T ) = O,

where ̄  is a numerical function, complements our study and gives a par-
ticular case of the inverse problem (8.3.1);(8.3.2) with a = 1, /3 = 0 under

¯ the zero input data. Problem (8.3.30) has at least the trivial solution
u(t) _= 0, p = 0. If the operator A has an eigenvector e with associated
positive eigenvalue A, then

V(t) = exp’(-v~t) e.

The function (I) will be so chosen as to satisfy the condition

T

0

-exp (-v~s)) O(s) ds = O.

With ~he aid of (8.3.15) and (8.3.29) we deduce that B e = 0 and, therefore,
the pair of functions u and p such that

T

,~(t) = f a(t, s) ~(s) 
0

is just a nonzero solution of the inverse problem (8.3.30). However, under
the restrictions imposed above the inverse problem concerned possesses
Fredholm’s character.

Theorem 8.3.2 Let the operator A be positive,

(I) e cl([0, T]; £(X)), (~(0) -1 ~ ~(X)

and conditions (8.3.6) and (8.3.21) hold. If the semigroup V(t) generated
by the operator -A1/2 is compact and the element

h = -(I)(0) -1 A1/~ 5(T) -1 A(T) 

where g is defined by (8.3.16), then the following assertions are valid:
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for the inverse problem (8.3.1)-(8.3.2) be solvable forany admis-
sible input data it is necessary and suJficient that this problem with
zero input data has a trivial solution only;

the set of all solutions to problem (8.3.1)-(8.3.2) with zero input
data forms in the space C2([0, T]; X ) × X a ~nite-dimensional sub-
space;

there exist functionals 11,12,. ̄  ¯ , In E X* such that the inverse prob-
lem (8.3.1)-(8.3.2) is solvable if and only ff li(h) = O, 1 < l < 

Proof Within the framework of Theorem 8.3.2 Lemma 8.3.1 is certainly
true and, therefore, the inverse problem of interest "reduces to equation
(8.3.23). Recall that the semigroup V(t) is compact. Due to this property
V(t) is continuous for any t > 0 in the oper.ator topology of the space £(X).
Since the set of all compact operators with respect to this topology forms
a closed two-sided ideal, the operator

T 2T

o T

is compact as a limit of the corresponding Riemann sums in the space
£(X). Then so is, for any ¢ > 0, the operator

T

(8.3.31) / V(s)~!(s) 

The function f(s) = V(s)¢’(s) is bounded in norm on the segment [0, T]
and, therefore, as ¢ ~ 0, the integral in (8.3.31) converges in the operator
topology of the space £(X). Because of this fact, the operator

T

B" = f v(~) ~’(s) 
o

is compact. Since the operators B!, B!! and V(T) are compact and the op-
erators ~ A~./~ 5(T)-~, 5(T)-~ and ~(0)-~ are continuous, one can specify
by formula (8.3.24) a compact operator and carry out subsequent studies
of equation (8.3.23) on the basis of Fredholm’s theory.

In preparation for this, we are going to show that the element g~
defined by (8.3.25) runs over the entire space X for the varying input
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data. Indeed, as stated before, the element g defined by (8.3.16) runs over
the entire manifold 79(A1/2). For ~ ¢ 0 the operator A(T) executes 
isomorphism of 7)(A1/~) onto the space X, while A1D 5(T)-1 ~nd ~(0)-1

fall into the category of isomorphisms of the" space X. It follows from the
foregoing that for ~ 7~ 0 the element gl may be arbitrarily chosen in the
space X. For/~ --- 0 both operators 5(T)-1 and A(T) are isomorphisms 
the space X, so that we might attempt the element gl in the form

g, = -~(0) -1 5(T)-~ A(T) Aling,

which serves to motivate that the element A112 g may run over the entire
space X, because so does the element gl. Thus, the solvability of the inverse
problem (8.3.1)-(8.3.2) with any admissible input data is equivalent to 
question whether equation (8.3.23) is solvable for any gl E X and the first
desired assertion follows immediately from Fredholm’s alternative.

Under the zero input data functions’the element 91 = 0 and the set of
all solutions to equation (8.2.3) coincides with the characteristic subspace 
the operator B~ for the unit eigenvalue. Since the operator B1 is compact,
this characteristic subspace will be finite-dimensional. A simple observation
may be of help in achieving the final aim in item (2). From formula (8.3.11)
it follows that the function u and the element p are related by

T

= f a(t, s) p ds.
0

In conformity with Fredholm’s alternative equation (8.2.23) is solvable
if and only if li(g~) = 0, 1 < i < n, where {li}, 1 < i < n, constitute a
basis of the finite-dimensional space formed by all solutions to the adjoint
homogeneous equation l - B~’ l = 0. It remains only to note that the
element h coincides with gl. All this enables us to deduce the statement of
item (3), thereby completing the proof of the theorem. 

We confine ourselves to the case when the operator. A is self-adjoint
in a Hilbert space X. If so, the operator A is "positive if and only if it is
positive definite. When treating ~5(t) in,)olved in problem (8.3.1)-(8.3.2)
as a numerical function and identifying the value q)(t) with the operator 
multiplication by the number qS(t) in the space X, we-are now in a position
to define the function ~(,~) on the positive semi-axis 

T

= -f
0

/?v~chx/~(T- .s) + c~sh~/~(T- s) ¢2(s) 

~ x/’X ch T x,/~ ÷ c~sh T v~
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under the natural premises

(8.3.33) o~ _> O, /3 > O, c~ +/3 > O.

It is clear that the function ~ is analytical on the positive semi-axis and all
of its zeroes are isolated in the case when O(t) ~ 

Theorem 8.3.3 ff the operator A is self-adjoint and positive definite in
a Hilbert space X, the function.rb with values in the space R is of HSlder’s
type on the segment [0, T], q~(t) ~ and c~> O,/ 3 >_ O, c~ +/3> O,then the
following assertions are valid:

(1) a solution of the inverse problem (8.3.1)-(8.3.2) exists if and Only
if

(8.3.34)

0 o

where E)~ slands for the resolution of unity for the operator A,
the function ~ is defined by (8.3.32) and the element 9 is given by
formula (8.3.16);

(2) if a solution of the inverse problem (8.3.1)-(8.3.2) exists, then for
lhis solution to be unique it is necessary and sufficient that the point
spectrum of the operator A contains no zeroes of the function ~(,~).

Proof Since the operator A is positive definite, there exists ~ > 0 such
that

+~

A. = / A dEA

and on the basis of the theory of operators

(8.3.35) V(t) f exp dE ,

(8.3.36) AI[ 2 = J ~ dE~ .
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With the aid of relations (8.3.35)-(8.3.36) we derive by the multiplicativity
of the mapping

f(A) ~-~ f(A)

the formula

(8.3.37) ~(T) 

where

(8.3.38/
Because of (8.3.33), the function d(A) is positive on the positive semi-axis.
This provides support for the view that the operator A(T) is invertible.
For )3 = 0 the function d(A) has, as A -~ +ee, a non-zero limit equal 
the number 4. If )3 ¢ 0, then the function d(1) is equivalent to )3 v~ 
A ~ +e~. This serves to motivate that the function d(A)-1 is bounded on
[c, +e~) and, therefore, inclusion (8.3.6) occurs, since

(8.3.39) a(T)-i = J d(,~)-i ~E~.

From the theory of self-adjoint operators it follows that

(8.3.40) )3 I - a -~/2 = )3 -~ dEx 

(8.3.41) )3I+c~A-~/~= )3 + --~ dE~.

By the multiplicativity of the mapping

f(A) f( g)

in combination with relations (8.3.29), (8.3.36)-(8.3.41) we deduce that 
operator G~(0, s) can be put in correspondence with the function

(8.3.42)

x exp ( -xfl~ ( 2 T - s))

+ )3+~ e×p(-,A-~
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Thus, formula (8.3.25) gives the representation

T

Observe that the function g(,~, s) is continuous and bounded on [e, +oo) 
[0, T]. By the Fubini theorem we thus have

(8.3.43)

where

 l(a) 

Upon substituting (8.3.38) into
that

(8.3.44) g(~, s) = - ~3 

thereby justifying the equality

T

f s) ds.
0

(8.3.42) we find by minor manipulations

chv~ (T- s) + ash V~ (T- 

/? x/~ ch v’~ T + ash x/X T

=

where the function ~ is defined by relation (8.3.32). Hence the inverse
problem in hand reduces to equation (8.3.14) taking for now the form

(8.3.45) p = g.

Due to Lemma 8.2.1 of Section 8.2 with regard to equation (8.3.45) 
finish the proof of the theorem. ̄

The next stage of our study is concerned with discussions of items
1)-(2) of Theorem 8.3.3. First of all it should be noted that, in view 

(8.3.44), the function g(1, s) is nonnegative for any I > 0 and all values
s E [0, T]. This function may equal zero only if/~ = 0 and s = T for
a _> 0, ~3 >_ 0, a + ~ > 0. If now the function ¯ is continuous, nonnegative
and does not equal zero identically, then T(A) < 0 for any ~ > 0. Since the
spectrum of a positive definite operator is located on the semi-axis ~ > 0,
the operator A meets the requirements of item (2) of Theorem 8.3.3.
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For any ̄  E C1 [0, T] we establish by integrating by parts in (8.3.32)
the relation

~(~) 

(8.3.46)

~ ~(T)- (/3shv~T4 ~ chx/~-T) ~(0)

/3 x/’~ ch (7" v/~)+ c~sh (T v/~)

flshv~ (T- s) + ~ ch x/~ (T- 

fl v/-~ch T v~ + o~sh Tv~

which immediately implies as & -+ +oo that

v~ thTx/~+o ~ ,

ds~

/3#0,
~(A).- ~(0) ( 1 

v/~ cthTv~+o ~ , /3=0.

Thus, as A -+ +0% in either of the eases fl = 0 and/3 ~ 0 we find that

(8.3.4r) ~(~) = -~ + o ~ 

If ~(0) ~ O, then estimate (8.3.47) ensures the existence of positive 
stants c and ko such that for M1 numbers k ~ A0

C

I~(~)1 e 

+oo

,ko

(8.3.48)

yielding

(8.3.49)

_< c-2 / ~ ~(~g,
0

Observe that the integral on the right-ha.nd side of (8.3.49) is finite if and
only if g ~ D(A~/2) and, therefore, for all admissible input data of the
inverse problem (8.3.1)-(8.3.2) the estimate is valid:

/ I~o(,X)l-~ d(E~g,
Ao
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If the function ~ does not vanish on the spectrum of the operator A, then
the integral

A0

is finite, because ~ is continuous. Thus, we arrive at the following assertion.

Theorem 8.3.3 If the operator A is self-adjoint and positive definite in a
Hilbert space X, the function ¯ E C1[0, T] is nonnegative, ~(0) > 0 and the
numbers c~ >_ 0 and ~ >_ 0 are such that c~ + ~ > O, then. a solution u, p of
the inverse problem (8.3.1)-(8.3.2) exists and is unique for any admissible
input data.

One assumes, in addition, that the operator A has a discrete spectrum.
In trying to derive an explicit formula for the element p by the Fourier
method of separation of variables we rely on an orthonormal basis { ek }~=1
composed by the eigenvectors of the operator A and A ek = ~ e~. With
the aid of the expansions

g = ~ g~e~, P = Pkek
k:l

we might split up equation (8.3.14) into the infinite system of equations

(8.3.50) ~(~)p~ = g~, ~ = 1, 2 .....

To decide for yourself whether a solution is unique, a first step is to check
that all the values ~(Ak) :~ 0. When this is ~he case, (8.3.50) implies 

gk
p~- ~(~) 

/ I~(~)1-~ d(E~, g) = ~ I~(~)1-~(8.3.~1)
0

and the sum of the series on the right-hand side of (8.3.51) equals the
element p norm squared. The convergence of this series is equivalent to
the solvabilit) of equation "(8.3.14) and, in view of this, the element p 
representable by

(8.a.~) p = E ~(~k)-i (~, e~)~.
k=l

The resulting expression may be of help in approximating the element p.

so that



Chapter 9

Applications of the Theory

of Abstract Inverse Problems
to Partial Differential Equations

9.1 Symmetric hyperbolic systems

We now study the Cauchy problem

(9.1.1) ao(x,t) ou 
-~ + a~(x,t) ~ 

x E Rn, 0 < t < T,

(9.1.2) u(x,O) Uo(X), ¯ ~ Rn,

where the functions u, f and u0 take the values in a Hilbert space H and
the coefficients ai(z, t), 0 < i < n, take the values in the space/:(H).

Assume that the operators ai(x,t), 0 < i < n, are symmetric and
the operator ao(x,t) is positive definite uniformly in the variables z, t. Of
great importance is the case when the space H is finite-dimensional. If this
happens, equation (9.1.1) admits the form of the symmetric t-hyperbolic

575
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system of first order partial differential equations for the components of the
vector-function u. Quite often, in the development of advanced theory that
does not matter that the space H is finite-dimensional, while in notations
operator style is much more convenient than matrix one.

Common practice involves the following constraints for a given posi-
tive integer s > y + 1:

(1) ai ¯ e([0, T]; C~ (Rn; £(H)), 0 < i < 

(2) [lao(x,ta)-ao(X,t~)Hcb(~tn;~(z~) ) <_ Lltl-t21, O<_t~,t~ ~_T.

Here the symbol Cb(f~, X) designates the set of all continuous bounded
on f~ functions with values in the space X; the norm on that space is defined

by

I[ f = sup

By definition, the space C~,(Q, X) contains all the functions defined
on Q with values in the space X, all the derivatives of which up to the
order s belong to the space £b(~, X). In turn, the norm on that space 
defined by

In what follows X = L~ (R’~; H) is adopted as a basic space and the
Cauchy problem (9.1.1)-(9.1.2) is completely posed in the abstract form 
follows:

u’(t) A(t)u(t)+F(t,u(t)), 0<t<T,

= u0,
where

(9.1.3) A(t) = a;l(x’t) a~(x’t) 
i=l

F(t,u) = a~l(x,t) f(x,t,u).

The domain of the operator A(t) corresponds to the maximal operator
in the space X generated by the differential expression on the right-hand
side of (9.1.3). It should be noted that in the spaces

X0 ~-~ W;-1 (R’~; H), X~ = W~ (R’~; H)

the validity of conditions (S1)-($2) from Section 5.4 is ensured by assump-
tions (1)-(2) of the present section (for more detail see Kato (1970, 
1975a), Massey (1972)).
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Here and below, in the space H = Rm with the usual inner product
the operators ai(z,t), 0 < i < n, will be identified with their matrices in a
natural basis of the space H. One assumes, in addition, that the right-hand
side of equation (9.1.1) is of the structure

(9.1.4) f(x,t, u) = (p(t) a(x,t) + b(x,t)) u 

where the matrix functions a and b of sizes k × m and m × m, respectively,
are known in advance and the unknown m × k-matrix function p is sought.
The vector function g with values in the space H is also given. The problem
statement of finding the coefficien,t p(t) necessitates involving solutions to
equation (9.1.1) subject to the initial conditions

(9.1.5) uj (x, O) = Uoj (x), 1 <_ j <_ 

and the overdetermination conditions

(9.1.6) uj(xj,t) = ej(t), 1 <_ j <_ k, 0 < t 

where the points xj E R’~, 1 _< j _< k, are kept fixed.
For the reader’s convenience we denote by U(x, t) the m × k-matrix,

whose columns are formed by the components of the vectors u~(x,t),...,
u~(x,t), by G(x,t) the m × k- matrix, whose columns are fo rmed bythe
components of the same vector g(x, t), by Uo(x) the m × k-matrix, whose
columns are composed by the components of the vectors uol(x), ... , uo~(z)
and by ~(t) - the m × k-mat;ix, whose columns are formed by the com-
ponents of the vectors ¢1(t), .;., ek(t). Within these notations, one 
replace exactly k Cauchy problems associated with equation (9.1.1) by only
one problem in the matrix form

(9.1.7) ao(x,t) OU 
0U+

i=l

= (p(t)a(x,t) + b(x,t)) U + 

(9.1.8) U(x, O) = Uo(z).

In the sequel the symbol Ha designates the space of all m × k matrices.
The usual inner product in this matrix space is defined by

(a, b) = tr (ab’),

where tr means taking a matrix trace equal to the sum of its diagonal
elements. Obviously, any symmetric m x m-matrix be!ng viewed in the
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space H1 as an operator of matrix multiplication from the left describes a
symmetric operator in the same space. Moreover, the norm of this operator
in the space H coincides with its norm in the space//1. In these spaces the
same is certainly true for the constants of positive definiteness. Because
of this, upon substituting the system (9.1.1) and the space H in place 
(9.1.7) and H1, respectively, the governing system does remain symmetric
and t-hyperbolic and is still subject to conditions (1)-(2) imposed above.
In particular, operator (9.1.3) meets conditions (H1)-(H4) of Section 
as well as conditions (H3.1)-(H4.1) of Section 6.8 with regard to the basic
spaces

X = L,(R’~; H1), X0= W~-’(R’~; H1), X~= W~(R~; 

We begin by introducing an operator B acting from the space X0 into
the space Y = H~. One way of proceeding is to hold a matrix U E X0 fixed
and operate with the vector uj (x) formed by the j-column of this matrix,
1 <j < k. By definition, the j-column of the matrix BU, 1 < j < k, is
equal to uj(xj). Since s - 1 > n/2, Sobolev’s embedding theorem implies
that the space Xo is continuously embedded into the space gb(Rn; H1 ).
Therefore, the operator B is well-defined and B ~ £(Xo;Y ). By means
of the operator B condition (9.1.6) admits an alternative form

(9.1.9) BU(z,t) = ¢(t), 0<t’<T.

Using the decomposition F(t,U,p) = 1 [( pa + b)U + G]behind we
deduce that the inverse problem of recovering the matrix p can be recast
in the abstract form as follows:

U’(t) A(t)U(t)+ F(t,U(t),v(t)),
V(O) = go,
B v(t) = ¢(t),

0<t<T,

0<t<T.

which coincides with the inverse problem (6.8.1)-(6.8.3) of Section 
Also, the operator B satisfies condition (6.8.4). All this enables us 
apply Theorem 6.8.1 of Section 6.8 in establishing the solvability of the
inverse problem at hand. This can be done" using the replacements

fl(t,U) = 1 (b f~(t,U,p) = a~lpaU

in the counterpart of decomposition (6.8.5):

F(t,U,p) = fa(t, U) + f~(t,U,p).
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The function f3 arising from condition (H6) of Section 6.7 is defined 
means of the relation

f3(t,y,p) : B (a~lpB(ay)) 

In such a setting we are able to write down explicitly the mapping p =
¯ (t, z) involved in condition (H7) of Section 6.7 as an inverse of the mapping
z = f3(t,¢(t),p with respect to the variable p. Simple calculations show
that

®(t,z)= (~a0(~j,0z~j (~(a,¢/)-1,
j=l

where Pj is a matrix of size k x k, whose element in kth row and jth column
is equal to 1 and the remainings ones are equal to zero. For the fulfilment
of condition (tt7) of Section 6.7 it suffices to require that there is a positive
constant ~ such that for all t ¯ [0, T]

(9.1.10) I det (Ba)¢ I -> 

Denote by M(k,m) the space of all k x m-matrices. As can readily be
observed, the validity of conditions (HS)-(H9) of Section 6.7 as they 
understood in Theorem 6.8.1 of Section 6.8 is ensured by the inclusions

¯ [ ~ ¯ C([0, r]; C~(~; M(~,m))),

(9.1.11)

/ b ¯ C([0, T]; C~(Rn; M(m,m))),~ ̄  c([0, T]; C~(R°; ~)).
Other conditions of Theorem 6.8.1 from Section 6.8 will be satisfied under
the following constraints:

(9.1.12) {~3 ¯ cl([0, T]; H1)

¢(0) = B U0,
U0 ̄  W~(R~;

Corollary 9.1.1 Under conditions (1)-(2) and (9.1.10)-(9.1.12) ~he in-
verse problem (9.1.7)-(9.1.9) is uniquely solvable for all suJficien~ly small
values T~ in the class of funclions

p ̄  c([0, T~]; H, ).
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Let us stress that the above result guarantees the local existence and
no more. In the general case the global existence fails to be true. The next
inverse problem is aimed at confirming this statement:

Ou 0u
- + p(t)u, x ~ R, 0 < t < 

u(~, 0) = u0(~), ¯ e R,
u(0,t) = ¢(t), 0 < t< T.

Via the representation

t
u(x,t) : v(x,t)exp p(~) d~)

it is not difficult to derive that its solution is given by the formulae

u(~, t) = uo(~ + t) ¢(t)/,~o(t),

p(t) = (,~o(t)¢’(t)- u~(t)¢(t)) 

All of the solvability conditions will be satisfied if the input data functions
are sufficiently smooth, the function u0 is rapidly decreasing at infinity,
u0(0) = ¢(0) and the function ¢ has no zeroes on the segment [0, T]. 
particular, the functions

Uo(X) = exp (-x2) cos ( o~ x ), ~,(t) = 1

suit us perfectly and appear in later discussions. In this case

p(t) = ~t+o~tg(o~t)

and a solution of the inverse problem cannot be extended continuously
across the point t = ~r/(2 a). We always may choose the value a in such 
way that the interval of the existence of a solution will be as small as we
like.

