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Preface

The theory of inverse problems for differential equations is being ex-
tensively developed within the framework of mathematical physics. In