In further development we may attempt the right-hand side of equa-
tion (9.1.1) in the form

(9.1.13) f(x,t, u) = a(x,t) b(), t)p(t) + g(x,t) ,

where, for all fixed variables x ~ R", t ~ [0, T], the matrices a(x, t) and
b(x,¢) of size m x m (linear operators in the space H) and the function
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g(z,t) ¯ H are known in advance. Additional information is available 
the form of polntwise overdetermination

(9.1.14) u(zo,t) = ¢(t), 0 < t < T,

where x0 is a fixed point in the space R’~. By means.of the operator

B: ~ ~ u(x0)

relation (9.1.14) can be transmitted in (6.8.3) of Section 6.8. The system
(9.1.1) reduces to (6.8.14) of Section 6.8 as the outcome of manipulations
with the right-hand side of equation (6.8.1) during which the decomposi-
tions take place:

L~(t)u = a~l(x,t)a(x,t)u,

L2(ft)p --- a~’l(x,t) b(x,~)p,

F(t) a;l(x,t) g( x,t) .

As stated above, conditions (1)-(2) assure us of the validity of assumptions
(S1)-(S2).of Section 5.4 with regard to the spaces

X = L2(R’~; H), Xo--~ W2S-l(an; H), -~1---- W;(Rn; H).

Due to Sobolev’s embedding theorems the operator B satisfies condition
(6.8.4) with the space Y = H involved. To prove the solvability, we make
use of Theorem 6.8.2 of Section 6.8 with the following members:

a ¯ C([0,T]; C~(l:~n; /:(g))),

(9.1.15) b ¯ C([0, T]; W;(R’~; £(H))),

g ̄  C([0,T]; W~(rt~; H)),

(9.1.16) [det b(xo, t)[ >_ 6 > 0, 0 < t < T,

(9.1.17)

Uo ¯ W~(R’;H),

¢ ̄  c1([0, ~]; H),
~o(~0) : ¢(0).
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Corollary 9.1.2 If conditions (1)-(2) hold together with conditions
(9.1.15)-(9.1.17), then a solution u, ; of the inverse problem (9.1.1)-(9.1.2),
(9.1.13)-(9.1.14) exists and is unique in the class of functions

~t E cl([0, 71]; L2(Pun; H)) C([0, T1 ]; W2 s(P~n; H)

p E C([0, T]; H).

Granted decomposition (9.1.13), the subsidiary information is pro-
vided in the form of integral overdetermination

(9.1.18) / u(x,t)w(x) dx = ~(t), 0 < t < T,

R~

where w is a continuously differentiable and finite numerical function. Rela-
tion (9.1.18) admits the form (6.7.3) since the introduction of the operator
B acting in accordance with the rule

The operator so defined is bounded from the space X = L2 (R~; H ) into
the space Y and smoothing in the sense of condition (6.7.7), which can
immediately be confirmed by appeal to the well-known Ostrogradsky
formula. Indeed, for any u ~ 7)(A(t)) we thus have

BA(t) u = / 
i~l

\
x ai(x,t)

x ai(x,t)w(x))] u(x) 

and the latter formula on the right-hand side of (9.1.19) reflects the operator
extension made up to a bounded operator from the space X into the space
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Y..From (9.1.19)it follows that relations (6.7.7) holdtrue if condition 
is fulfilled for s = 1.

To prove the solvability of the inverse problem in a weak sense, we rely
on Theorem 6.7.2 of Section 6.7. Because the operator B is of smoothing
character, we get rid of the condition s > n/2 + 1 and no embedding
theorem is needed here. On the same grounds as before, we set

x = L2(R°; ~),
For conditions (H1)-(H4) of Section 2.7 to be satisfied it suffices to require
the fulfilment of condition (1) for s = 1 and condition (2) of the present
section (see Kato (1970, 1973, 1975a)). The remaining assumptions 
Theorem 6.7.2 are due to the set of restrictions

(9.1.20)

a e C([0, T]; Cb(R’~; £(H))),

b ¯ C([0, T]; L2(R’~; £,(X))),

g ¯ C([O, T]; L~(Rn; H)),

(9.1.21) {
~o ̄ L2(an; ~),
¢ ̄  c1 ([0, T]; H),
f u0(~)~(x) dx = ¢(0),

(9.1.22)
I det f b(x’ t)w(x) dx l >- 5 > O < t < T"

Corollary 9.1.3 If condition (1) holds for s = 1 and conditions (2),
(9.1.20)-(9.1.22) are .fulfilled, then a solution u, p of the inverse problem
(9.1.1)-(9.1.2), (9.1.13), (9.1.18) exists and is unique in the class of func-
lions

u E C([O,T];L~(Rn;H)), ~ e c.([o, T]; H).

Proof Before we undertake the proof, let u~ recall fo’r justifying the solv-
ability in a strong sense the contents of Theorem 6.7.4 from Section 6.7
with regard to the basic spaces

X = L~(R’~; H), Xo = W)(Rn; H), Y 
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Assumptions (H1)-(H4) imposed in Section 6.7 hold true under condition
(2) in combination with condition (1) for s = 2 (for more detail see 
(1970, 1973, 1975a)). The rest of Theorem 6.7.4 from Section 6.7 immedi-
ately follows from the set of constraints

(9.1.2~)
a ̄  C([0, T]; C~(R’~; £(H))) 
b ̄  C([0, T];
g ̄  c([0, T]; W)(R?; H)),

(9.1.24) {
~o ̄  wt(a-; H),
¢ ̄  C1([0, T]; H),
f u0(x)~(x) dx = ¢(0),

(9.1.25) Idet /b(x,t)w(x)dx]>_5>O, OKtKT.

Corollary 9.1.4 If condition (1) holds with s = 2 hnd conditions (2),
(9.1.23)-(9.1.25) are fulfilled, then a solution u, p of the inverse problem
(9.1.i)-(9.1.2), (9.1.13), (9.1.18) exists and is unique in the class of func-
tions

u ¯ C1 ([0, T]; L2(an; H)), p ̄  c([0, T]; H).

9.2 Second order equations of hyperbolic type

Let us consider in the space R’~ a bounded domain f2, whose boundary is
smooth enough. First of all we set up in the domain D = f2 x [0, T] the ini-
tial boundary value (direct) problem for the second order hyperbolic
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equation which will be involved in later discussions:

(9.2.1)

02 U

The problem statement necessitates imposing rather mild restrictions on
the coefficients of equation (9.2.1):

(9.2.4) hi, h, aij, bi, c E C2(~) x [0, T]),

(9.2.5) ~ aij(x,t)~i~j >_ c~ ~ ~, ~>0,
i,j=l i=1

(9.2.6) aij(x,t) = aji(x,t).

For the purposes of the present section we have occasion to use two
differential operators A~(t) and A~(t), 0 < t < T, acting from the space
0 o
W~(g~) into the space n~(f2) and from the space W~(f~)~ W~(f~) 
space L~(~), respectively, with the values

A~(t) u = E hi(x,t) ~ + h(~,t) 
i=1

A~(t) u =- ~ aij 
i,j=l

+ ~ bi(x,t) cgu~ + c(~,~) 
i=l
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By merely setting v = u~ one can reduce equation (9.2.1) to the following
system of the first order:

v~+Alv+A~u-= f.

In giving it as a single equation of the first order in the Banach space it
will be sensible to introduce the matrices

 0=( 0)v0
and the operator

0
acting in the space X =W~(Q) x L~(Q) and possessing the domain

°1 °1=

Bacause of its form, the direct problem (9.2.1)-(9.2.3) is treated as 
abstract Cauchy problem

(~.e.~) U’(~) = A(~) U(~) + F(~, 0 < ~ < T,

(9.2.8) U(0) = U0.

In the sequel we shall need yet a family of equivalent norms.
element

the associa’ted norm will be taken to be

For any

(9.2.9) IIU(t)ll~ (a ij (x,t)Ou ~u)
i,j=l cgxi ’ ~xj L~(a)

+ (u, u)L?(a) + (v, v)L,(a).

When conditions (9.2.4)-(9.2.6) imposed above are fulfilled, the direct
problem (9.2.7)-(9.2.8) and the family of norms (9.2.9) are covered 
framework of Section 6.10 (see Ikawa (1968)).
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In order to set up an inverse problem, the function on the right-hand
side of (9.2.1) should be representable by 

(9.2.10) f(x,t,u,v)

where the unknown coefficient p is sought. Additional information is pro-
vided by the condition of integral overdetermination

i u(x’Ow(x) dx = ¢(~),
0 < ~ < T.(9.2.11)

The inverse problem of interest consists of finding a pair of the functions
u, p from the system (9.2.1)-(9.2.3), (9.2.10)-(9.2.11).

By appeal to Theorem 6.10.2 of Section 6.10 we define the linear
operator B being a functional and acting from the space X into the space
Y = R in accordance with the rule

0

If the function w E L2(.~), then B ~ £(X, Y). Observe that for w ~W~(~)
the operator B possesses a smoothing effect that can be reflected with
the aid of relation (6.10.4). Indeed, after integrating by parts it is plain 
show that for any element

U= ( u)v ~O(A(t))

we get

(9.2.12) BA(t) U =- (A ~ v+ A~u)w dx

aij ~i 0 xj "dx+
i,j=l

-- bi --~-~. + c u w dx ,
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which assures us of the validity of the estimate

thereby justifying the inclusion

B A(t) e £(X, Y),

which is valid for each t ¯ [0, T]. By the same toket~,

B A(t) ¯ C([0, T]; £(X, V)).

We take for granted that

(9.2.14) fl, f~ ¯ C([0, T];

o

(9.2.15) 

o

¢ ¯ C2[0, T],

(9.2.16) fuo(x)w(x) = ¢ (0 ), ful (x)w(x) dx = ¢ ’( 0),

(9.2.17) f f2(x,t)w(x) dx 0 < t < T.

Under the conditions imposed above we may refer to Theorem 6.10.2
of Section 6.10. Indeed, by virtue of the first compatibility condition
(9.2.16) relation (9.2.11) is equivalent to the following 

(9.2.18) B U(t) = ¢’(t), 0 < t < T.

What is more, from relation (9.2.10) it follows that

F = L~(t) U + n2(t)p+ F(t),(9.2.19)

where

( 0 ) 0 L~(t) -- O, L~(t)p = f~(x,t)p ’ f~(x,t) 

On the strength of conditions (9.2.14)-(9.2.17) the inverse problem (9.2.7)-
(9.2.8), (9.2.18)-(9.2.19) is in line with the p.remises of Theorem 6.10.2 
Section 6.10, whose use permits us to obtain the following result.
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Corollary 9.2.1 If all the conditions (9.2.4)-(9.2.6) and (9.2.14)-(9.2.17)
hold, then a solution u, p of the inverse problem (9.2.1)-(9.2.3), (9.2.10)-
(9.2.11) exists and is unique in the class of functions

u e C([0, T]; W21(~)) N 0, T]; L~(~)), p e C[0, T].

If we assume, in addition, that

(9.2.20) f,, f2 e C([O, T]; ~(~)),,

(9.~.~1) Uo ̄  w~(~) f) v~(~), 
then Theorem 6.10.4 of Section 6.10 applies equally well, due to which a
solution U of the inverse problem (9.2.7)-(9.2.8), (9.2.18)-(9.2.19) satisfies
the condition U ̄  C1 ([0, T]; X ). Thus, we arrive at the following assertion.

Corollary 9.2.2 If conditions (9.2.4)-(9.2.6), (9.2.14)-(9.2.17), (9.2.20)-
(9.2.21) hold, then a solution u, p of the inverse problem (9.2.1)-(9.2.3),
(9.2.10)-(9.2.11) ezists and is unique in the class of functions

u ¯ C2([0, T]; L~(~)) [’] C’([0, T]; W)(f~)) ~ C([0, T]; 

~ e c[0, T].
A similar approach may be of help in investigating Neumann’s boundary
condition

0u-- + ~(~)~ = ¯ ̄  a ~ ~ ̄  [0, T],(9.2.22)
O n ’

where n denotes, as usual, a conormal vector and

Ou ~ Ou

i,j=l
OXj

Here ,(x) = (~(x) .... , u~(x)) refers to a unit external normal 
boundary 0 ~ at point z and the flmction ~ is sufficie6tly smooth on the
boundary 0 ~. The preceding methodology provides proper guidelines for
choosing the space X = W)(~) x L~(~) and the domain of the operator

V(d(t)) = U(t) e W~(~) w)(a): ~ + ~ =0 .
0~

Under the extra restriction saying that

(H) hi(x,t) 0,1 <i < n,and aij(x ,t) oa do es not depend on t,
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the domain of the operator A(t) does not depend on the variable t.
Furthermore, a family of equivalents norms on the space X is intro-

duced for each element

by merely setting

(9.2.23) ,,U(t),,t~ = (a ij(x,t)Ou Ou
i,j--1 033 i ’ OXj

+ ~(~) I u(x)l~ dS + ~ II ~ II~(a) + II 

Provided that conditions (9.2.4)-(9.2.6) and assumption (H) hold, 
Cauchy problem (9.2.7)-(9.2.8) and the family of norms (9.2.23) meet 
sumptions (HH1)-(HH4) of Section 6.10 if ~ > 0 is sufficiently larg~ 
more detail see Ikawa (1968)).

Before proceeding to deeper study of the inverse problem (9.2.10)-
(9.2.11), it is worth mentioning here that Theorem 6.10.2 of Section 6.10
could be useful in such a setting under conditions (9.2.14), (9.2.16)-(9.2.17)
in combination with condition (9.2.15) in a slightly weakened sense:

(9224) ~0 ~ w~(~), ~ e L~(~), ¢ ~ C~[0, 
But in this respect a profound result has been obtained with the

following corollary.

Coronary 9.~.~ ~] ~o~g~o~ (9.~.4)-(92.~), (~), (9.~.~), 
(9.2.16)-(9.2.17) hold, then a solution u, p of ~he inverse problem (9.2.1)-
(9.~.~), (9.~.10)-(92.~), (9222) ~ a~ ~ ~q~ ~ ~h~ ~a~ of f~-
~ions

~ e C([0, T]; W~(~)) ~ C~([0, ~]; ~(~)), p e C[0, ~].

In concluding this section it should be noted that Theorem 6.10.4
of Section 6.10 may be of help in verifying the solvability of the inverse
problem concerned in a strong sense under the additional constraints:

{f, ~ C([0, ~]; W~(e)),
(9225) ( o f~/o, + ~ f~ ) o~ = o, ~ = ~, ~ 

{ ~o ~ ~(~), ,~ ~ w~(~),
(~~~) (~o/~- + ~o) ~ = 

This type of situation is covered by the following ~ssertion.
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Corollary 9.2.4 If conditions (9.2.4)-(9.2.6), (H), (9.2.14), (9.2.16)-
(9.2.17), (9.2.24), (9.2.25)-(9.2.26) hold, then a solution u, p of lhe inverse
problem (9.2.1)-(9.2.2), (9.2.10)-(9.2.11), (9.2.22) exists and is unique in
the class of functions

p e c[o, T].

9.3 The system of equations from elasticity theory

We now consider a bounded domain ft C Ra, whose boundary is sufficiently
smooth. It is supposed that ft is occupied by an elastie body with a den-
sity p(x), where x = (xl, x2, x3) denotes a point of the domain f~. From
the linear elasticity theory there arises the governing system of equations

0~ ui 0 ~rij + P fi,
(9.3.1)

P ~t 2 - (~Xj

zErO, t E [0, T], 1<i<3,

where u(x,t) = (ul(x,t), u2(x,t), ua(x,t)) is the displacement vector,

aij(x,t) is the stress tensor and f(x,t) = ( f~(x,t), f~(x,t), fa(x,t)) is
the density of the external force. In dealing with equations (9.3.1) 
well as throughout the entire section, we will use the standard summation
convention.

The main idea behind setting of a well-posed problem is that the
subsidiary information is related to the system (9.3.1). Assume that the
displacement vector satisfies the initial conditions

0 ’/t (3if, 0) ~--- ’~1 (X) 2} o) ’
and the Dirichlet boundary condition

(9.3.3) u(x,t) = O, x ~ O~t, 0 < t < 

The theology of an elastic body is described by Hook’s law a~ follows:

(9.3.4) ~rij =

where

=
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are the components of the deformation tensor. In the general case the
elasticity coefficients aijm~ and the density p(x) of the body are essen-
tially bounded and measurable. Also, the coefficients aijmn are supposed
to satisfy the conditions of symmetry and positive definiteness

aijmn ~- aijnm = ajirnn : amnij ,

aijrnn(X)~ij~mn ~ C~ij~ij C > O,

and the density p(x) has the bound

(9.3.7) p(x) >_ Po > 

Further treatment of the system (9.3.1)-(9.3.4) as an abstract Cauchy prob-
lem is connected with introduction of the Lebesgue space with weights

-= (L~,p(~))3. In so doing the symbols u(t) and f(t) will refer toX the

same functions u(x, t) and f(x, t) but being viewed as abstract functions
of the variable t with values in the space X. The symbols u0 and ul will
be used in treating the functions u0(z) and u~(x) as the elements of the
space X. With these ingredients, the system (9.3.1)-(9.3.4) reduces to 
abstract Cauchy problem in the Banach space X for the second order
equation

(9.3.8)

(9.3.9)

u"(t) = A + I(t), 0 < t 

= = ul,

where A denotes a self-adjoint operator in the space X (for more detail
see Duvaut and Lions (1972), Fikera (1974), Godunov (1978), Sanchez-
Palencia (1980)). When the density of the body and the elasticity coeffi-
cients are well-characterized by smooth functions, the operator A coincides
with an extension of the differential operator defined for smooth functions
and corresponding to the system (9.3.1), (9.3.4).

We are now in a position to set up the inverse problem of finding the
external force function via a prescribed regime of oscillations at a fixed
point

(9.3.10) U(zo,t) = ¢(t), 0 < t < T,

under the agreement that the function f is representable by

(9.3.11) f(x,t) = g(x,t)p(t) + h(x,t).
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Here the matrix g(x, t) of size 3 x 3 and the vector-valued function h(x, t)
are known in advance for all x ¯ ft, t ¯ [0, T], while the unknown vector
p(t) is sought.

The conditions enabling to resolve the inverse problem (9.3.1)-(9.3.4),
(9.3.10)-(9.3.11) uniquely can be derived from Theorem 8.2.1 of Section 
Indeed, when 0 [2 ¯ C3 and the density p and the elasticity coefficients aijrnn
belong to the space C3(~), it will be sensible to introduce the operator 
acting from X into Y = R3 in accordance with the rule

Bu = u(x0).

By means of B it is possible to recast (9.3.10) as relation (8.1.3). 
the well-known results concerning the regularity of the elliptic system
solutions it is clear that

P(A) = (w~(a))3 N (w~(a))3.

Furthermore, Sobolev’s embedding theorems imply that the operator B
satisfies condition (8.1.18) with m = 1. The nonhomogeneous term 
equation (9.3.8) can be written 

f(t) = L,(t) u + L~(t) u’ + L3(t)p+ F(t),

where Ll(t) =- O, L~(t) =_ O, L3(t)p : g(x,t)p and F(t) : h(x,t). Being
self-adjoint and negative definite (see Sanchez-Palencia (1980)), the oper-
ator A is involved in the definition of the space E from Section 8.1. Recall
that we have used relation (8.1.6). We claim that the space thus obtained

coincides with Z~(x/~-~), that is, E = (!~(a)) a. Provided the additional
conditions

(9.3.1~)

act g(x0,t) # 
o

(9.3.13) u0 ¯ w2(a) N w~(a)

~1 ¯ W23(a) ¢ ̄  c~([0, T]; R~),

(9.3.14) ~0(x0) = ~(0), ~l(x0) = 

hold, we establish on account of Theorem 8.1.2 from Section 8.1 the fol-
lowing result.
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Corollary 9.3.1 Let conditions (9.3.5)-(9.3.7) hold together with condi-
tions (9.3.12)-(9.3.14) and let the inclusions

a~.~. ~ C3(~), p e c3((~)

and O~ G C~ occur. Then a solution u, p of the inverse problem (9.3.1)-
(~.~.4), (~.~.~0)-(~.~.~) ~i~ ~ i~ ..iq.~ i. ~ ~t.~ of f..~io.~

Before proceeding to the next case, we adopt the same structure
(9.3.11) of the function f in the situation when the subsidiary informa-
tion is provided by the condition of integral overdetermination

(9.3.15) f u(x,t)w(x) = ¢(t ), 0 < t < T.

We note in passing that condition (9.3.15) can be written in the form (8.1.3)
if the operator B is defined by the relation

~ = [ ~(~)~(~)B dx.

In such a setting it is possible to weaken the restrictions on the smoothness
of the boundary and the coefficients. To be more specific, it suffices to
require that 0~ G C~, p ~ C2(~) und a~j~, ~ C~(~), retaining the domain
D(A) of the operator A and accepting for each u G O(A) the set of relations

(Au)~ =p_~ 0 

By the well-known Ostrogradsky formula it is plain to derive that

for any function w(x) being subject to the relation

0

(9.3.16) 

This serves as a basis for decision-m~king that the operator B satisfies
condition (8.1.27) of Section 8.1. To prove the solvability of the inverse
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problem at hand, we refer to Corollary 8.1.2 of Section 8.1, all the conditions
of which will be satisfied once we impose the set of constraints

(9.3.17)

(9.3.18)

g, h e C([0, T]; L~(f])), i g(x,t)w(x) dx ~

(9.3.19) f Uo(X)W(x) - ¢(0) f u,(x )w(~) dx -- ¢’( 0).

As we have mentioned above, Corollary 8.1.2 applies equally well to related
problems arising in elasticity theory. As a final result we get the following
assertion.

Corollary 9.3.2 Let conditions (9.3.5)-(9.3.7) hold together with condi-
tions (9.3.17)-(9.3.19) and let the inclusions

and O f~ ¯ C~ occur. Then a solution u, p of the inverse problem
(9.3.1)-(9.3.4), (9.3.11), (9.3.15) exists and is unique in the class of func-
tions

u ¯ C1([0, T]; (r~(a))3)f~C([O,T]; (W~(a))~), ; ¯ C([0, T]; R~).

If there is a need for imposing the conditions under which a weak
solution becomes differentiable, it suffices to require that

{~,~ e C~([0, ~]; ~(~)),(~.~.~0)
¢ e c~([0, ~]; a~),

w~(a)
(~.~.~)

~0 e w~(~)n ,
0

and apply Corollary 8.1.3 of Section 8.1 with these members. Under such
an approach we deduce the following result.
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Corollary 9.3.3 Let the conditions of Corollary 9.3.2 hold and inclusions
(9.3.20)-(9.3.21) occur. Then a solution u, p of the inverse problem (9.3.1)-
(9.3.4), (9.3.11), (9.3.15) exists and is unique in the class of functions

u e C2([0, T]; L=(~)) N Cl([ 0, T]; W21(~"~)) N C([0, T]; W22(~~)) 

p e C1([0, T]; R3).

In concluding this section we are interested in learning more about
one particular case where the external force function f(x, t) is representable
by

(9.3.22) f(x,t) = d2(t) p(z) + r(x,t),

where the coefficient p is unknown. The subsidiary information is provided
by the condition of final overdetermination

(9.3.23) u(x,r) = u~(x), x ¯ ~.

With the aid of relations (8.2.1)-(8.2.3) the inverse problem at hand 
also be posed in an abstract form. Since the operator A is self-adjoint,
we make use of Corollary 8.2.7 from Section 8.2, the validity of which is
ensured by the following restrictions:

(9.3.24)
o

~ ̄  c1 ([o, T]; L=(a)) + C([O, T]; W~(~)~ 

(9.3.25)
o o

u0, u~ ̄  w~(~) fq wt(a), ~, ¯wt(~),

{¢¯C1[0, T]; ¢(t)>0,(9.3.U6) V’(t) > 0, o < t < 

Corollary 9.3.5 Let conditions (9.3.5)-(9.3.7) hold together with condi-
tions (9.3.24)-(9.3.26) and let the inclusions

aijmn ¯ C2(~), P ̄  C~((2)

and O~ ̄  C~ occur. Then a solution u, p of the inverse problem
(9.3.1)-(9.3.4), (9.3.22)-(9.3.23) exists and is unique in the class of func-
tions

u ¯ C~([0, T]; L=(f2)), 
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9.4 Equations of heat transfer

This section is devoted to the inverse problem in the domain D = f~ x [0, T]
of finding a pair of the functions u(x, t) and p(x) from the set of relations

(9.4.1)
i,j=l "

+ b(x) u O(x,t) p( + F(x,t ),

0<t<T,

(9.4.2) u(x,O) :uo(x), u(x,T) 

(9.4.3) u(x,t) : O, x ~ 89, 0 < t < 

where ~ is a bounded domain in the space R’~ with boundary 0 f~ ¯ (:2.
For the purposes of the present section we impose the following re-

strictions on its ingredients:

(1) aij ¯ cl(~), aij = aji, ~ aij(g~)~i~j ~ c ~ ~2,
i,j=l i=l

(3) v,~ec(~),¢>0,~>0,
o~ e c~([0, T]; L,(U)) +C([0, T]; Wg(U)~ 

o

~o, ~, e w~(u)~ w~(u).

c>0,

Adopting X = L~(~) as a basic space we introduce the differential
operator

~= ~ ~x~ ~ +
i,j---1

with the domain
o

:D(A) = W](~) [~ W~(f~).

The operator A is self-adjoint and negative definite and its inverse A-~

is compact (see Gilbarg and Trudinger (1983)). These properties serve 
motivate that the operator A generates a strongly continuous compact
semigroup V(t) (see Fattorini (1983)).
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When the partial ordering relation is established in the Hilbert space
X = L2(a), we will write f _< g if and only if f(x) _< g(x) almost 
where in f~. The space X with ordering of such a kind becomes a Hilbert
lattice and the relevant semigroup V(t) appears to be positive. There-

fore, the inverse problem (9.4.1)-(9.4.3) can be set up in the abstract 
well-characterized by relations (7.3.3)-(7.3.5). Corollary 7.3.1 of Section
7.3 provides sufficient background for justifying the following statement.

Corollary 9.4.1 If conditions (1)-(5) hold, then a solution u, p of the
inverse problem (9.4.1)-(9.4.3) exists and is unique in the class of functions

u ¯ C~ ([0, T]; L~(a)) ~ C([O, T]; W](a)) 

In this context, one thing is worth noting: the condition b _< 0 is not
strong, since we can be pretty sure upon substituting

t) = v(x, t) exp ( a 

that the function v satisfies the same system of relations but with the
functions b(x)-A, ¢h(x,t) exp(-At) and ui(x) exp(-A T) in place of 
O(x, t) and ul(x), respectively. The value ,~ can always be chosen in such
a way that the inequality b(x) - ,~ _< 0(b E C(~)) should be valid almost
everywhere in the domain fL In view of this, it is necessary to replace the
relation 0 (I)/0 t > 0 involved in condition (3) by another relation 0 (I)/0 
,~ (I) > 0, which ensures that the inverse problem at hand will be uniquely
solvable even if the bound b < 0 fails to be true.

One more example can add interest and aid in understanding in which
it is required to determine a pair of the functions U(x, t), p(t) from the set
of relations

(9.4.4)
Ou ~ aij(x,t) O2u

o-7 = o
i,j=l

+ ai(x,t) ~ +a(x,t)u+g(x,t),

xE~, 0<t<T,

(9.4.5) u(x, O) = Uo(X), x 

(9.4.6) u(x,t)=O, x~Of~, O<t<T,



9.4. Equations of heat transfer 599

(9.4.7) a(x,t) :~l(X,t)+~2(x,t)p(t), x E~, 0 

(9.4.8) U(xo,t) = ¢(t), 0 < t 

where x0 is a fixed point in the domain fL The solvability of this inverse
problem will be proved on account of Theorem 6.7.1 from Section 6.7 if
we succeed in setting up the inverse problem (9.4.1)-(9.4.8) in an abstract
form. This can be done using the system of relations (6.7.1)-(6.7.3) 
approving X = Lr(f~), r >_ 1, and Y = R as the basic spaces. After
that, we introduce in the space X a differential operator with the domain

o
O1 = W~2(f~) ~ W~(f~) that assigns the values

(9.4.9) A(t)u = E a’i(x’t) 

+ E ai(x,t) 
i----1

Furthermore, we impose the following restrictions on the coefficients of
operator (9.4.9):

(A) all the functions aij, c9 aij/O xi, ai, cq ~ C(D) satisfy Hdlder’s con-
dition in t with exponent a ~ (0, 1] and constant not depending on
x; aij = aji; there is a constant c > 0 such that for all (x,t) ~ 
and ( ~1, ~, . . . , ~. ) ~"

i,j=l i=1

(B) there exists a constant ao > 0 such that al (x,t) >_ ao for each
(~, ~) 

It is clear that condition (A) describes not only the smoothness 
the coefficients, but also the parabolic character of equation (9.4.4).
Condition (B) is not essential for subsequent studies, since the substitution

,~(~, t) = v(~, t) exp ( ,~ 

if ~ is sufficiently large, provides its validity in every case. Under conditions
(A)-(B) propositions (PP1)-(PP2) of Section 6.7 are certainly true 
more detail see Sobolevsky (1961)).

Let the values r > n/(2 o~) and/? ̄  (0, ~) be related by 
Due to the well-known properties of the fractional powers of elliptic
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operators the manifold D(AS(0)) with fl > 0 is continuously embedded
into the space Wr~O(f~). In turn, Sobolev’s space W~2Z(fl) is continuously
embedded into the space C(~). From such reasoning it seems clear that the
manifold D(A/~(0)) with the fixed values r and fl is continuously embedded
into the space C(~), making it possible to specify the operator B by the
relation

/~,L = ~(~0).
The operator B so defined satisfies condition (6.7.7) and may be of help 
reducing relation (9.4.8) to equality (6.7.7).

Via the decomposition f = -~ p u + g approved we write down equa-
tion (9.4.4) in the form (6.7.1) obtained in Section 6.7. Observe that 
resentation (6.7.8) is valid with f~ = g and f= = -~ p u. The function 
built into condition (PP4) of Section 6.7 takes now the form

f~(t,z,p) = -~(xo,t)pz,

which implies that condition (PP5) of Section 6.7 is met if for each t ~ [0, 
the relation

~(~0, ~) ¢(t) 

holds true. In that case the function ¢ arising from equality (6.7.12) 
given by the formula

~(t,z) = -(~ (~o,t)¢(t)) -~ z,

which ussures us of the validity of condition (PP7) from Section 6.7. For
the fulfilment of the last condition (PP6) from Section 6.7 it suffices 
require that

~ e c([0, T]; W:(a)~ ~(~)), e C([0, ~];C"(e
and

Oa~oxi on= 0, l<i<n.

Conditions (6.7.9) are equivalent to the inclusion

¢ e c~[0, ~]
supplied by the accompanying equMity

~o(~o) = ¢(0).
Finally, the inclusion

uo e V(A~+’(0))
is valid under the constraint

uo ~ ~(A~(0)) = (u~ W~(~): u o~= A(O) u oa= 

Therefore, applying Theorem 6.7.1 of Section 6.7 yields the following result.
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Corollary 9.4.2 Lel conditions (A)-(B) hold r > n/ (2 a),
~b G CI[0, T], a2(xo,t) ~ and ~b(t) ~= 0 f oreacht G [ 0,T] . If

e c([o,

Oa~oxi o~= 0,

o

g e C([0, T];W2(~)O W~(~)), Uo ¢ W2(~), Uolon = d(0) = 0
and Uo(Xo) = ¢(0), ihen ~here exists a value T~ > 0 such ~ha~ a solution
u, p of ~he inverse problem (9.4.4)-(9.4.8) exists and is unique in the class
or functions

~ e C1 ([0, T1] ; L~(~)) ~ C([O, 

p ~ C[O, T~].

We now focus our ~ttention on the inverse problem for the quasilin-
ear equation in which it is required to find a pair of the functions u(x, ~)
and p(t) from the set of relations

~ aij(x,{, u)
02

(9.4.10)
0~ = O xi O xj

(9.4.11) u(~,O) = uo(~), 

Its solvability is ensured by Theorem 6.6.1 of Section 6.6 because we are
s~ill in ghe abstract framework of Section 6.6.

When operating in the spaces X = ~(~) and Y = R, we introduce
in the space X the differential operator

i,j=l
OX i OXj



6o2 9. Applications to Partial Differential Equations

with the domain /)~ - Wff(f~)n l~ ~(f2). The symbol B s~ands for 
oper~or from ~he sp~ce X into ~he space Y being a functional and ac~ing
in accordance wi~h ~he rule

B d~.

Also, we ~ke for granted ~ha~

0

(9.4.14) Uo ~ Wff(~)~ W~(~), aij CI(~ x [0 , T] x R),

(9.4.15)

(9.4.16) ~ aij(x,O,uo(X)) ~i ~j >_ c ~ ~, c 
i,j=l i=1

which assure us of the validity of condition (P1) from Section 6.6. In this
1 in conditions (P2)-(P4) of Sectionview, it is meaningful to insert a = ~

6.6. From the well-known properties of the fractional powers of elliptic
operators it follows that the operator A~1/2 carries out the space Lr(f2)

into the space 1~¢~(f2) as an isomorphism such that the norm [[ A~o/2 u [[ is
equivalent to the norm of the space W)(ft). We note in passing that 
space WrJ (~) with r > n is embedded into the space C(~Q). Because of this,
the estimate

(9.4.17)

is valid with constant k > 0.
Let a number R be so chosen as to satisfy the bound

I1 o oll < R.
Moreover, it is supposed that for all values x ~ Q, t ~ [0, T] and v ~
[-~R, ~n]

(9.4.18)

(9.4.19) ~ aij(x,t,v)~i~j >_ c ~?, c>O.
i,j=l i=1
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xf II u II ~ R, then by inequality (9.4.17) v A[1/~ u takes onthevalues
from the segment [-k R, k R] as a function of the arrgument x. By virtue

of (9.4.18)-(9.4.19), A(t, A~~/~ u) is a uniformly elliptic operator with
domain 791. Since the partial derivatives of the function aij are bounded
in the bounded domain (2 × [0, T] × [-k R, k R], this function satisfies in
the same domain the Lipschitz condition with respect to the variables t
and v. This serves to motivate that condition (P2) with ~ = 1 is satisfied.
Let us stress that the first two items of condition (P3) of Section 6.6 are
automatically fulfilled and the following restriction is needed in the sequel
for its validity:

(9.4.20) ¢ ¯ C2[0, T].

We now proceed to discussions of conditions (P5)-(P9) of Section 
The nonhomogeneous term of the equation is available here in the form
(6.6.7) we have adopted in Section 6.6. We restrict ourselves to the simple
cases when

(9.4.21) y2(x,t,u,p) = G(x,t)p,

(9.4.22) f2(x,t,u,p) = pu,

in which the function f3 arising from condition (P6) of Section 6.6 becomes,
respectively,

f3(t,z,p) ( f c,(z,t)w(x) dx

or

= zp.
It is easily seen that condition (P8) of Section 6.6 with regard to the func-

~ and f/= 1, since the function fl satisfies on thetion fl holds true for o~ = 7
manifold ~ × [0, T] × [-k R, k R] × R’~ the Lipschitz condition, the norm

o
of the element u in the space W~(~)is equivalent to the norm [IAlo/~u 11
and the bound (9.4.17) is obviously attained. In particular, its fulfilment
is ensured by the continuity and boundedness of all first derivatives of the
function f~ on the manifold ~ × [0, T] × [-k R, k R] x R’~. For the function
given by formula (9.4.22) the validity of condition (PS) from Section 
with regard to the function f~ is clear, whereas for the function given by
formula (9.4.21) it is stipulated by the inclusion

(9.4.23) G ¯ CI([0, T]; Lr(~)).
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Because of (9.4.21) and (9.4.23), conditions (PS) and (P7) of Section 
will be satisfied once we require that for all t

(,9.4.24) i G(z, t) w(z) 
0.

When decomposition (9.4.22) is approved, ~hese conditions follow from ~he
relation

(9.4.25) ¢(t) ¢ 0 < t < T.

At the next stage condition (P4) of Section 6.6 is of inCeresL Since the
operator B does not depend on the variable t, relations (6.6.6) of Section
6.6 take place under the constraints

1 1
(9.4.26) w ~ Lq(a), - + - = 1.

To verify ~he res~ of condigion (P4), i~ suffices ~o show ghat ~he inequality

(9.4.27) (aii(x, t, u) - aii(x, s, v)) 
i, --1

o
All2 All2hold~ t~,~ fo~ ~., ~ ~(~) with N ~o

o

(~.4.~s) ~ ~ ~(a),

After integrating by parts we finally get
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HSlder’s inequality yields that the left hand-side of (9.4.27) has the upper
estimate

i,j=i ~xi [(aij(x,t,u(x))--aij(x,s,v(x)))w(x)] Ilwllw:<a),

by means of which it remains to find that

(0.~.~v) ~ [(a~(~,t,~(~)) - .,~(~, ~, v(~))) 
Lq(a)

_< c(It - s I + II u - v IIw~(~))

If we agree to consider

(9.4.30) aij e C2(h x [O,T] x [--k/~, k/~]),

then

0 xi (Oa~(x,t,[ ( aij(x, t, u) - aij(x, s, v)) 

[ OaiJ (x,t,u)- OaiJ (x,s,v)](9.4.31) +

(OU) Oaij× ~x~ m+ -~T(~’~’v

x 0 xi 0

Ow+ (.~(~,~,~) ~(~,~,v)) o~

~/~ ,~/~Since I1~o ~11 ~ ~ ~nd I~0 vii ~ ~, relation (9.4.17) implies the
bounds l u(x)~ ~ k and I v(x)~ ~ ~ R,va~id for eachx ~ Q. Having
stipulated condition (9.4.30), the collection of estimates

(9.4.32) ~ O aij
O aij

~(~’~’~-~(~’~’~ _< ~(~-~+~(~-~(~)~),

(9.4.33) ] Oa~j Oai~
[-5-~-u (m,t,u)-~(m,s,v) _< L (It- sl ÷ lu(~)- )       ,
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(9.4.34) I ¢9 aij v)
-f-~u (x,s, <_ 

and

(9.4.35) [aij(x,t,u)-aij(x,s,v)[ <_ L(It-sl+lu(x)-v(x)[)

becomes true. Since
1 1 1

s r q

we are able to use the generalized Hglder inequality

(9.4.36)

which in combination with relations (9.4.31)-(9.4.35) serves as a basis 
the desired estimate (9.4.29).

Observe that q = r/(r- 1) < s, due to which relation (9.4.28) implies
(9.4.26). Thus, . condition (P4) of Section 6.6 holds true if r > max{ n, 
and conditions (9.4.28), (9.4.30) are satisfied. Summarizing, we deduce 
following corollary.

Corollary 9.4.3 Let conditions (9.4.18)-(9.4.19) and (9.4.30) hold, all of
the partial derivatives of the first order of the function fl be continuous and
bounded on the manifold ~x [0, T] x [-k R, k/~] xR~ and let representation
9.4.21) and conditions (9.4.23)-(9.4.24), (9.4.28) be valid. [f

o

u0 e w~(a) N w~(a), ~ > max{n, 2), ¢ e c~[0, T]

and the compatibility condition

Uo(X) W(X) = ¢(0

1 there exists a value TI > 0 such that a solutionholds, then for any cr < ~
u, p of the inverse problem (9.4.10)-(9.4.13) exists and is unique in the
class of functions

It ¯ cl([0, T1]; Lr(a)) N c([0, T1]; W~(~)),

p ̄  ca[0, r~].
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Corollary 9.4.4 Let conditions/9.4.18)-/9.4.19) and (9.4.30) be fulfilled,
all of the partial derivatives of the first order of the function fl be contin-
uous and bounded on the manifold ~2 × [0, T] × [-kR, kR] × R~ and let
representation (9.4.22) and conditions (9.4.20), (9.4.25), (9.4.28) hold. If

0

u0 ¯ Wff(f2) N W~(~), r > max{n, 

and the compatibility condition

w(x) = ¢(0)

1 there exists a value T1 > 0 such that a solution
holds, then for any ~r < 7
u, p of the inverse problem (9.4.10)-(9.4.13) exists and is unique in the
class of functions

~ e C1 ([0, rl]; ~(a)) ~) C([0, 

p ̄

9.5 Equation of neutron transport

Let us consider in the space R3 a strictly convex, closed and bounded
domain f2 with a smooth boundary 0 f2 and a closed bounded domain D.
We proceed to special investigations of the transport equation in the
domain G = f2 x D x [0, T] for the function u = u(x, v, t)

(9.5.1) ~ +(v, grad~u)+a(x,v,t)u

= j K(x, v, v’, ~) u(x, v’, t) dr’ + f(x, t),
D

supplied by the initial and boundary conditions

(9.5.2) u(x,v,O) = uo(x,v), 

(9.5.3) u(x,v,t) = O, x ¯ 

(v,n~) < O, 0<t<T,

v¯D,
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where n, refers to a unit external normal to the boundary 0 ft at a point
x. The monographs and original papers by Case and Zweifel (1972), Cer-
cignani (1975), Germogenova (1986), Hejtmanek (1984), Richtmyer (1978),
Shikhov (1973), Vladimirov (1961), Wing (1962) are devoted to this 
of equations. From a physical point of view the meaning of the function u
is the density of the neutron distribution over the phase space f~ x D
at time t.

Common practice involves by means of the source density f the emis-
sion of neutrons caused by the process of fission. In this case the function
f may, in general, depend on u and is actually unknown. We are interested
in recovering both functions u and f under the agreement that the source
density f is representable by

(9.5.4) f(x,v,t) = O(x,v,t) p(t) + F(x,v,t),

where the functions (I) and F are known in advance, while the unknown
coefficient p is sought. In trying to find the function p the subsidiary
information is provided in the form of integral overdetermination

(9.5.5) j u(x,v,t) w(z,v)dzdv = ¢(t), 0<t <T.

Accepting r > 1 and q = r/(r - 1) we take for granted that

(1) w ̄  L,(a x 

(2) ~r ¯ C1([0, T]; L~(a x 

(3) the operator

K(t): u(x, v) ~ / K(x, v, v’, t) u(x, dv’
D

complies with the inclusion K ̄  C’ ([0, T]; C(L.(a x D)));
(4) (I), (v, grad. ¢) ̄  C([0, T];/:(L~(f~ the equality

¯ (z, v, t) = 

holds for all x ¯ 0 f~, v ¯ D such that (v, n~) < 0 and

i v(x, v, t) w(x, v) dx :/= 
FtxD
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at every moment t ¯ [0, T];

(5) F = F1 ÷ F2, where

F~ ̄  C1 ([0, T]; Lr(ft x D)),

F2, (v, grad~ F~) ̄  C([O, T]; L,(a x D)),

F2(x,v,t)=O fora11 xGOft, vGD, te[O,T],(v,n,)<O;

609

(6) u0, (v, grad, u0) ¯ L,(f~ × D), Uo(Z,v) = 0 for all x ¯ Oft, 
D, (v, n,) < 

Cl[0, T]and¢(0)= Uo(X,v)w(x,v) dx(7) ¢
Y~xD

Theorem 9.5.1 Lel conditions (1)-(7) hold for r > 1 and q = r/(r - 1).
Then a solution u, p of the inverse problem (9.5.1)-(9.5.5) exists and is
unique in the class of functions

u ¯ C~([0, T]; L~(~ × D)), p ̄  c[0, T].

Proof In order to apply in such a setting Theorem 6.5.5 of Section 6.5,
we begin by adopting the basic spaces X = L~(f~ × D) and Y = R and
introducing the operator (functional) B with the values

B u = / u(x, v) w(x, v) d. 
f~xD

From condition (1) it is clear that B ̄  £(X, Y) as well as equality (6.5.3)
is an abstract form of relation (9.5.5). It will be sensible to introduce the
operator

A u = -( v, grad~ u) 

whose domain 73(A) consists of all functions u ¯ Lr(ft x D) such 
(v, gradzu) ¯ L~(ft x D) u(x, v) = 0 atal l p oint s x ¯ O ft and
v ¯ D, complying with the inequality (v, n~) < 0. The operator A falls into
the category of generators of strongly continuous semigroups in the space
L~(f/x D) (for more detail see Hejtmanek (1984), Jorgens (1968), 
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(1973)). For the purposes of the present section we keep in representation
(6.5.3) the following members:

Ll(t)u = -~ u+ K(t) 

L~(t)p = ¢ 

E(t) = F(x, v,t),

which assure us of the validity of the conditions of Theorem 6.5.5 from
Section 6.5 and lead to the desired ~sertion. ~

Let us find out when condition (3) will be satisfied. Since either 
the functions

D D

is finite, the operator K(t) is bounded in the space X = Lr(fl x D), 
that the estimate is valid:

II K(t)ll cl(t) 1/r c~(t)1-1/r.

Therefore, condition (3) holds true if the function K K(x, v, v’, t) ~nd
its derivative meet the requirements

8K
~{, ~ ~ c(~ x [0, t]; S~(D) x S,(D)),

ZC, ~ e C(fi x [0, ~]; S,(D) x S~(D)).

By imposing the stronger restriction on the fu~ctio~ ~ that

(1’) ~, (~, ¢,~a.~) ~ ~(~ x D) ~a ~(~,~) = ~oi~
¯ E 0 ~, v E D, satis[yinE the conditJo~ (v, n~) < 

we are ~ble to show by i~te~r~tin~ by p~rts that the operntor B is Jn line
with {o~ditio~ (6.4.5). ~o ensure the solvability of ~he inverse problem 
hsnd under rather mild restrictions o~ the coe~cients of the equations and
the input dat~, we t~ke for granted, in ~ddition, that

(~’) ¢ ~ C([0, ~]; S~(a x 

(~’) ~C(t) < C([0, ~]; £(S.(a 
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(4’) ~ ¯ C([0, T]; Lr(Ft × 

dx

~×D

dv ~ O, 0<t <T,
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(5’) F ¯ C([0, 7]; Lr(Q x 

(6’) Uo ̄ Lr(~ × 

(7’) ¢ ̄  C1[0, T], ¢(0) / ~o(., v)w(x, ~) dx 
~txD

After that, applying Theorem 6.4.1 of Section 6.4 yields the following
proposition.

Corollary 9.5.1 Let conditions (1’)-(2’) hold for r > 1 and q = r/(r- 1).
Then a solution u, p of the inverse problem (9.5.1)-(9.5.5) exists and is
unique in the class of functions

~ ̄  c([0, 7]; Lr(a × 0)), ; ¯ c[0, T].

When the additional conditions (2)-(3), (6) 

(8) ~) ¯ cl ([0, T]; L~(QxD)), F ¯ C1 ([0, 7]; L~(QxD)), ¢ ¯ g2[0, 

are imposed, Theorem 6.4.2 of Section 6.4 ensures the inverse problem
solution to be continuously differentiable.

Corollary 9.5.2 Let conditions (l’)-(r’) hold for r > 1 and q = r/(r- 1).
Under the additional conditions (2)-(3), and (8) a solu tion u, p of the
inverse problem (9.5.1)-(9.5.5) exists and is unique in the class of functions

u ̄  c1([0, T]; L.(U × D)), p ̄  c~[o, 7].

Likewise, the inverse problem of finding the source f is meaningful for
the case when

(9.5.6) f(a~, v, t) = ~(x, v, t) p(v, t) + F(x, t),
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where the coefficient p(v, t) is unknown, while the functions ~(x, v, t) 
F(x, v, t) are available. The subsidiary information is that

(9.5.7) /u(z,~,t)w(x) - ¢(v ,t), v ¯ D, 0 T.

D

The well-founded choice of the spaces for this problem is connected with
X = Lr(~ x D) and Y Lr(D). Weconfine our selves to thecasewhen

0

(9.5.8) w ¯Wlq(a), q r/ (r- 1) r > 1.

With this relation in view, the operator

B dx

satisfies condition (6.4.5). For this reason it suffices to require for further
reference to Theorem 6.4.1 that

{~r ¯ C([0, T]; L~(~ × D)),
(9.5.9)

K(t) C([0, T] ; £(L~(~ × D ))

(9.5.10) ¯ ¯ C([0, T]; L~,~(fl × D)), f ¢(,, v, t) dx >_ ~ > O,

(9.5.11) F ¯ C([0, T]; L~(fl × D)),

(9.5.12) l
uo ¯ L~(f~×D),

¢ ¯ C1([0, T]; L~(D)),

¢(v,0) = f Uo(X,v)w(x) 

All this enables us to obtain the following result.
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~orollary 9.5.3 Under conditions (9.5.8)-(9.5.12) a solution u, p of the
inverse problem (9.5.1)-(9.5.3), (9.5.6)-(9.5.7) exists and is unique in the
class of functions

u ¯ C([O, T]; Lr(gt x D)), p ¯ C([0, T]; Lr(D)).

If one assumes, in addition, that

o" ¯ ¢1([0, T]; Lc~(a × D)),
(9.5.13)

K(t) ¯ cl([0, T]; £,(nt(~) x D)),

(9.5.14)
¢ ¯ Ca(J0, T]; L~,~(~ × D)),

f ~(x, v, t) w(x) > 6> 0,

(9.5.15) F ¯ cl([0, T]; L,.(f~ × D)),

(9.5.16) {~,o, (v, grad~ Uo) ̄ Lr(~ × 
¢ ̄  C2([0, T]; L~(D)),

(9.5.17)

(9.5.18)

¢(v,O) = fuo(X,V) W(X) dx, v 

u0(x, v) = 

for all x ¯ 0 ~ and v ¯ D, satisfying the condition

(v, ,~x) < 

then Theorem 6.4.2 applies equally well, due to which this solution is con-
tinuously differentiable in t.

Corollary 9.5.4 Let conditions (9.5.8) and (9.5.13)-(9.5.18) hold. Then
a solution u, p of the inverse problem (9.5.1)-(9.5.3), (9.5.6)-(9.5.7) exists
and is unique in the class of functions

u ¯ Ca([O,T];Lr(fl×D)), peCI([O,T];L~(D)).
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9.6 Linearized Bolzman equation

A key role in the kinetic theory of gases is played by the function f(z, v, t)
characterizing the distribution of particles with respect to the coordi-
nates z E f2, f2 C R3, and velocity v E R3. The meaning of this function
is the distribution density of particles in the phase space f2 × R3 at time
t. Once we pass to the limit under small densities, known as the Bolzman
limit, the function f will satisfy the Bolzman equation

of
-- + (v, grad= f) : Q(f, 

where the symbol Q(f, f) designates the integral of collisions given at a
point (x, v, t) by the collection of formulae

Q(f, f) = / K(v, Vl, e) [ ]~ f’ -- fl f] dS dr1,

Sxl~3

f = f(x,v,t), fa = f(:c,v~,t),

f’ = f(x,v’,t), ~ = f(x,v~,t),
v~= 1

vl’: 71(~-+-v,÷lva-~l~),

(for more detail see Carleman (1960), Cercignani (1975), Maslova (1978,
1985), Lanford et al. (1983)). The differential scattering cross-section
~(r, ~) is defined on (0, + oo) x S and uniquely determined by thelaw of
the interaction between particles. For any constant values of parameters
p, k, T the Maxwell distribution

M(v) = p(2~rkT) -3/~ exp (-v2/2kT)

is the exact solution to the Bolzman equation and describes an equilibria
with density p and temperature T. Here k stands for the universal gas con-
stant. In the case of smallness of the relative deviation of the distribution
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density from the equilibrium state the Bolzman equation can be linearized
by merely setting

f(x, v, t) = M(v) ( 1 + ~(x, ~, 

A final result of omitting the nonlinear terms is the so-called linearized
Bolzman equation

+(v, grad~u) = r(u),
0--~

where F(u) refers to the linearized integral of collisions

r(u) = M(vl)If(v, vl ,e)[u’ l +u ’-u,-u] dSdvl.
SxR~

The function F(u) can be expressed by the difference

r(u) = L. - .(~) 

where

SxP,.a

u(v) = / M(vl)Is:(v, vl,e) dS 
Sx1~a

When the differential cross-section of scattering is known in advance, the
operator L and the collision frequency u(v) can uniquely be determined.
However, the law of the interaction between particles is actually unknown
and the functions L and ~, will be involved in modeling problems as fur-
ther developments occur. In this context, there is a need for statements
of inverse problems relating to the Bolzman equation and, in particular,
there arises naturally the problem of determining the frequency of colli-
sions. By standard techniques the question of uniqueness of recovering
the coefficients of the equation reduces to the problem of determining the
nonhomogeneous term of this equation and, in view of this, necessitates
involving the nonhomogeneous Bolzman equation

(9.6.1)
~u
0--~- + (v, grad~u) Lu-u(v) u+ F(x,v,t).



616 9. Applications to Partial Differential Equations

In what follows careful analysis of the Bolzman equation is based on the
invariants of collisions

¢0(v)=l, ¢,(v)=vl, ¢2(v)=v2, ¢~(v)=v3, 2.

We note in passing that the integral of collisions I’(u) with the specified
functions becomes zero.

Let f~ be a strictly convex, bounded and closed domain with Lya-
punov’s boundary in the space Ra. Set D = 0f~ x R3, where n~ is a
unit internal normal to the boundary O D at point x, and introduce the
manifolds

D+ : {(¢,v) eD: (v,n~)>O},

D- = {(x, v) e D: (v, n~) < 

In the sequel the symbols u+ and u- will stand for the traces of the function
u on D+ and D-, respectively. For the purposes of the present section we

have occasion to use H = L~.,M(v)(a x Ra), i =L2,+M(v)(v,,~)(D+),
~ = L2, M(v)(R3) and in the space of velocities the operator of reflection

J acting in accordance with the rule

j: ~(~,v) ~ ~(~,-v).

Let P be the orthogonal projection in H- onto the orthogonal complement
to the subspace of all functions depending only on the variable x.

In further development our starting point is the direct problem. Aside
from equation (9.6.1), the determination of the function u necessitates im-
posing the initial and boundary conditions

(9.6.2) u(x,v,0) Uo(X,v), z e a, eRa,

(9.6.3) u+ = Ru-,

where R is a bounded linear operator from the space H- into the space
H+.

Also, we take for granted that

(A1) the operator L is compact and self-adjoint in the space H and

~,(,~) > O, ~,(v) ¯ 

~, ~ e n, ~e~ (r(~), < 0. ~n ~atcase
(r(~), ~) o
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if and pnly if u gives a linear combination of the collision invariants;

(A2) the boundary operator R meets either of the following requirements:
(a) IIRII< 
(b) /~ + =1-; f orsomez > 0and al l el ements u- E H -

the inequMity

holds and the operator RJ is self-adjoint in the space H+.

No~e ~h~ condition (A1) will be s~isfied, for example, for the mod-
els of hard spheres and power potentials with angular cut-off. Item (a)
of condition (A~) confirms ~he absence of ~he conservation laws in ~he in-
teraction between particles wi~h ~he boundary of ~he domain, while i~em
(b) reflects ~he situation in which ~hese laws ~re me~ in par~. To be more
specific, the equality N 1- = 1+ expresses ~he condition of ~hermody-
namie equilibrium of ~he boundary 0 ~, ~he reciprocity law is ensured
by self-adjointness of the operafor ~ J and the rel~ion

reveals ~he dissipaLive nature of Lhe sca~ering process of parLicles on Lhe
boundary ~ (for more deLail see Cercignani (1975) and Guir~nd (1976)).

I~ will be sensible Lo introduce in Lhe space H Lhe operaLor

Au = -(v, grad~ u) + F(u),

whose domain is defined by ~he resolven~ equa¢ion of ~he ~ranspor~ op-
era~or

(9.6.4)

where A > 0, ~ ~ H and ~ ~ H+. I~ is known from ~he works of Cercignani

(1978) and Maslova (1985) ~ha~ a solution u of problem (9.6.4) exists 
is representable by

u = U~+WO,
where U ~ £(H) and W ~ £(H+, H). By ~he same ~oken,

+

(v(v) + ~/~u ~ H,

1
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We need a linear manifold in the space H defined as follows:

H0= {u: u: U~+W¢,~e~,¢e~÷}.
Being a solution of problem (9.6.4), the function u = u(,~, ~, ¢) is subject
to the relation

u(,,~,¢) = u(a, ~+ (~-,)u(,,~,,¢), ¢),
whence it follows that the manifold H0 does not depend on ,~. Furthere-
more, set

V(A) = { ~ e H0: ~+ = n~- }.
Under these agreements the operator A appears to be maximal dissipative
and, therefore, generates a strongly continuous contraction semigroup V(t)
in the space H (for more detail see Guirand (1976)).

Thus, if the system (9.6.i)-(9.6.3) is treated as an abstract Cauchy
problem of the form

{ut=Au+F(t), O<t<T,

u(O) = u0,

under the constraints

u0 e V(A), F e 1([0, T]; H ) + C([0, T] ; 7) (A)),

then a solution u of the initial boundarj~ value problem associated with
Bolzman equation exists and is unique in the class of functions

u E C1([0, T]; H).

Moreover, this solution is given by the formula

t

u(t) = v(t) ~0 + f - s)F(s) 
0

In this direction, we should raise the question of recovering the nonhomo-
geneous term of equation (9.6.1) provided that one of the following decom-
positions takes place:

(9.6.5) F(x, v, t) : q~(x, v, t) p(t) + Jz(x, 

(9.6.6) F(x,v,~) = V(x,v,t);(v,~) +~:(~,v,t),

(9.6.7) F(x,v,t) = p(x,v) +~(x,v,t),



9.6. Linearized Bolzman equation 619

where, respectively, the functions p(t), p(v,t) and p(x,v) are unknown.
]?he subsidiary information is needed to recover them and is provided by
the overdetermination conditions

(9.6.8) / u(x,v,t) w(x,v)dxdv = ¢(t), 0<t<T,

~x

(9.6.9) ]u(x,v,t) w(x)dx = ~p(v,t), ~, O<t<T,

(9.6.10) u(x,v,T) = ul(x,v), x¯f~, 3.

Let us first dwell on the inverse problem with the supplementary con-
ditions (9.6.5) and (9.6.8). Theorem 6.5.5 of Section 6.5 is used in 
spaces X = H and Y = R with further reference to the operator /3 being
now a functional and acting in accordance with the rule

u = f u(~,v) w(~,v)B dx dr.

~t x I:t 3

The operator B so defined is bounded from the space X into the sp~ce Y
under the agreement that the function

w ~ L2, M(v)-,(~ X Ra).

Representation (6.5.35) includes the following members:

L~ =0,

L~(t)p = ~(x,v,t 

It is plain to show that the remaining conditions of Theorem 6.5.5 from
Section 6.5 are ~ corollary of the relations

{~(~,~r~)+~ C~([O,T];H) ’
z e c ([0, H),

(9.6.12) u0, (v, gradxu0)+UUo ¯ H, ¢ e C1[0, T],
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(9.6.13)
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Uo(X,v) w(z,v)dxdv = ¢(0), ~+ =*e~-,

~xP~3

(9.6.14) l ~(x,v,t)w(x,v)dxdv ~ 0, 0 <t<T.
~x R.a

In accordance with what has been said, the following assertion is estab-
lished.

Corollary 9.6.1 Le¢ conditions (9.6.11)-(9.6.14) hold and

w E L2, M(v)-,(f~ X R3).

One assumes, in addilion, *hal conditions (A1)-(A2) are fulfilled. Then a
,o,u¢io~ ~, ~ ol ~ i~v~ p~ob~m (9.~.~)-(9.~.a), (9.~.5), (9.~.s)
and is unique in lhe class of funclions

~ e el(J0, r]; U), V e C[0, T].

The inverse problem with the supplementary conditions (9.6.6), (9.6.9)
can be resolved in the same manner as before. This amounts to adopting
an abstract scheme for further reasoning and applying Theorem 6.5.5 of
Section 6.5 to the spaces X = H and Y = ~. Setting, by definition,

~ ~ = / ,,(,, ~) ~(~) 

and letting w ~ L~(~, we might involve the Cauchy-Schwartz inequality,
whose use permits us to derive the estimate

giving the inclusion B ~ ~(H, ~). On account of Theorem 6.5.5 from
Section 6.5 it remains to require that

f ~, (v, grad~)+,~ e ~([0,~];g),
(9.~.1~) * e C*([0, r]; ~),

(9.~.1~)
¢ e C~([0, r]; U),
f ~0(~, ~) m(*) d, = ¢(v, 

(~.~.lr)
v~R3,

(~.~.~8) a -
v~R3,

which are needed below to motivate one useful result.
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Corollary 9.6.1 Let relations (9.6.15)-(9.6.18) occur, the function w E
L2(f2) and conditions (A1)-(A2) hold. Then a solution u, p of the inverse
problem (9.6.1)-(9.6.3), (9.6.6), (9.6.9) exists and is unique in the class of
functions

c1 ([o, T]; c([o, T];

As stated above, the question of uniqueness in the inverse problem of
recovering the coefficients of the equation reduces to the problem of deter-
mining the nonhomogeneous terms of this equation. We are going to show
this passage in one possible example of recovering the collision frequency
u(v). The subsidiary information here is provided by (9.6.9). Given two
solutions ul (x, v, t), /11 (’O) and u2(x, v, t), v2(v) of the same inverse prob-
lem (9.6.1)-(9.6.3), (9.6.9), the main goal of subsequent manipulations 
Lo derive the governing equation with the supplementary conditions for the
new functions u = ul - u~ and p = v2 - vl, which complement our study.
I’his can be done writing equations (9.6.1) twice for the pairs {ul, v~}
and { u~, u:}, respectively, and then subtracting one from another. The
3utcome of this is

(9.6.19)
011

+ (v, grad~ u) Lu- ua (v)u + u~(x,v,t)p(v).

A similar procedure will work for the derivation of the initial and boundary
:onditions

(9.6.20) u(x,v,O) = u+ = R u-

and the subsidiary information

(9.6.21) / u(x, v, t) w(x) dz 

It is worth noting here that relations (9.6.19)-(9.6.21) with regard to 
anknowns u and p constitute the inverse problem of the type (9.6.19)-
’,9.6.21) with zero input data. If the inverse problem thus obtained has no
~olutions other than a trivial solution, then we acquire the clear indication
;hat a solution of the inverse problem of recovering the collision frequency
s unique. Conditions (9.6.15)-(9.6.18) immediately follow from the set 
~qualities

.~ = O, ¯ = u~(z,v,t), uo = O, ’~ = 
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Observe that the inclusions

¯ , ( v, grad~ ~b ) + ~5 ~ C([O, T]; 

and the relation

occur. This is due to the fact that the function q~ = u2 gives a solution
of the boundary value problem (9.6.1)-(9.6.3). So, it remains to verify 
fulfilment of condition (9.6.18). Indeed, by assumption, the pair 
solves the inverse problem at hand and, therefore, the function u2 satisfies
condition (9.6.9), thereby establishing the relationships

f ~(x, v, t) w(x) dx = / u2(~, v, t) w(x) d~ = 

and the equivalence between (9.6.18) and the bound

(9.6.22) I¢(v,t)[ >_ 6 > 0, vEl% 3, 0<t<T.

Corollary 9.6.3 Let conditions (A1)-(A2) hold, the function w
and let estimate (9.6.22) be valid. Then the inverse problem (9.6.i)-(9.6.3),
(9.6.9) of recovering a pair of the functions u and u has no more than one
solution in the class of functions

u e CX ([O, T]; H ) u > O , u e T-l .

We proc4ed to the study of the inverse problem at hand with the
supplementary conditions (9.6.7) and (9.6.10) as usual. This amounts 
treating it as an abstract one posed completely by relations (7.1.1)-(7.1.4)
with q~(t) = I incorporated. In spite of the fact that such problems have
been already under consideration in Section 7.1, the final conclusions are
not applicable to this case directly. The obstacle involved is connected
with the integral of collisions possessing an eigenvalue equal to zero. If this
happens, the characteristic subspace consists of the invariants of collisions

4
u(., v) = ~ Cm(*) tm(~),

where cm(x) E L2(a) for 0 _< m _< 4. If the boundary operator complies
with item (b) of condition (A2), then the function ¢0(~, v) = 1 gives 
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operator A eigenfunction associated with zero eigenvalue. If the semigroup
V(t) is generated by the operator A, then

v(t) ~o = 
for all t > 0. It is worth noting here that on this semi-axis the value
/3 in estimate (7.1.24) cannot be negative. What is more, item (a) 
condition (A2) is out of the question. Although in this case zero is none
of the eigenvalues of the operator A, it may enter its continuous spectrum.
Therefore, by the theorem on the spectrum mapping the number ~ = 1 is
contained in the set of elements of the spectrum of the operator A. Hence
estimate (7.1.24) with constants M = 1 and /3 < 0 fails to hold, since
the inequality II v(t)ll < 1 yields the inclusion 1 E p(V(t)). In order to
overcome these difficulties, it is reasonable to impose the extra restriction
that the collision frequency is bounded away from zero:

(A3) u(v)_>u0 >0, 3.

This condition characterizes the hard interactions and is satisfied in
various models of hard spheres and power potentials U (x) k/ I x I ~wit h
angular cut-off having an exponent n > 4 (for more detail see Cercignani
(1975)).

We are first interested in the case when conditions (A1)-(A2) 
together with item (a) of condition (A2). Then all the elements of 
spectrum of the operator A belong to the half-plane { Re A _< -u0 } and
the semigroup V(t) obeys estimate (7.1.24) with M = 1 and /3 < 0 (see
Guirand (1976)), due to which it is possible to apply Corollary 7.1.3 
Section 7.1. Further passage to formulae (7.1.33) permits one to obtain 
solution in the explicit form

p = (V(T)-I)-IAg,

where the element g is defined by relation (7.1.11). The input data become
admissible for the inverse problem (9.6.1)-(9.6.3), (9.6.7), (9.6.10) 
the constraints

(9.6.23) Uo,Ul,(v, grad~uo)+UUo, (v, grad~ul)+uulG 

(9.6.24) u0+ = Ru~-, u~+ = J~u~-,

(9.6.25) .7- e C1([0, T]; H).

These investigations allow to formulate the following corollary.
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Corollary 9.6.4 Let conditions (A1)-(A3) and (9.6.23)-(9.6.25) hold to-
gether with item (a) of condition (A2). Then a solution u, p of the inverse
problem (9.6.1)-(9.6.3), (9.6.7), (9.6.10) exists and is unique in the class of
functions

~t ¯ C1([0, T]; H), p ¯ 

The second case of interest is connected with the fulfilment of condi-
tions (A1), (A3) and item (b) of condition (A2), due to which the 
spectrum in its part within the half-plane Re A > -u0 consists of the unique
point ,~ = 0, which is a simple eigenvalue. The characteristic subspace N,
the kernel of the operator A, contains only constants and reduces the op-
erator A. The restriction V~(t) of the semigroup V(t) on the subspace
Ha being an orthogonal complement of N in the space H is exponentially
decreasing as follows:

]] Va(t)]] _< exp(-wat), wa >0,

(see Guirand (1976)). note in passing that equation (7. 1.9) acquires
the form

T

(9.2.26) J V(T- s) p ds = 
o

A simple observation may be of help in justifying that the subspaces N
and Ha reduce the operator A and thereby the semigroup V(t). In view of
this, we are able to split up equation (9.6.26) by merely setting p = 
and 9 = 90 + 91 with Po, 90 ̄  N and Pl, 9a ̄  Ha into the following couple:

T

(9.6.27) / V(T- s)po ds = go,
o

T

(9.6.28)

o

The unique solvability of these equations is equivalent to that of equation
(9.6.26).

In later discussions equation (9.6.27) comes first. Since Apo = 0, we
obtain for each t > 0

V(t)po = po.
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This provides support for the view that (9.6.27) is equivalent to the equality

T po = go.

Therefore, equation (9.6.27) is uniquely solvable and in this case Po = go/T.
Passing now to equation (9.6.28) we write down it in the form

T

(9.6.29) /
0

If the inclusions g E/)(A) and go E :D(A) occur, then the relation

gl e v(g)
takes place. For each t > 0 the estimate

II ~(t)ll < 

holds and, therefore,
1 e p( v1 (~))

and the theorem on the spectrum mapping yields the inclusion 0 ~ p(A~),
where A~ refers to a part of the operator A acting in the space H~ ~nd
generating the semigroup V~(t). By Corollary 7.1.4 of Section 7.1 with
regard to the semigroup ~(t) and the function ~(t) ~ I both equation
(9.6.29) is uniquely solvable. Thus, we arrive ~t the following statement.

Corollary 9.6.5 Let conditions (A1), (A3), (9.6.23)-(9.6.25) hold together
with item (b) of condition (A2). Then a solution u, p of the inverse problem
(9.6.1)-(9.6.3), (9.6.7), (9.6.10) exists and is unique in the class of functions

~ e c1([0, T]; ~), ~ e Y.

Of importance is the Cauchy problem for the Bolzman equation (9.6.1)
in which f~ = R3 and the boundary conditions are omitted. All this enables
one to simplify its statement a little bit. A good choice of the spaces H and
7~ is carried out in just the same way as we did before. Provided condition
(A1) holds, it is reasonable to introduce in the space H the operator

Au =-(v, gradxu)+P(u)

with the domain

~D(A) = {ue H: (v, grad, u) eH, u(v)ue 

Theorem 9.6.1 The operator A so defined is the generator of a strongly
continuous semigroup.
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Proof The main idea behind proof is to involve a pair of the operators

Alu =-(v, grad~u), D(A1) {u GH: (v , gr ad~u)GH},

A~ u = -v(v) D(A~) = { u e H: v(v) u },

with some inherent properties: the operator A~ generates a unitary group
of translations

[~(~)u] (x, v) = u(~-v~,~),

while the operator A~ is ~ generator of the multiplication semigroup

[V~(t)u] (x, v) = u(x,v) exp (-,(v) 

From such reasoning it seems clear that the operators V~ (t) ~nd Ve(s) are
commuting for ~11 t ~ 0, s ~ 0. By ~otter’s theorem their product

[ V(t)u] (x, = u( x- vt, v ) exp (-~( v)t)

is just a strongly continuous semigroup generated by the closure of the
operutor Aa = A~ + A~.

The next step is to examine the resolvent equation for the operator
Aa of the form

(9.6.30) ( v, grad~ u ) + (~(v) + A ) 

whose solution is given for ~ > 0 by the formul~

0

v) = / ~(x +vt, v) exp((~(v)+A)t) dr,

which is followed on the basis of Young’s inequality by the estimate

Let us multiply both sides of the preceding estimate by M(v)1/2 ~(v) and
square then the resulting expressions. In light of the obvious bounds

0 5 ~(~+A)-~ ~ 

we can integrute the inequality obtained over ~ E Ra. As a finM result we
get

I1- 11 5 I1 11 ,
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which serves to motivate that u u E H for any function ~ E H involved in
equation (9.6.30) and

(v, grad~u) ~ 

This provides support for the view that the operator A3 is closed and
generates the semigroup V(t). The domain of the operator A3 is equal to
D(A1) C?D(A2), thereby coinciding with 7)(A). Since the operator A 
from A3 by the bounded operator L, it is straightforward to verify that
A generates a strongly continuous semigroup as well. This completes the
proof of Theorem 9.6.1. ¯

Theorem 9.6.1 may be of help in setting up the Cauchy problem for
the Bolzman equation

(9.6.31)
Ou
0---~- ÷ (v, grad=u) --= Lu- uu+F,

x(~ R3, v ~R3, 0 < t < T,

(9.6.32) v, 0) = uo(x, v),

zeR 3, vER3,

as an abstract Cauehy problem. This can be done joining (9.6.5), (9.6.8)
(with f~ = ~) and (9.6.31)-(9.6.32). T he solvability i n question can b
established on account of Theorem 6.5.5 from Section 6.5. For the validity
of this theorem it is necessary to impose several conditions similar in form
to conditions (9.6.11)-(9.6.14) for the above boundary value problem 
only difference that the second relation (9.6.13) assigning the boundary
values of the function ¯ should be excluded from further consideration.

Corollary 9.6.6

and

Let condition (A1) hold, the function

w E L2,M(v)-I(R 3 × R3)

4p, (v, grad~ ~) + u~ E C’([O, T]; H), U G C~([O, T]; 

u0, (v, grad~u0) +uu0 ~H,

f Uo(Z,v)w(z,v)dzdv ¢( 0), /

l~ :~ X R3 ~.3 X I:{fl

¢(x,v,t) w(x,v) dz dv 7£ 
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Then a solution u, p of the inverse problem (9.6.31)-(9.6.32), (9.6.5),
(9.6.8) exists and is unique in the class of functions

u e C1([0, T]; H), p e C[0, T].

By exactly the same reasoning as before it is possible to set up an
inverse problem with the aid of relations (9.6.6) and (9.6.9). In that 
the validity of Theorem 6.5.5 from Section 6.5 is ensured by conditions
(9.6.15)-(9.6.18) with no restrictions on the boundary values of the function
(I).

Corollary 9.6.7 Let condition (A1) hold together with conditions (9.6.15)-
(9.6.16), (9.6.18) and

f u0(x, v) w(x) = ¢(v, vERa.

Then a solution u, p of the inverse problem (9.6.31)-(9.6.32), (9.6.6),
(9.6.9) exists and is unique in the class of functions

u E CI( [O,T];H), p ̄  c([o, T]; u).

In concluding this section it is worth mentioning that the assertion
established in Corollary 9.7.3 can be carried over to cover on the same
footing the Cauchy problem, leading to the following proposition.

Corollary 9.6.8 Let condition (A1) hold together with condition (9.6.22),
w ~ L2(Ra). Then the inverse problem (9.6.31)-(9.6.32), (9.6.9) of recov-
ering a pair of lhe functions u, u has no more than one solution in the class
or functions

u e CI([O,T];H), u>_O, ue’H.

9.7 The system of Navier-Stokes equations

In this section we deal with inverse problems for the system of Navier-
Stokes equations. Let D be a bounded domain in the space Rn with
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boundary c9 f~ E C2. We focus our attention on the system consisting of the
linearized Navier-$tokes equations

0u
(9.7.1) c9--~ -~Au+gradp= f, xEft, 0<t<T,

and the incompressibility equation

(9.7.2) divu = 0, x ~ ~, 0 < t < T.

The direct problem here consists of finding a vector-valued function

u: f~x[0, T]~R’~

and a scalar-valued function

p: f~ × [0, T] ~ R,

satisfying the system (9.7.1)-(9.7.2) with the supplementary boundary 
initial conditions

(9.7.3) u(x,~) = 0, x ~ 0f~, 0 < t < 

(9.7.4) u(z, 0) = u0(x), x ~ f~,

if the functions f and u0 and the coefficient u = const > 0 are known in
advance. The system (9.7.1)-(9.7.4) permits one to describe the motion
of a viscous incompressible fluid in the domain ~, where the velocity
of the fluid is well-characterized by the function u, while the function p is
associated with the pressure. The coefficient u is called the coefficient of
kinematic viscosity. The fluid is supposed to be homogeneous with unit
density. The books and papers by Fujita and Kato (1964), Ladyzhenskaya
(1970), Temam (1979), Kato and Fujita (1962) give an account of 
developments in this area.

Observe that the reader may feel free, in a certain sense, in recovering
the pressure p from the system (9.7.1)-(9.7.4). This is due to the 
that the function p can be added by an arbitrary function g(t) without
breaking the equality in equation (9.7.1). With this arbitrariness in view,
the meaning of "unique solvability" in this context is that the function p
is determined up to a summand regardless of x. In trying to distinguish
a unique solution in a standard sense it is fairly common to impose a
normalization condition of the pressure values. For example, one way
of proceeding is to require that

(9.7.5) f p(~:,t) d~: = 
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and then put the system (9.7.1)-(9.7.4) together with condition (9.7.5).
Let us introduce some functional spaces which will be needed in sub-

sequent studies of Navier-Stokes equations. The space

L~(a) : [L~(~)]~

contains all the vector-valued functions u = (ul, ... , u,~), the elements 
which belong to the space L2(a). In so doing, the norm on that space 
defined by

2 .

i=1

Along similar lines, the space

w (a) : [ w:(a)] 

comprises all vector-valued functions u = (ul, ..., un), the elements 
which belong to the space W~(a). In what follows the new space w~(a)
is equipped with the norm

(i=~ 1 2 )1/2II u IIw (a) -- II IIw(a)

The symbol D(a) stands for the set of all vector fields that are infinitely
differentiable and finite in the domain a. The symbol D(a) is used for the
set of all scalar-valued functions which are infinitely differentiable and finite
in the domain ft. From such reasoning it seems clear that D(a) = [ D(a)]’~.

o

Denote by w~(a) the closure of D(a) in the norm of the space W~(ft).
Set, by definition,

w (a) = [ w;(a)]
and introduce

D0(X) = {ueD(a): divu = 

o

The closures of D0(X) in the norms of the spaces IL2(a) and w~(a) 
denoted by II-II and V, respectively.

The divergence of any element from NI equals zero in a sense of distri-
butions. However, the space llqI so defined does not coincide with the set of
all solenoidal vector fields from the space L~(a). To clarify this fact, let
us denote by nx a unit external normal to the boundary 0 ft at point x. It
is plain to show that the component (u, nx) vanishes on the boundary c9 
if u is a smooth function from the space NI. On the other hand, there is a
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natural way of defining the normal component (u, n~) on the boundary
cq ~ for any function u from the space ]I-]I. Moreover, one can prove that

~ = {u e ]L~(~]): divu=0, (u,n~) 0a= 

The orthogonal complement ]E± to }1I in the space ]L2(~) comprises all
potential vector fields, that is,

(9.7.6) ~" = { u e L~(~): u = gradp, p ¯ W)(~) 

Because of the structure of the spaces }]I and ]E±, a flexible and widespread
approach to solving the direct problems for Navier-Stokes equations is
connected with further elimination of the pressure p from equation (9.7.1)
by means of orthogonal projection on the subspace

In turn, the space V is simply characterized by

V = { u ¯~/~(~): divu = 0 

The theory and methods of abstract differential equations in Banach
spaces are much applicable in studying Navier-Stokes equations. This is
connected with further treatment of f as an abstract function of the
variable t with values in the Hilbert space 1L2(~). Moreover, the function
u is viewed as an abstract function of the variable t with values in the
space IE. Finally, the function p is considered as an abstract function of
the variable t with values in the space W~(fl), while u0 is an element of the
space 1HI. With these ingredients, equation (9.7.2) is immediately satisfied
and condition (9.7.3) should be included in the domain of the Laplace
operator A. By definition, set

= n v.
Let us agree to write P for the operator of orthogonal projection on the
subspace IE in the space ]L~(~). By applying the projector P to equation
(9.7.1) we derive the following system:

(9.7.7) u’- t, PAu = P 

(9.7.8) gradp = (I- P) 

Before giving further motivations, careful analysis of equation (9.7.8) 
needed. Since

¯
for any fixed value t equation (9.7.8) is solvable in the space W)(~). Denote
by W* the subspace of W)(~) that contains all the functions satisfying
condition (9.7.5). It is clear that an operator like

p ~ gradp
executes an isomorphism of W* onto ~±. This type of situation is covered
by the following results.
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Lemma 9.7.1 Let the function

f ¯ C([0, T]; ~2(a)) 

Then a solution p to equation (9.7.8) exists and is unique in the class of
functions

p ¯ C([0, T]; W*).

Lemma 9.7.2 (Temam (1979)) Let the function

f ¯ {~1 ([0, T]; ]L,2(~’~)) 

Then a solution p to equation (9.7.8) exists and is unique in the class o]
functions

p ¯ C1([0, T]; W*).

Consequently, the direct problem at hand reduces to the Cauchy
problem in the space ]E for the abstract differential equation

u’(t)-uPAu = Pf(t), 0<t<T,
(9.7.9)

u(0) = u0.

Here ~ = ~, P A is the Stokes operator with the domain

~(~) = W~(~) n 

The operator 5 is self-adjoint and negative definite in the Hilbert space ]E
(see Temam (1979)). In view of this, ~ generates a strongly continuous
semigroup V(t), satisfying the estimate

(9.7.10) II V(t)ll _< t >_ 0 , > 0.
Applying the well-known results concerning the solvability of the abstract
Cauchy problem and taking into account Lemma8 9.7.1-9.7.2, we arrive at
the following assertions.

Theorem 9.7.1 Let the function f ¯ C([0, T]; ]L:(D)) and the element
u0 E ]E. Then a solulion u, p of the direct problem (9.7.1)-(9.7.5) exists
and is unique in the class of funclions

u e C([0, T]; IS), p ¯ C([0, T];

Moreover, the function u is given by the formula

(9.7.11) u(t) V(t)u0 + / V(t - 8) P f(s) ds.

0
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Theorem 9.7.2 Let the function f ¯ C1([0,/]; L~(~)) and the element
u0 ̄  W~ 1~ V. Then a solution u, p of the direct problem (9.7.1)-(9.7.5)
exists and is unique in the class of functions

u ¯ cl ([0, T]; ]I-~) CI C([0, T]; W~I(~)) , p ¯ Cl([0, 

Moreover, the function u is given by formula (9.7.11).

We proceed further by completely posing the inverse problem for
the Navier-Stokes equation assuming that the external force function f is
unknown. On the same grounds as before, we might attempt f in the form

(9.7.12) f(x,t) O(x,t) g( t) + F(x,t),

where the vector-valued functions (~(x, t) and F(x, t) are available, 
the unknown scalar-valued coefficient g(t) is sought. To ensure the in-
verse problem concerned to be well-posed, the subsidiary information is
prescribed in the form of integral overdetermination

/ (u(x,t), w(x)) dx = ~(t), 0 < t < T,(9.7.13)

where the vector-valued function- w(z) and the scalar-valued function ~(t)
are given. To write (9.7.12)-(9.7.13) in the abstract form, let us use 
symbol O(t) for the operator of multiplication by the function IF O. The
operator O(t) so defined acts from the space R into the space II-II. In 
doing, the function F(z,t) is treated as an abstract function F(t) of 
variable t with values in the space L~(~). In this line, it is sensible 
introduce the linear operator B acting from the space ]I-]I into the space R
in accordance with the rule

Bu = /(u(x), w(x)) 

With these ingredients, the inverse problem at hand acquires the abstract
form

u’(t) = ~u(t)+O(t) g(t)+PF(t), 0<t <T,

(9.7.14) u(0) = u0,

B u(t) = ~a(t), 0 < t < T,

where ~ is the Stokes operator. The system (9.7.14) is joined with equation
(9.7.8) written in the abstract form, making it possible to determine the
pressure p with the aid of the relation

(9.7.15) gradp (I -P)[O(t)g(t)+F(t)], 0<t<T,

and the normalizatioin condition (9.7.5). As a final result we get the fol-
lowing assertion.
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Theorem 9.7.3 Let the functions

¢, r e C([0, r],

w ̄  W~(~) nV, Uo ̄  H, 9~ 8110, T] , the compatibility co ndition

(9.7.16) [(u0(x), w(x)) dx 9(0)

hold and

(9.7.17) ¢(t) /( PO(x,t),w(x)) dx

for all t ¯ [0, T]. Then a solution u, p, g of the inverse problem (9.7.1)-
(9.7.5), (9.7.12)-(9.7.13) exists and is unique in the class of functions

u ̄  c([0, T]; ~), ; ¯ c([0, T]; W~(~)), g ̄  C[0, 

Proof The abstract inverse problem (9.7.14) will be of special investi-
gations on the basis of the general theory well-developed in Section 6.2.
Applying the operator B to an element u ¯ NI yields the relation

Bu = (u,w)~.

As far as the operator $ is self-adjoint, condition (6.2.7) holds true, since
the function

w ¯ V(~) = W~(a) N V.

Moreover,

BSu = (u,~w)~.
In the sequel we make use of Theorem 6.2.1. The operator (B ~)-~ coin-
cides with the operator of division by the function defined by (9.7.17). The
premises of Theorem 9.7.3 provide the validity of Theorem 6.2.1, due to
which the inverse problem (6.7.14) is solvable in the class of functions

u ¯ C([0, T]; ~), g ¯ C[0, T].

Moreover, this solution is unique. Let us consider equation (9.7.15) with
the supplementary condition (9.7.5). Observe that the function

¯ (t) ~(t) + 
is continuous with respect to t in the norm of the space L2(~t). So, 
account of Lemma 9.7.1 equation (9.7.15) with the supplementary condition
(9.7.5) is uniquely solvable in the class of functions

p ¯ C([0, T]; W)(a)).

This leads to the desired assertion of Theorem 9.7.3. ¯
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Theorem 9.7.4 If the functions ~, F e C1 ([0, T];IL2(t2)), u0 e W~(n)nV,
~ ¯ C2[0, T], w ̄  W~(~)~V, the compatibility condition (9.7.16) holds and
the function ¢ defined by (9.7.17) does not vanish at each point t
lhen a solution u, p, g of the inverse problem (9.7.1)-(9.7.5), (9.7.12)-
(9.7.13) exisls and is unique in the class of funclions

u ¯ ¢~ ([0, T]; ]HI) N C([0, 

p ̄  c1([0, 9 ̄  c1[0, T].

Proof Recall that the inverse problem at hand can be posed in the abstract
form (9.7.14). As stated above, the operator B satisfies condition (9.2.7).
This provides reason enough to refer to Theorem 6.2.3, whose use permits
one to conclude that a solution of the abstract problem (9.7.14) exists and
is unique in the class of functions

U ¯ C1([0, T]; ]~]I) N C([0, T]; g ¯ el[0, T].

Equation (9.7.15) comes second. The function (~(t)g(t) + F(t) is contin-
uously differentiable with respect to t in the norm of the space L2(~).
Therefore, Lemma 5.7.2 asserts the unique solvability of the inverse prob-
lem (9.7.15), (9.7.5) in the class of functions

and, therefore, it remains to take into account that

= w (a) N 

thereby completing the proof. ¯

In concluding this section we are interested in the inverse problem
with the final overdetermination under the agreement that the external
force function f(x,t) built into equation (9.7.1) admits the 

(9.7.18) f(x,t) = &(t) g(x) 

where the scalar-valued function O(t) and the vector-valued function F(t)
are given, while the unknown vector-valued function g(x) is sought in the
space ]HI. A well-posed statement necessitates imposing the condition of
final overdetermination

(9.7.19) u(~,T) -- ul(x), x ¯ a.
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The inverse problem posed above can be written in the abstract
form

u’(t) = ~u(t)+~(t)g+P F(t), 

(9.7.20) u(0) = u0,

u(T)
with the governing equation (9.7.15) and the supplementary condition
(9.7.5).

Theorem 9.7.5 Let F ¯ C1([0, T]; ]L2(f~)), ¯ ¯ C1[0, T], ~(t) and
¢’(t) >_ 0 for all t [0, T] andthe functions u, u l ¯ W~(~2) f3 ~r . Then
a solution u, p, g of the inverse problem (9.7.1)-(9.7.5), (9.7.18)-(9.7.19)
exists and is unique in the class of functions

U ̄  C1 ([0, T]; ]I-][) N C([0, 

p ¯ C1([0, T]; W21(a)) g ¯ N.

Proof Consider the abstract inverse problem (9.7.20). From relation
(9.7.10) and the conditions imposed above it follows that Theorem 9.7.5
is fitted into the present framework and ensures the unique solvability of
problem (9.7.20) in the class of functions

U ̄  CI([0, T]; I[’]I) ~’~ (J([0, T]; ~)(~)) g e ~.

Since ~(~) = W~(fl) ~ ~, the functions u and g just considered belong
to the needed classes. The function O(t)g + F(t) involved in equation
(9.7.15) is continuously differentiable with respect to t in the norm of the
space L~(~). Consequently, in agreement with Lemma 9.7.2, the inverse
problem (9.7.15), (9.7.5) is uniquely solvable in the class of functions

p e C1([0, T];

This completes the proof of Theorem 9.7.5. ¯

9.8 The system of Maxwell equations

The final goal of our studies is the system of Maxwell equations in a
bounded domain ~ C R3:

rotE -
OB
Or’

(9.8.1) OD
rot H = -- + J

0t ’
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where E is the vector of the electric field strength, H is the vector
of the magnetic field strength, D and B designate the electric and
magnetic induction vectors, respectively. In what follows we denote by
J the current density.

In the sequel we deal with a linear medium in which the vectors of
strengthes are proportional to those of inductions in accordance with the
governing laws:

D = eE,
(9.8.2)

B = #g,

We assume, in addition, that Ohm’s law

(9.8.3) J = aE + I

is satisfied in the domain ~, where ~ is the dielectric permeability of
the medium and # is the magnetic permeability. We denote by ~ the
electric conductance and use the symbol I for the density of the ex-
traneous current.

The functions ~, # and ~ are supposed to be continuous on ~. The
density of the extraneous current I is viewed as a continuous function of

the variables (x, t), where x E ~ and 0 < t < 
The boundary conditions for the Maxwell system usually reflect some

physical peculiarities of the boundary 0~. When 0~ happens to be a
perfect conductor, it is reasonable to impose one more condition

(9.8.4) [n~ x

where n, is a unit external normal to the boundary ~ ~ at point x.
A problem statement necessitates assigning, in addition to the bound-

ary condition, the supplementary initial data. In particular, we are able to
prescribe by means of relation (9.8.2) either the strengthes or the induc-
tions. Further development is connected with the initilM conditions for the
vectors of the electric and magnetic inductions:

(9.8.5) { =
B(x, 0) B0(x),

The direct problem here consists of finding the functions E, D, H, B
from the system (9.8.1)-(9.8.5) for the given functions e, #, a, I, Do 

B0 involved.
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As far as the statement of the direct problem is concerned, some
remarks help motivate what is done. By convention, the Maxwell system
includes also the following equations:

(9.8.6) divD = p,

(9.8.7) divB = 0,

where p is the density of the electric charge distribution. Equation
(9.8.6) can be treated as a relation, by means of which the function p 
well-defined. Indeed, while studying problem (9.8.1)-(9.8.5) the density 
is simply calculated by formula (9.8.6). On the other hand, equation (9.8.1)
yields the equality

div B(x, t) = 

for all t > 0 under the natural premise divB(x,O) = O. As a matter of
fact, relation (9.8.7) amounts to some constraint on the initial data. What
is more, if, for instance, div B0 = 0, then equality (9.8.7) is automatically
fulfilled. With these ingredients, there is no need for the occurrence of
relations (9.8.6)-(9.8.7) in further development and so we might confine
ourselves to the system (9.8.1)-(9.8.5) only. For more detail we refer 
reader to Birman and Solomyak (1987), Bykhovsky (1957), Duvant 
Lions (1972).

It will be sensible to introduce some functional spaces related to the
Maxwell system. Let ~ be a bounded domain with boundary 0 f2 E (72.
We initiate the construction of the set

(9.8.8) H(rot, f2) = {ue L2(f2)3: rotue L2(f2)3},

which becomes a Hilbert space equipped with the norm

(9.8.9) II (II  1/2u = u IIL ( )3 IIrotu IIL ( >3

Denote by H0(rot, f2) a closure of all vector fields which are infi-
nite differentiable and have compact support in the domain ft: The sub-
space H0(rot, f2) so constructed will be closed in the space H(rot, 
and admits a clear description. Indeed, it turns out that for any element
u G H(rot, f2 ) we might reasonably try to preassign a value of the function
[n~ x u] on the boundary 0 ~2. The boundary value will belong to a certain
Sobolev space with a negative differential exponent, so there is some reason
to be concerned about this. More specifically, we have

H0(rot,~) = {u~H(rot,~): [nxxu] --- 0}.
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It is worth noting here that for any vector field u E H(rot, Q) ~nd any

function v el~ ~(a)the integral relation

is the outcome of integrating by parts. Also, it is plain to show that the
operator

A: u ~ rot u

with the domain 19(A) = g0(rot, Q) is self-adjoint in the space n~(~)a.

An alternative form of the system (9.8.1)-(9.8.5) is based on (9.8.2)
with excluding the vectors of the electric and magnetic field strengthes and
substituting (9.8.3) into (9.8.1). We are led by expressing the t-derivatives
of the induction vectors via all other functions to the statement of the
direct problem

OD B
(9.8.12) ~ = rot -- - - D- I,

OB D
(9.8.13)

Ot

(9.8.14) [n= x D] = 0,

(9.8.15) D(¢, 0) Do(x), B(x, O) = Bo(x).

In what follows it seems worthwhile to consider only the system (9.8.12)-
(9.8.15) as an Mternative form of writing the problem posed initially for
the Maxwell system.

Let a basic functional space will be taken to be

(9.8.16)

and the system of equations (9.8.12)-(9.8.13) will be of special investiga-
tions in that space. The inner product in the space N is introduced by
means of weight functions: for (D~, B~), (D~, B~) ~ N set, by definition,

L~(a)

Observe that the inner product (9.8.17) with the functions s and ~ being
still subject to the initial restrictions becomes equivalent to the usual inner
product like
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In trying to achieve an abstract form in the space NI it will be reasonable
to refer to an unbounded operator .2, such that

A: (D,B)~ (rot -rot D’~(9.8.18)

whose domain is

(9.8.19) T~(A) = {(D, DeHo(rot, f~), BeH(rot, ft)}

If #, e E C1, which will be true in the sequel, then the operator A acts
from the space NI into the space ]HI. Let us stress that the domain of the
operator ,4 is formed in such a way that the boundary condition (9.8.14)
will be covered by (9.8.19).

Several basic properties of the operator .4 are quoted in the following
assertion (see Duvant and Lions (1972)).

Theorem 9.8.1 Let ~ be a bounded domain in the space R3 with boundary
O~ ~ C2 and let the functions ¢ and # belong to the space CI(~) and will
be positive in ~. Then the domain of the operator A is dense in the space
NI. Moreover, the operator,4 is closed and skew-Hermitian, that is,

:D(A*) =- z~(m) and ‘4*=--‘4.

We need to rearrange problem (9.8.12)-(9.8.15)in an abstract form.
With this aim, the pair (D, B) is now treated as an abstract function of the
variable t with values in the space NI. Let us introduce one more operator

(9.8.20) U: (D, B) ~-~ -~- D, 0 

which is bounded in the space NI due to the inclusion ~r ~ C(~). Set, 

definition, ¢" = (-I, 0), which is viewed as a function of the variable t with
values in the space NI. With respect to u = (D, B) and u0 = (Do, B0) 
direct problem (9.8.12)-(9.8.15) acquires the abstract 

(9.8.21) 0-Y = ‘4 u + ~ u + ~=(0, 0 < ~ < T,
u(0) = u0.

Theorem 9.8.1 implies that the operator .4 generates a strongly continuous
group. In conformity with perturbation theory the property to generate a
strongly continuous group will be retained once we add a bounded operator
B to the operator .4. That is why the sum of the operators .4 + B generates
a strongly continuous group V(t), making it possible to exploit here the
results of Section 5.2 (Theorems 5.2.2 and 5.2.3). This reference enables
us to prove several assertions.



9.8. The system of Maxwell equations

Theorem 9.8.2
inclusions

~ ̄  c(fi),
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Let all the conditions of Theorem 9.8.1 hold and the

I ¯ C([0, T]; L2(a)a), Do, Bo ¯ L2(a)3

occur. Then a solution D, B of the direct problem (9.8.12)-(9.8.15) exists
and is unique in the class of functions

D, B ¯ C([0, T]; L2(a)3).

Theorem 9.8.3 Let under the premises of Theorem 9.8.1 the inclusions

Do ̄  H0(mt, f2), B0 e H(rot, ~)

occur. Then a solution D, B of the direct problem (9.8.12)-(9.8.15) exists
and is unique in lhe class of functions

D, /3 ¯ C~([0, T]; L~(~)3) ~C([0, T]; H(rot,

The statement of an inverse problem involves the density of the ex-
traneous current ~ an unknown of the structure

(9.s.~) ~(., ~) = ~(.,,) p(~) ~(., ~)

where the matrix ~ of size 3 x 3 and the vector-vMued function g are
known in advance, while the unknown vector-valued function p is sought.
To complete such a setting of the problem, we take the integral overde-
termination in the form

(9.8.23) [ D(x,t) w(z) dx = ~(t), 0 < t < T,

where the function w(z) is known in advance. The system of equations
(9.8.12)-(9.8.15), (9.8.22)-(9.8.23)is treated as the inverse problem 
Maxwell system related to the unknown functions D, B and p.

Theorem 9.8.4 Let under the condilions of Theorem 9.8.1

~ e C(fi), D0, ~0 e L~(~)~

and the elements ~ij of the matrix ~ belong ~o the space C([0, T]; L2(~)).
Ifi in addilion,

o

~ e c([0, ~]; ~(~)~), ~ e w ~(~), ~ e ~ ([0, ~]; a~),
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the compatibility condition

/ Do(x)

holds and for all t ¢ [0, T]

det
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dx = ~(0)

by means of which condition (9.8.23) acquires~the abstract form

Bu(t) = ~(t).

Finally, the abstract counterpart of the inverse problem (9.8.12)-(9.8.15),
(9.8.22)-(9.8.23) is as follows:

du (bt ,-~ = Au+ ()p+G(t) 0<t<T,

(9.8.24) u(0) = no,
Bu(t) = ~(t), 0 < t < T,

then a solution D, B, p of the inverse problem (9.8.12)-(9.8.15), (9.8.22),
(9.8.25) exists and is unique in the class of functions

D, B e C([0, T]; L~(a)"), p e C([0, T]; R3).

Proof Our starting point is the definition of the operator O(t) acting from
the space R3 into the space ]HI in accordance with the rule

(I)(t): p ~, (¢2(x,t)p, 

When the function G is specified by means of the relation

a = (-g, 0),

one can treat it as a function of the variable t with values in the space
With respect to ~ = (-I, 0) equality (9.8.22) takes the 

~(t) = ~(t) p + a(t).

Let the operator B from the space ~ into Rz assign the values

f ¢(x,t) w(x) dx 
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where the operator A = .4 + B generates a strongly continuous group.
The abstract inverse problem (9.8.24) is fitted into the framework 

Section 6.2 provided condition (6.2.7) holds. It is straightforward to verify
its validity by plain calculations

BA = rot -- w(x) dx- - D w(x) 

under the natural premise (D, B) ¯ ~D(A). What is more, by formula
(9.8.11) we find that

(9.8.25) BA = [B x gradw] #(x)

-[ dx ¯

In light of the emerging constraints on the functions ~, ~, a and w the
right-hand side of (9.8.25) is a continuous linear operator from the space
~ into the sp~ce Ra ~nd, as ~ matter of fact, specifies the operator B A.
Therefore, condition (6.2.7) holds true as required. For this reason the
statement in question immediately follows from Theorem 6.2.1, thereby
completing the proof of this theorem. ~

Theorem 9.8.5 Let under the premises of Theorem 9.8.4 the inclusions

D0 ¯ H0(rot, f2), B0 ¯ g(rot, 

occur. One assumes, in addition, that the elements (~ij of the matrix ¯
belong to the space C1 ([0, T]; L2(f~)) and

g ¯ cl([0, T]; L2(a)3) , ~ ¯ C~([0, T]; R3).

Then a solution D, B, p of the inverse problem (9.8.12)-(9.8.15), (9.8.22),
(9.8.25) exists and is unique in the class of functions

D, B ̄  Ct([0, T]; L2(a)a) ~ C([0, T]; H(rot,

; ¯ c ([0, T]; R3).
Proof To prove the above assertion, we refer once again to the results of
Section 6.2 concerning the existence and uniqueness of a strong solution
of the abstract inverse problem (9.8.24). In particular, Theorem 6.2.3 fits
our purposes, since its conditions are stipulated by the boundedness of the
operator B A. Recall that we have substantiated this reference in proving
Theorem 9.8.4. Finally, the statement of Theorem 9.8.5 immediately fol-
lows from Theorem 6.2.3 and thereby completes the proof of the theorem.





Chapter I0

Concluding Remarks

In conclusion we give a brief commentary regarding the results set
forth in this book. Chapter 1 covers inverse problems for partial differential
equations of parabolic type. The detailed outline of related direct problems
is available in many textbooks and monographs. In particular, we refer the
reader to the books by A. Bitsadze (1976), R. Courant and D. Hilbert
(1953, 1962), A. Friedman (1964), S. Godunov (1971), O. Ladyzhenskaya
(1973), O. Ladyzhenskaya et al. (1968), J.-L. Lions (1970), V. Mikhailov
(1976), S. Mikhlin (1977), S. Sobolev (1954), A. Tikhonov and A. Samarskii
(1963), V. Vladimirov (1971) and the paper of A. Win et al. (1962).

Research of inverse problems for the heat conduction equation was
initiated by the famous paper of A. Tikhonov (1935) in which the problem
of recovering the initial data of the Cauchy problem with the final overde-
termination was properly posed and carefully explored. The coefficient
inverse problem for the heat conduction equation was first investigated by
B. Jones (1962), J. Douglas and B. Jones (1962) in the situation when 
subsidiary information is the value of a solution at a fixed point of space
variables.

The availability of integral overdetermination within the framework of
inverse problems for parabolic equations owes a debt to V. Soloviev (1985).
The main idea behind the problem statement here is to take the inte-
gral in the overdetermination condition over the domain of space variables.
An alternative integral overdetermination was proposed in the papers of

645
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A. Prilepko and A. Kostin (1992a,b), where integration is accomplished
during some period of time.

Section 1.2 focuses on the inverse problem involving the source func-
tion of the form (1.2.1). It is worth noting here that such a structure
of the source arose for the first time in the work of A. Prilepko (1966b)
concerning elliptic equations. In the original setting the inverse problem
(1.2.34)-(1.2.37) is much applicable in theory and practice. In the simplest
case when the operator L is self-adjoint and h(x, ~) = 1, A. Iskenderov and
R. Tagiev (1979) derived an explicit formula for a solution of the posed
problem by appeal to the operator semigroup generated by the operator
L as an infinitesimal operator. Further development of this formula was
independently repeated by W. Rundell (1980). The proof of the unique-
ness of a solution of the inverse problem (1.2.34)-(1.2.37) was carried 
by V. Isakov (1982a) within the classical framework. Later this inverse
problem was extensively investigated by means of various methods in sev-
eral functional spaces. The existence and uniqueness theorems for a so-
lution of the inverse problem concerned have been proved by A. Prilepko
and V. Soloviev (1987c), V. Soloviev (1989), A. Prilepko and A. Kostin
(1992a), V. Isakov (1991b). Being concerned with a self-adjoint operator 
and a function h(x,t) =_ h(x) (not depending on t), D. Orlovsky (1990) 
tablished necessary and sufficient conditions for the existence of a solution
of the inverse problem (1.2.34)-(1.2.37) as well as necessary and sufficient
conditions of the solution uniqueness in terms of the spectral function of the
operator L. The results we have cited are based on a semigroup approach
to the inverse problem well-developed by A. Prilepko and D. Orlovsky
(1989), A. Prilepko and A. Kostin (1992a), Yu. Eidelman (1983, 
1990, 1993a,b), D. Orlovsky (1988), A. Prilepko and I. Tikhonov (1992,
1993). Let us stress that the inverse problem (1.2.14)-(1.2.17) with 
integral overdetermination is a natural generalization of the inverse prob-
lem with the final overdetermination which has been under consideration
earlier by A. Prilepko and A. Kostin (1992a), A. Prilepko and I. Tikhonov
(1994), A. Prilepko, A. Kostin and I. Tikhonov (1992), I. Tikhonov 
Yu. Eidelman (1994).

In Section 1.3 the property of Fredholm’s type solvability of the inverse
problem (1.2.2)-(1.2.5) is revealed. The first results in connection with 
property are available in A. Prilepko and V. Soloviev (1987a), V. Soloviev
(1988), where solutions to equation (1.2.2) are sought in Hhlder’s classes 
functions. Later this property was analysed from various viewpoints and
in various functional spaces by D. Orlovsky (1988, 1990), A. Prilepko and
A. Kostin (1992a), A. Lorenzi and A. Prilepko (1993), A. Prilepko 
I. Tikhonov (1994).

In Section 1.4 the inverse problem of recovering a coefficient at the un-
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known function in a parabolic equation was completely posed and resolved
under the agreement that the subsidiary information is prescribed in the
form of final overdetermination. This simplest statement of the nonlinear
coefficient inverse problem was extensively investigated by many scientists.
Recent years have seen the publication of numerous papers on this sub-
ject. In Section 1.4 we quote mainly the results obtained by A. Prilepko,
A. Kostin and I. Tikhonov (1992), A. Prilepko and A. Kostin (1993a). 
proofs of the basic assertions were carried out on the basis of Birkhoff-
Tarsky principle for isotone operators. With regard to the problem con-
cerned the reader may also refer to A. Prilepko and V. Soloviev (1987a,b,c),
W. Rundell (1987), V. Isakov (1990c), K-H. Hoffman and M. Yamamoto
(1993) and others.

In Section 1.5 the inverse problem of recovering a source function
in a modeling heat conduction equation was of special investigations. In
contrast to (1.2.1) the source admits an alternative form and the unknown
coefficient depends solely on time. Additional information is connected
with a final result of measuring the temperature by a a perfect sensor
located at a fixed point in the domain of space variables. Each such sensor
is of finite size and, obviously, should make some averaging over the domain
of action. In this view, it is reasonable to absorb from this sensor the
subsidiary information in the form (1.5.4), where the function w(z) is 
sensor characteristic. In the case of a perfect sensor located at a point x0
its characteristic is equal to

= 6(x - x0)

and the measurement of the temperature is well-characterized by (1.5.42).
The initial stage of research was stipulated by the one-dimensional problem
arising from the paper of B. Jones (1963). Later this problem was exam-
ined in various aspects by A. Prilepko (1973a), N. Beznoshchenko and
A. Prilepko (1977), A. Prilepko and V. Soloviev (1987b)., A. Prilepko 
D. Orlovsky (1984). Further development of such theory in some functional
spaces is connected with the results obtained by J. Cannon and L. Yah-
ping (1986, 1988a,b, 1990), A. Prilepko and D. Orlovsky (1985a,b, 1987a,b,
1988, 1989, 1991), A. Prilepko and V. Soloviev (1987b), D. Orlovsky (1990,
1991a,b,c,d). An exhaustive survey on various statements of inverse prob-
lems for parabolic equations and well-established methods for solving them
in some functional spaces is due to O. Alifanov (1979), G. Anger (1990),
J. Beck et al. (1985), N. Beznoshchenko (1974, 1975a,b, 1983a,b,c), B. 
nov (1988), B. Budak and A. Iskenderov (1967a,b), J. Cannon (1963, 
1967, 1968, 1984), J. Cannon and P. DuChateau (1970, 1973a,b, 1978,
1979), J. Cannon and S. Perez-Esteva (1994), J. Cannon and L. Yanping
(1986), J. Cannon et al. (1963), G. Chavent and P. Lemonnier (1974),
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M. Choulli (1994), P. DuChateau (1981), P. DuChateau and W. 
dell (1985), Yu. Eidelman (1993a,b), A. Elcrat et al. (1995), H. Engl 
al. (1994), V. Isakov (1976, 1982a,b, 1986, 1989, 1990a,b,c, 1991a,b, 1993,
1998), A. Iskenderov (1974, 1975, 1976), A. Friedman and M. Vogelius
(1989), A. Friedman et al. (1989), B. Jones (1963), V. Kamynin (1992),
M. Klibanov (1985, 1986), R. Kohn and M. Vogelius (1984, 1985), J.-L. 
ons (1970), A. Lorenzi (1982, 1983a,b, 1985, 1987, 1992), A. Lorenzi and
A. Prilepko (1993), L. Payne (1975), M. Pilant and W. Rundell (1986a,b,
1987b, 1988, 1990), A. Prilepko (1973a), C. Roach (1991), W. Rundell
(1980, 1983, 1987), T. Suzuki (1983, 1986), T. Suzuki and R. myrayma
(1980), I. Tikhonov (1992), M. Yamamoto (1993, 1994a,b, 1995). Various
topics and issues from the theory and practice for direct and inverse prob-
lems associated with parabolic equations are covered by the monographs
by O. Alifanov (1979), O. Alifanov et al. (1988), Yu. Anikonov (1976,
1995), O. Anger (1990), A. Babin and M. Vishik (1989), J. Baumeister
(1987), J. Beck et al. (1985), O. Besov et al. (1975), a. Cannon (1984),
J. Cannon and U. Hornung (1986), J. Cannon et al. (1990), D. Colton
et al. (1990), A. Denisov (1994), A. Dezin (1980), A. Fedotov (1982),
A. Friedman (1964), A. Glasko (1984), C. Groetsch (1993), L. HSrmander
(1965), V. Isakov (1998), V. Ivanov et (1978), L. Kantorovich and
O. Akilov (1977), R. Lattes and J.-L. Lions (1967), M. Lavrentiev (1967,
1973), M. Lavrentiev et al. (1968, 1986), J.-L. Lions (1970), V. Mikhailov
(1976), v. Morozov (1984), L. Payne (1975), Romanov (197a, 1984),
A. Tikhonov and V. Arsenin (1977), G. Vainikko and A. Veretennikov
(1986), V. Vladimirov (1971). A powerful support for the rapid devel-
opment of this branch of science was provided by the original works of
A. Akhundov (1988), A. Alessandrini (1988), A. Alessandrini and G. 
sella (1985), N. Beznoshchenko and A. Prilepko (1977), M. Choulli (1994),
A. Calder6n (1980), J. Canon and R. Ewing (1976), a. Canon et hi. (1994),
J. Canon and D. Zachmann (1982), W. Chewing and T. Seidman (1977),
A. Denisov (1982), A. Goncharsky et al. (1973), A. Friedman and V. Isakov
(1989), A. Friedman and M. Vogelius (1989), A. Friedman et al. (1989),
B. Jones (1962, 1963), A. II’in et al. (1962), V. Isakov (1988), R. Kohn 
M. Vogelius (1984, 1985), A. Kostin and A. Prilepko (1996a,b), R. Lander
(1933), A. Lorenzi (1992), A. Lorenzi and A. Lunardi (1990), A. Lorenzi
and C. Pagani (1987), A. Lorenzi and E. Paparoni (1985, 1988), A. Lorenzi
and A. Prilepko (1994), A. Lorenzi and g. Sinestrari (1987, 1988), V. 
simov (1988), G. Marchuk (1964), V. Mikhailov (1963a,b), T. Moser (1964),
N. Muzylev (1980), M. Nached (1970), D. Orlovsky (1994), I. Petrovsky
(1934), A. Prilepko (1992), G. Richter (1981), T. Seidman (1981a,b), 
Sylvester and G. Uhlmann (1986, 1988), C. Talenti (1978), N.-S. Trudinger
(1968) and A. Uzlov (197S).
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Chapter 2 provides a unified approach and deep systematic study of
first order linear hyperbolic systems and second order linear hyperbolic
equations of two independent variables. If we confine ourselves to the case
of two variables only, there is a relatively simple line of reasoning, making it
possible to avoid cumbersome elements of the theory of partial differential
equations and functional analysis. The main idea behind solution of direct
and inverse problems here is to employ the method of characteristics. This
simple method finds a wide range of applications. For more detail we
recommend to see R. Courant and D. Hilbert (1953, 1962), S. Godunov
(1971), B. Rozhdestvensky and N. Yanenko (1978), E. Sanchez-Palencia
(1980).

Section 2.1 deals with x-hyperbolic systems of the canonical form
(2.1.2). The basic part of this section is devoted to the problem of finding
a nonhomogeneous term in the form (2.1.8) for the sought function with
the boundary conditions (2.1.9). The results obtained are formulated 
Theorems 2.1.2-2.1.3, where the existence and uniqueness of a solution of
this inverse problem are proved in the class of functions of the exponential
type if we make L small enough. The smallness of the value L is essential
for the solvability of the inverse problem which interests us. To understand
nature a little better, this obstacle is illustrated by one possible example
from the paper of A. Kostin and I. Tikhonov (1991) in which the authors
have shown that the value of L decreases with increasing the exponential
type of the function v. However, in the particular case of the system
(2.1.2), where all of the eigenvalues of the matrix /( have constant sign,
Theorem 2.1.4 asserts the existence and uniqueness of a solution of the
inverse problem concerned. As an application of the above theorems we
raise the question of the solution uniqueness in the problem of recovering a
matrix D from the canonical equation (2.1.2) in the case when the matrix
depends only on the variable x. It is worth emphasizing here that in the
classical statement of the related direct problem the boundary conditions
are somewhat different from those involved in (2.1.9). In the case of a direct
problem the subscript of the functions vi(L,t ) = ¢i(t) and vi(0, t) = 
runs over s < i _< n and 1 < i < s, respectively. The statement of problem
(2.1.9) includes the boundary conditions with the subsidiary information
enabling to recover not only the function v(x,t), but also the coefficient
p(x). Deeper study of the inverse problem (2.1.2), (2.1.8) of finding 
function p(z) was initiated by V. Romanov (1977). However, the boundary
conditions imposed in his paper happen to be overdeterminated even from
the standpoint of inverse problems. Since the function v(z,t) is known
everywhere on the boundary of the half-strip, only the uniqueness of a
solution of this inverse problem is ensured in such a setting. The general
statement (2.1.9) in which the components of the function v are defined
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on a part of the boundary of the half-strip was suggested by D. Orlovsky
(1983). He has proved therein the basic results set forth in Section 2.1.

Section 2.2 is devoted with the problem of finding a nonhomogeneous
term of linear hyperbolic systems when its solution is given everywhere on
the boundary of the half-strip {0 < x < L, t _> 0}. As indicated above, for
the structure of the right-hand side specified in Section 2.1 such a statement
of the problem would be certainly overdeterminated. The decomposition
G(z, t) = H(z, t)p(t), where the vector function p(t) is unknown, will be
approved in mastering the difficulties involved. This amounts to investi-
gating t-hyperbolic systems of the canonical form (2.2.1). The existence
and uniqueness of their solutions are proved and appear to be of global
character. In the body of this section we follow the paper of D. Orlovsky

(1983).
Section 2.3 gives an illustration of applying the hyperbolic systems

under consideration to investigating linear hyperbolic equations of second
order within the framework of inverse problems.

Other statements of inverse problems for hyperbolic systems of first
order and hyperbolic equations of second order as well as a survey of rele-
vant results are available in many monographs, textbooks and papers, in
this regard, it is worth mentioning Yu. hnikonov (197.8), A. Baev (1985),
H. Baltes (1987), S. Belinsky (1976), P. Berard (1986), I. Gelfand 
B. Levitan (1951), S. Kabanikhin (1979, 1987), A. Khaidarov (1986), 
and R. Phillips (1967), A. Louis (1989), V. Marchenko (1986), F. 
terer (1986); D. Orlovsky (1984a,b), J. e6schel and E. Trubowitz (1986),
i. Ramm (1992), V. Romanov (1968, 1972, 1973, 1977, 1978a,b,c,d, 1984),
V. Romanov and E. Volkova (1982), V. Romanov and V. Yakhno (1980),
V. Romanov et al. (1984), I. Tikhonov and Yu. Eidelman (1994), T. Tobias
and Yu. Engelbrecht (1985), V. Yakhno (1977, 1990).

Plenty of inverse problems associated with hyperbolic equations is
involved in the monographs by G. hlekseev (1991), Yu. Anik0nov (1995),
D. Colton and R. Kress (1992), D. Colton et al. (1990), R. Corenflo 
S. Vessela (1991), K. Chadan and P. Sabatier (1989), I. Gelfand and 
Gindikin (1990), M. Gerver (1974), C. Groetsch (1993), G. Herglotz (1914),
M. Imanaliev (1977), V. Isakov (1998), V. Kirejtov (1983), R. Lattes 
J.-L. Lions (1967), P. Lax and R. Phillips (1967), B. Levitan (1984),
J..-L. Lions (1970), L. Nizhnik (1991) and V. Romanov (1984).

The original works of A. Alekseev (1962, 1967), A. Amirov (1986a,b,
1987), D. hnikonov (1975, 1979, 1984), Yu. inikonov (1976, 1978, 1992),
Yu. Anikonov and B. Bubnov (1988), Yu. Antokhin (1966), M. Belishev
(1989), A. Blagoveshensky (1966), h. Bukhgeim (1984, 1988), A. Bukhgeim
and M. Klibanov (1981), J. Cannon and D. Dunninger (1970), J. Cannon 
al. (1990), C. Cavaterra and M. Grasselli (1994), V. Dmitriev et al. (1976),
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L. Faddeev (1,976), A. Friedman (1987), I. Gelfand and B. Levitan (1951),
M. Grasselli (1992, 1994), M. Grasselli et al. (1990, 1992), A. Ivankov
(1983), M. Lavrentiev (1964), A. Lorenzi (1992), A. Lorenzi and A. Prilepko
(1993, 1994), V. Maslov (1968), A. Nachman (1988), A. Prilepko 
A. Ivankov (1984, 1985), A. Prilepko and A. Kostin (1993b), A. Prilepko
and I. Tikhonov (1992, 1993, 1994), A. Prilepko and N. Volkov (1987,
1988), A. Prilepko, D. Orlovsky and I. Vasin (1992), V. Romanov 
V. Yakhno (1980), P. Sabatier (1977a,b), V. Shelukhin (1993), a. Sylvester
and G. Uhlmann (1987), W. Tobias and Yu. Engelbrecht (1985), V. Yakhno
(1977, 1990) made significant contributions in the basic trends of such the-
ory.

Chapter 3 is devoted to inverse problems in potential theory. The
foundations of the theory of partial differential equations of the elliptic
type may be found in many textbooks and monographs and papers by
Yu. Berezanskij (1968), O. Besov et al. (1975), A. Bitsadze (1966, 1977),
D. Colton and R. Kress (1992), R. Courant and D. Hilbert (1953, 1962),
D. Gilbarg and N. Trudinger (1983), S. Godunov (1971), L. H6rmander
(1965), N. Idel’son (1936), O. Ladyzhenskaya (1973), O. Ladyzhenskaya
and N. Uraltseva (1968), E. Landis (1971), L. Likhtenshtein (1966),
J.-L. Lions (1970), A. Lyapunov (1959), S. Michlin (1977), V. Mikhailov
(1976), K. Miranda (1957), S. Sobolev (1954, 1988), A. Tikhonov 
A. Samarskii (1963), V. Vladimirov (1971) and J. Wermer (1980). 
progress in potential theory has been achieved by serious developments
due to N. Hunter (1953), V. II’in et al. (1958), N. Landkhof (1966) 
L. Sretensky (1946). The results presented in the third chapter have been
obtained by A. Prilepko (1961, 1964, 196ha,b, 1966a,b,c, 1967, 1968a,b,c,
1969, 1970a,b,c, 1972, 1973a,b, 1974a,b). Many scientists are much in-
terested in various aspects of uniqueness for the inverse problem I in the
case of a classical potential (see Section 3.3). The first result regarding
the solution uniqueness of the exterior inverse problem for the Newtonian
potential in the category of "star-shaped" bodies with a constant density
was proved by P. Novikov (1938). Later this problem was extensively in-
vestigated by L. Sretensky (1938, 1954), I. Rapoport (1940, 1941, 1950),
A. Gelmins (1957), V. Ivanov (1955, 1956a,b, 1958a,b, 1962), L. Kazakova
(1963, 1965), M. Lavrentiev (1955, 1956, 1963), Yu. Shashkin (1957, 
1964), V. Simonov (1958), R. Smith (1961), I. Todorov and D. Zidorov
(1958), and many others for the case of a constant density. The question 
the solution uniqueness for the inverse problem I with a variable density for
the logarithmic potential was studied by Yu. Shashkin (1957, 1958, 1964)
and V. Simonov (1958) with the aid of conform mappings.

The aspect of the solution uniqueness in the study of various inverse
problems is intimately connected with stability of their solutions. The
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general topological stability criterion ascribed to A. Tikhonov (1943) will
imply certain qualitative conditions of stability if the corresponding unique-
ness theorems hold true. For example, for the inverse problem related to
the exterior potential with a constant density in the case of "star-shaped"
bodies a few stability conditions were deduced from the uniqueness theo-
rems established by P. Novikov (1938),. V. Ivanov (1958a) and L. Kazakova
(1963, 1965). Numerical estimates of deviation for two bodies are obtained
in the papers of I. Rapoport (1940, 1941, 1950). They are expressed 
terms of the difference between exterior potentials under certain restric-
tions on the properties of the potentials involved. There are also integral
stability estimates which can be proved for "star-shaped" bodies of con-
stant density. M. Lavrentiev (1967) derived for them the general numerical
estimates depending on the deviation of potentials on a piece of the sphere,
the interior of which contains the attracting bodies. In the plane-parallel
problem for the logarithmic potential with a variable positive density sta-
bility estimates have been established by Yu. Shashkin (1964) for several
classes of the generalized "star-shaped" bodies by means of relevant el-
ements of the theory of functions of one complex variable and conform
mappings. The extensive literature on this subject is also reviewed in the
monographs by G. Anger (1990), V. Cherednichenko (1996), V. Isakov
(1990C, 1998), V. Ivanov, V. Vasin and V. Tanana (1978), M. Lavrentiev
(1967, 1973), A. Tikhonov and V. Arsenin (1977) and the original works
of T. Angell et al. (1987), 3. Cannon (1967), J. Cannon and W. 
dell (1987), V. Cherednichenko (1978), A. Friedman and B. Gustafsson
(1987), V. Isakov (1990a), A. Khaidarov (1986, 1987), 3.-L. Lions (1970),
A. Lorenzi and C. Pagani (1981), D. Orlovsky (1989), G. Pavlov (1978),
L. Payne (1975), M. Pilant and W. Rundell (1986b, 1987a), A. Prilepko
(1973a,b, 1974b), A. Ramm (1992), C. Roach (1991), N. Week (1972) 
many others. We cite below for deeper study two collections of additional
monographs and papers of Russian and foreign scientists whose achieve-
ments in potential theory and inverse problems for elliptic equations were
recognized. The first one includes M. Aleksidze (1987), V. Antonov 
al. (1988), P. Appel (1936), M. Brodsky (1990), S. Chandras~khar (1973),
V. Cherednichenko (1996), D. Colton et al. (1990), A. Friedman (1982),
N. Idel’s0n (1936), V. Isakov (1990c, 1998), D. Kinderlehrer and G. Stam-
pacchia (1980), M. Lavrentiev and B. Shabat (1973), L. Likhtenshtein
(1966), P. Pitsetti (1933), M. Sacai (1982, 1987), V. Starostenko (1978),
G. Talenti (1978), A. Tsirul’skii (1990), P. Vabishevich (1987), J. 
(1980), M. Zhdanov (1984) and D. Zidarov (1984). The second one 
tains D. Aharov and H. Shapiro (1976), D. Aharov et al. (1981), A. Alek-
seev and A. Chebotarev (1985), A. Alekseev and V. Cherednichenko (1982),
M. Atakhodzhaev (1966), P. Balk (1977), H. Bellot and A. Friedman (1988),
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E. Beretta and S. Vessella (1988), A. Bitsadze (1953), M. Brodsky 
N. Nadirashvili (1982a,b), M. Brodsky and E. Panakhov (1990), M. Brod-
~ky and V. Strakhov (1982, 1983, 1987), A. C£1deron (1980), V. Chered-
nichenko and G. Verjovkina (1992), A. Chudinova (1965a,b), Colli Fran-
zone et al. (1984), P. Dive (1931, 1932), V. Filatov (1969), A. 
man (1987), A. Gelmins (1957), C. Golizdra (1966), E. H61der (1932),
L. H6rmander (1976), V. Ivanov (1955, 1956a,b, 1958a,b, 1962), V. Ivanov
and A. Chudinova (1966), V. Ivanov and L. Kazakova (1963), A. 
enderov (1968), D. Kapanadze (1986), I. Kartisivadze (1963), M. Lavren-
tiev (1965), A. Loginov (1988), A. Lorenzi and C. Pagani (1981, 1987),
O. Oleinik (1949, 1952), Yu. Osipov and A. Korotkii (1992), C. Pagani
(1982), G. Pavlov (1975, 1976, 1982), D. Pinchon (1987), A. Prilepko 
1992, 1996), A. Prilepko and V. Cherednichenko (1981), A. Prilepko 
V. Sadovnichii (1996), V. Cherednichenko and S. Vessella (1993), C. 
pel (1973), M. Sacai (1978, 1987), J. Serrin (1971), V. Starostenko 
al. (1988), V. Strakhov (1972, 1973, 1974a,b, 1977), V. Strakhov 
M. Brodsky (1983a,b, 1984), P. Sulyandziga (1977), V. Tsapov (1989),
V. Vinokurov and V. Novak (1983), B. Voronin and V. Cherednichenko
(1981, 1983), G. Voskoboinikov and N. Nagankin (1969), L. Zalcman (1987)
and A. Zamorev (1941a,b).

Chapter 4 treats the system of Navier-Stokes equations capable of de-
scribing the motion of a viscous incompressible fluid. As we have mentioned
above, related direct problems for these equations have been examined by
many scientists. For more a detailed information on this subject the reader
can refer, in particular, to the monographs by O. Ladyzhenskaya (1970),
R. Temam (1979), P. Constantin and C. Foias (1988). In Section 4.1 
expound certain exploratory devices which may be of help in investigating
many inverse problems. It should be noted that the first statement of the
inverse problem for the system of Navier-Stokes equations was formulated
by A. Prilepko and D. Orlovsky (1987a). Additional information, that is,
the overdetermination condition in setting up the inverse problem is a re-
sult of the pointwise measurement, making it possible to assign the value
of the flux velocity at a fixed interior point in the domain of space variables
within a certain interval of time. This inverse problem was investigated by
means of methods of semigroup theory.

Section 4.2 deals with the inverse problem with the final overdeter-
mination for the linearized systems. The results we outlined there were
obtained by A. Prilepko and I. Vasin (1989a, 1990@ In the next section
the same linearized Navier-Stokes system arises in the inverse problem of
recovering a structure of time dependence for the external force function
having representation (4.3.1) with the subsidiary information in the form
of integral overdetermination. The material of this section is based on
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the works of A. Prilepko and I. Vasin (1989a), I. Vasin (1992b). We 
exploring in Sections 4.4-4.5 the inverse problem for the nonlinear Navier-
Stokes system with the final overdetermination both in the two-dimensional
and three-dimensional domains of space variables. The existence theorems
given in Section 4.4 have been proved by A. Prilepko and I. Vasin (1990b,c,
1991). In Section 4.5 we rely on the results obtained by A. Prilepko and
I. Vasin (1989b, 1991). Section 4.6 includes the inverse problem in which
the nonlinear Navier-Stokes system is accompanied by the integral overde-
termination, whose use permits us to recognize how the external force func-
tion depends on the time. The theorems of the solution existence and
uniqueness were established for this type of overdetermination. The pa-
per of I. Vasin (1993) is recommended for further development and deeper
study in this area. The nonlinear inverse problem of recovering the evo-
lution of a coefficient at the unknown function of velocity was completely
posed and examined in Section 4.7 in the light of the preceding results
of A. Prilepko and I. Vasin (1993). Section 4.8 reflects the contemporary
stage of research in connection with the inverse problem of the combined
recovery of two coefficients of the linearized Navier-Stokes system with
the integral overdetermination prescribed in the papers of I. Vasin (1995,
1996). Some other aspects of setting up and investigating inverse prob-
lems of hydrodynamics are covered by the developments of A. Chebotarev
(1995), A. Prilepko and I. Vasin (1990a, 1992), A. Prilepko, D. Orlovsky
and I. Vasin (1992), I. Vasin (1992a), Yu. Anikonov (1992), V. Kamynin
and I. Vasin (1992). Similar inverse problems associated with the Navier-
Stokes system emerged in several works on exact controllability (see, for
example, A. Fursikov and O. Imanuvilov (1994)).

Relevant results from functional analysis, operator theory and the
theory of differential equations in Banach spaces are given in Chapter 5.
All proofs of the main statements of Section 5.1 as well as a detailed
exposition of the foundations of functional analysis and operator theory
are outlined in textbooks and monographs by N. Akhiezer and I. Glaz-
man (1966), A. Balakrishnan (1976), G. Birkhoff (1967), N. Dunford 
3. Schwartz (1971a,b,c), R. Edwards (1965), E. Hille and R. Phillips (1957),
L. Kantorovich and G. Akilov (1977), T. Kato (1966), A. Kolmogorov
and S. Fomin (1968), M. Krasnoselskii et al. (1966), L. Lyusternik 
V. Sobolev (1982), A. Plesner (1965), F. Riesz and B. Sz.-Nagy (1972),
W. Rudin (1975), S. Sobolev (1988, 1989), tI. Schaefer (1974), L. Schwartz
(1950, 1951), V. Trenogin (1980), B. Vulikh (1967) and K. Yosida (1965).
The theory of differential equations of the first order in a Banach space
is discussed in Section 5.2. The preliminaries of such theory have been
appeared quite long time ago. A rapid development in this area over
recent years is due to A. Babin and M. Vishik (1989), C. Batty and
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D. Robinson (1984), A. Balakrishnan (1976), R. Beals and V. Protopescu
(1987), A. Belleni-Morante (1989), Ph. Cl6ment et al. (1987), E. 
(1980), H. Fattorini (1983), H. Gajewski et al. (1974), J. Goldstein (1985),
V. Gorbachuk and M. Gorbachuk (1984), D. Henry (1981), S. Krein (1967),
S. Krein and M. Khazan (1983), G. Ladas and V. Lakshmihanthan (1972),
J.-L. Lions (1961), S. Mizohata (1977), A. Pazy (1983), V. Vasiliev 
(1990), U. Vishik and O. Ladyzhenskaya (1956), K. Yosida (1965).

Section 5.3 is devoted to differential equations of the second order in
a Banach space. At the initial stage the theory of equations of the second
order was less advanced as compared with differential equations of the first
order. We are unaware of any textbook or monograph on this subject in the
modern literature. Much progress in this area has been achieved later and
reflected in the papers of H. Fattorini (1969a,b, 1985), J. Goldstein (1969),
J. Kisynski (1972), S. Kurepa.(1982), D. Lutz (1982), H. Serizawa 
M. Watanabe (1986), P. Sobolevsky and V. Pogorelenko (1967), M. 
(1966, 1975, 1977), C. Travis and G. Webb (1978), V. Vasiliev et al. (1990)
and S. Yakubov (1985).

Section 5.4 is connected with the theory of differential equations with
variable coefficients. The subject of investigation is relatively broad and
the reader may confine yourself to the results of A. Fisher and J. Mars-
den (1972), H. Fattorini (1983), H. Gajewski et al. (1974), M. Gil (1987),
D. Henry (1981), T. Kato (1953, 1956, 1961, 1970, 1973, 1975a,b, 1982),
J.-L. Lions (1961), F. Lomovtsev and M. Yurchuk (1976), S. Mizohata
(1977), P. Sobolevsky (1961), P. Sobolevsky and V. Pogorelenko (1967),
H. Tanabe (1960), S. Yakubov (1970) and K. Yosida (1956, 1963).

In this book we outline only those abstract problems for equations
with variable operator coefficients which are essential for subsequent appli-
cations. Section 5.5 includes boundary value problems for abstract elliptic
equations. A detailed overview of relevant results obtained for elliptic equa-
tions is available in A. Balakrishnan (1960), S. Krein and G. Laptev (1962,
1966a,b), G. Laptev (1968), P. Sobolevsky (1968) and V. Trenogin (1966).

In Section 6.1 some tools of applying the theory of abstract differential
equations are aimed at solving direct and inverse problems in mathematical
physics. For the first time this technique was used by A. Iskenderov and
R. Tagiev (1979) with regard to the inverse problem for the heat conduction
equation (6.1.1), (6.1.11), (6.1.12)involving the function (~(x,t) = 1. Ad-
vanced theory of abstract inverse problems was mainly connected with this
problem due to Yu. Eidelman (1983, 1987), D. Orlovsky (1988), A. Prilepko
and D. Orlovsky (1987), W. Rundell (1980). Historically, the abstract 
verse problem supplied by conditions (6.1.3)-(6.1.4) came next. However,
this problem was initially considered not for the heat conduction equation,
but for symmetric hyperbolic systems of the first order (see D. Orlovsky
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(1984)). Later the theory of abstract inverse problems w~s well-developed
by Yu. Eidelman (1990, 1991, 1993a,b), A. Egorov (1978), M. Grasselli
(1992), g. Grasselli et al. (1990, 1992), A. Lorenzi (1988), A. Lorenzi 
n. Prilepko (1993), n. Lorenzi and E. Sinestrari (1986, 1987), D. Orlovsky
(1989, 1990, 1991a,b,c,d, 1992a, b, 1994), A. Prilepko and D. Orlovsky
(1984, 1985a,b,c, 1987, 1988, 1989, 1991), A. Prilepko and I. Tikhonov
(1992, 1993, 1994), A. Prilepko et al. (1992a,b), I. Tikhonov (1992, 1995),
I. Tikhonov and Yu. Eidelman (1994).

The linear inverse problem with smoothing overdetermination was
studied in Section 6.2. The concept of its weak solution introduced by
D. Orlovsky (1991a) permits one to solve this problem under the minimum
restrictions on the input data. Under such an approach the existence of
smooth solutions can be established by means of weak solutions of related
problems "in variations". Later the result.s of Section 6.2 are being used
in generalized form in Sections 6.3 and 6.4 to cover on the same footing
the case of a semilinear equation. The papers of D. Orlovsky (1991a),
A. Prilepko and D. Orlovsky (1984, 1985a,b,c, 1987, 1988, 1989, 1991),
A. Prilepko and I. Tikhonov (1992) are devoted to the mathematical ap-
paratus adopted in this area. In Section 6.5 we study quasilinear parabolic
equations by means of the method of solving direct problems ascribed to
P. Sobolevsky (1961). The same approach to inverse problems is adopted
in the work of D. Orlovsky (1991b). Section 6.6 is devoted to semilinear
equations with variable operator coefficients and singular overdetermina-
tion and is based on the results of A. Prilepko and D. Orlovsky (1991).
The remaining part of Chapter 6 deals with equations of hyperbolic type.
In Sections 6.7 and 6.8 we consider one class of abstract equations which
are associated in applications with hyperbolic systems of the first order.
Section 6.7 involves a smoothing overdetermination, while Section 6.8 - a
singular one. In Section 6.9 we are concerned with an abstract equation
corresponding in applications to those systems of the first order to which
hyperbolic equations of the second order can amount.

Chapter 7 deals with two-point inverse problem (7.1.1)-(7.1.4) for 
linear differential equation in a Banach space X, where an element p E X
is sought. Just this statement of an inverse problem provides sufficient
background for applying the methods of the theory of abstract differential
equations to the exploration of inverse problems in mathematical physics.
This problem was first considered by A. Iskenderov and R. Tagiev (1979)
by appeal to the operator function O(t) -- I. In this paper the explicit
formula (7.1.33) was established under the condition that the operator
V(T) - is invertible. As a matter of fact, the sameresult was obtai ned
by W. Rundell (1980), where the semigroup V(t) was supposed to be expo-
nentially decreasing. As the outcome of restrictions arising from these two
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papers one should take for granted that the operator A is invertible. In
the paper of Yu. Eidelman (1983) it was supposed with regard to problem’
(7.1.1)-(7.1.4) that ¢(t) _= I and the semigroup is analytic, that is, 
case of a parabolic equation occurred. It is worth mentioning here that
problem (7.1.1)-(7.1.4) may be well-posed even if the operator A is 
invertible. We refer the reader to the work of A. Prilepko and D. Orlovsky
(1987) where the unique solvability of problem (7.1.1)-(7.1.4) was 
for ¢(t) _= I and the operator A for which ~ = 0 is one of the eigenvMues 
finite multiplicity. A final answer concerning a well-posedness of problem
(7.1.1)-(7.1.4) with O(t) ~ I is known from the paper of Yu. Eidelman
(1990) in which necessary and sufficient conditions of both uniqueness and
existence of the solution to an equation with an arbitrary strongly con-
tinuous semigroup. In particular, a solution is unique if and only if the
spectrum of the operator A contains no points of the type 2 ~r i k/T, where
k is integer, k :/: 0, and i is the imaginary unit. The solvability condi-
tion is expressed in terms of Cesaro summability of series composed by
solutions of resolvent equations. The results outlined in Section 7.2 for
problem (7.2.1)-(7.2.4) with the scalar function ¢P and the self-adjoint 
erator were obtained by D. Orlovsky (1990). The reference to the paper 
Yu. Eidelman (1991) is needed in this context. In this paper the function
¯ is scalar and the operator A generates a semigroup V(t), which is contin-
uous for t > 0 in a uniform operator topology of the space £(X) as well as
necessary and sufficient conditions are established for the inverse problem
to be uniquely solvable under any admissible input data. These condi-
tions include the constraint ~(T) ¢ 0 and the requirement that function
(7.2.8) has no zeroes on the spectrum of the operator A. The theorem 
Fredholm-type solvability of the inverse problem (7.1.1)-(7.1.4) was proved
by D. Orlovsky (1988, 1990).

The inverse problem (7.3.3)-(7.3.5) in a Banach lattice was investi-
gated by D. Orlovsky (1994), A. Prilepko and I. Tikhonov (1993, 1994),
A. Prilepko et al. (1992), I. Tikhonov (1995). The proof of Theorem 7.3.1
was carried out following the paper of A. Prilepko and I. Tikhonov (1994)
with minor changes and involving a new, more general than (7.1.4), type
of overdetermination:

T

J d (t) ,
0

where # is a function of bounded variation.
In Chapter 8 we touch upon abstract inverse problems for equations of

the second order in a Banach space. As stated above, the theory of abstract
inverse problems began by equations of the first order. The study of equa-
tions of the second order was initiated by D. Orlovsky (1989), A. Prilepko
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and D. Orlovsky (1989) and was continued by D. Orlovsky (1990, 1991a,d,
’1992a) and G. Pavlov (1988). As in the case of first order equations we 
prove here two basic settings when the subsidiary information is provided
either by condition (8.1.3) or conditions of the type (8.2.3), (8.3.2). In 
tion 8.1 we consider the overdetermination of the first type with regard to
a semilinear hyperbolic equation. The basic tool here is connected with the
theory of abstract cosine functions whose role for second order equations
is identical to that played by semigroup theory for first order equations.
Section 8.2 presents two-point inverse problems for equations of hyperbolic
type. In Section 8.3 two-point problems are viewed within the framework
of elliptic equations. In conclusion we note that all of the main results of
Chapter 8 were obtained by D. Orlovsky (1989, 1990, 1991a,d, 1992a), 
Prilepko and D. Orlovsky (1989).

Chapter 9 offers one possible way of applying the theory of abstract
inverse problems to equations of mathematical physics. Section 9.1 deals
with symmetric hyperbolic systems. General information about hyperbolic
systems and methods of solving them is available in textbooks and mono-
graphs by R. Courant and D. Hilbert (1953), S. Godunov (1971), S. 
zohata (1977), B. Rozhdestvensky and N. Yanenko (1978) as well as 
research papers by A. Fischer and J. Marsden (1972), K. Friedrichs (1944,
1954, 1958), T. Kato (1970, 1973, 197ha,b, 1982), P. Lax and R. Phillips
(1960), D. Ludwig (1960), E. Massey (1972), S. Mizohata (1959a,b) 
R. Phillips (1957). We refer the reader for deeper study of hyperbolic sys-
tems by the method of abstract differential equations to T. Kato (1970,
1973, 197ha,b, 1982), P. Lax and R. Phillips (1960), E. Massey (1972), 
Mizohata (1959a,b, 1977) and R. Phillips (1957).

Section 9.1 continues to develop the approach of T. Kato (1970, 1973)
and E. Massey (1972). The study of inverse problems for hyperbolic sys-
tems was initiated by V. Romanov and L. Slinyucheva (1972). Various
statements of inverse problems associated with hyperbolic systems and an
extensive literature on this subject are reviewed in the papers of S. Belin-
sky (1976), M. Lavrentiev et al. (1969), D. Orlovsky (1984), A. Prilepko
(1973), A. Prilepko and D. Orlovsky (1985a), A. Prilepko et ah (19925)
and V. Romanov (1978a,b,c,d). Some overview of the semigroup approach
to inverse problems can be found in D. Orlovsky (1984), A. Prilepko and
D. Orlovsky (1984, 1985a, 1989).

Section 9.2 deals with a linear second order equation of hyperbolic
type. In preparation for this, our approach amounts to reducing a second
order equation to a first order system and adopting the tool developed by
M. Ikawa (1968). An alternative scheme is based on the theory of abstract
cosine functions. This scheme is not applicable in Section 9.2. It is worth
noting here that the paper of J. Kisynski (1972) establishes an equivalence
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between the method of cosine functions and the method of reduction to
a first order system in applications to abstract differential equations of
the second order with constant operator coefficients. An extensive liter-
ature on inverse problems for hyperbolic systems of the second order is
reviewed in A. Bukhgeim (1988), M. Lavrentiev et al. (1969), D. Orlovsky
(1989, 1991a), A. Prilepko (1973), A. Prilepko and D. Orlovsky (1985a,b,c),
V. Romanov (1978b). The applications of the abstract method to the in-
verse problems concerned are discussed in A. Amirov (1986), D. Orlovsky
(1989, 1990, 1991a,d, 1992a,b), A. Prilepko and I.Tikhonov (1993).

Section 9.3 is devoted to a system of differential equations from elas-
ticity theory where the coefficients satisfy only the conditions of symmetry,
positive definiteness and smoothness. A good look at the system of elas-
ticity theory as an abstract differential equation in a Banach space is due
to G. Duvaut and J.-L. Lions (1972), E. Sanchez-Palencia (1980). For 
purposes of the current study it was expedient to use some technique of
abstract cosine functions. To make our exposition more complete, it is
necessary to point out several other works where the inverse problems of
interest were investigated by the methods of the theory of abstract differ-
ential equations: A. Prilepko and D. Orlovsky (1985c, 1989), A. Prilepko
et al. (1992b).

Section 9.4 deals with a second order equation of parabolic type. The
theory of parabolic equations as a part of the general theory of partial
differential equations is the most broad and advanced. For an overview
of this subject we refer the reader to H. Amann (1986, 1987), R. Courant
and D. I-Iilbert (1953, 1962), S. Eidelman (1964), H. Fattorini (1983),
A. Friedman (1964), D. Henry (1981), T. Kato (1961), S. Krein (1967),
O. Ladyzhenskaya et al. (1968), S. Mizohata (1977), P. Sobolevsky (1961),
M. Solomyak (1960) and V. Vladimirov (1971).

The theory of inverse problems for parabolic equations is also well-
developed. For more detail the reader can see a. Cannon (1968),
M. Lavrentiev et al. (1969), D. Orlovsky (1991b, 1992b, 1994), A. Prilepko
(1973), A. Prilepko and D. Orlovsky (1985b,c, 1991), A. Prilepko 
I. Tikhonov (1993, 1994), A. Prilepko et al. (1992a), W. Rundell (1980).
It is worth mentioning here the works where inverse problems for par-
abolic equations are purely treated on the basis of abstract methods:
Yu. Eidelman (1983, 1987, 1990, 1991, 1993a,b), A. Iskenderov and R.
Tagiev (1979), D. Orlovsky (1988, 1990, 1991b,c, 1992b, 1994), A. Prilepko
and D. Orlovsky (1985b,c, 1989, 1991), A. Prilepko and I. Tikhonov (1993,
1994), A. Prilepko et al. (1992a,b), I. Tikhonov (1995) and W. Rundell
(1980).

Section 9.5 deals with the equation of neutron transport. A classical
theory for this equation is available in K. Case and P. Zweifel (1963, 1972),
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C. Cercignani (1975), T. Germogenova (1986), V. Vladimirov (1961).
A new semigroup approach to this equation was developed by S.

bertoni and B. Montagnini (1966), R. Beals and V. Protopescu (1987),
H. Hejtmanek (1970), K. Jorgens (1968), 3. Lehner and G. Wing (1955),
C. Lekkerkerker and H. Kaper (1986), M. Ribaric (1973), R. Richtmyer
(1978), S. Shikhov (1967, 1973), I. Vidav (1968, 1970), 3. Voight (1984),
G. Wing (1962), P. Zweifel and E. Larsen (1975). Inverse problems for 
transport equation under this approach were considered by A. Prilepko and
D. Orlovsky (1985b), A. Prilepko and I. Tikhonov (1992), A. Prilepko 
al. (1992b), I. Tikhonov (1995).

Section 9.6 is devoted to the linearized Bolzman equation. A solu-
tion to this equation describes a distribution of rarefied gas particles with
respect to coordinates and velocities. Some general information about
the Bolzman equation is available in A. Arseniev (1965), C. Cercignani
(1975), O. Lanford et al. (1983), N. Maslova (1978, 1985). Both works 
3.-P.Guirand (1970, 1978) continue to develop this semigroup approach 
this area. The main results of Section 9.6 are taken from the papers of A.
Prilepko and D. Orlovsky (1987, 1988).

In Section 9.7 we consider the system of Navier-Stokes equations de-
scribing the motion of a viscous incompressible fluid. The basic properties
of its solutions are described in O. Ladyzhenskaya (1970) and R. Temam
(1979). A new semigroup approach to solving direct problems for this sys-
tem began by investigations of H. Fujita and T. Kato (1964), T. Kato and
H. Fujita (1962). For inverse problems for Navier-Stokes equations we refer
the reader to V. Kamynin and I. Vasin (1992), A. Prilepko and D. Orlovsky
(1985c), A. Prilepko and I. Vasin (1989a,b, 1990a,b,c, 1991, 1992, 1993),
A. Prilepko et al. (1992b), I. Vasin (1992, 1993, 1995, 1996).

Under a semigroup approach inverse problems for Navier-Stokes equa-
tions were treated in the paper of A. Prilepko and D. Orlovsky (1985c).

Section 9.8 deals with the system of Maxwell equations which has
been under consideration within the semigroup framework in E. Bykhovsky
(1957), G. Duvaut and J.-L. Lions (1972), R. Richtmyer (1978). In 
section one inverse problem is resolved following the approach ofA. Prilepko
and D. Orlovsky (1989, 1991).
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compact, 307
completely continuous, 307
continuous, 304
contracting, 63
elliptic differential, 7
evolution, 356, 442, 459, 478
identity, 305

[Operator]
integration, 80
inverse, 305
invertible, 305
isotonic, 25, 57
Laplace, 37, 376
linear, 304
nonlinear, 310
positive, 515
reflection, 616
self-adjoint, 307
Stokes, 217
Sturm-Liouville, 38
substitution, 336
uniformly elliptic, 7

Operator function:
strongly continuous, 319
strongly continuously

differentiable, 320
Order segment, 25
Orthogonal complement, 303
Orthogonal decomposition, 303
Orthogonal projector, 303
Overdetermination:

final, 34, 54, 210, 230, 379, 490,
596

integral, 60, 221,226, 255,268,
282, 583,587, 594, 608, 641

pointwise, 69, 581
singular, 416, 449

Perfect conductor, 637
Perrne~ability:

diel~ctric,~37
magnetic, 637

Potential:
magnetic, 171
power, 623
volume mass, 126
simple layer, 126

Principle of uniform boundedness,
305
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Problem in variations, 391

Radius of convergence, 328
Regime of oscillations, 592
Relation:

asymptotic, 445
energy, 215
Gauss-Ostrogradsky, 124
partial ordering, 514

Resolvent, 305, 332, 335, 363
Resolvent set, 305

Semigroup:
analytic, 340
compact, 499, 597
contraction, 495
exponentially decreasing, 495
positive, 515,598
strongly continuous, 331

Semigroup generator, 332
Series:

Fourier, 39, 303
Neumann, 79, 310

Smoothing effect, 379, 382, 440,
459, 477, 587

Sobolev’s embedding theory, 6
Solution:

classical, 339, 366
continuous, 382, 395
fundamental, 125
generalized, 20, 28, 34, 60
explicit, 66
strong, 330, 339, 341-342, 357,

359, 382
weak, 11,330, 339, 342, 357,361

Space:
Banach, 3, 4, 301
dual, 306
"energy", 11
Euclidean, 302
Hilbert, 3,303
Holder, 4

[Space]
normal vector, 304
normed, 300
Sobolev, 3, 4
vector, 299

"Spatial" smoothness, 335
Spectral decomposition, 316
Spectral radius, 306, 370
Spectral resolution, 502
Spectral type, 504
Spectrum, 305, 314

continuous, 306
discrete, 508
point, 306
residual, 306
simple, 504

Square root, 365
Stress tensor, 592
Subspace, 300
Successive approximation, 310, 435
Supersolution, 22
Symmetric difference, 162
System:

first order, 72
t-hyperbolic, 88
x-hyperbolic, 72

Theorem:
Banach on inverse, 314
Banach-Steinhaus, 304
Birkhoff-Tarsky, 25
closed graph, 314
Hilbert-Schmidt, 308
Hille-Phillips-Yosida-Miyadera,

331
open mapping, 314
Rellich, 7
Riesz, 306

Thermodynamic equilibrium, 617
Two-point inverse problem, 489, 501
Type:

hyperbolic, 358, 477
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[Type]
parabolic, 361,439

Volterra equation:
first kind, 69, 321
nonlinear, 325

[Volterra equation]
second kind, 69, 321,353,386

Weak principle of maximum, 9
Wronskian, 117




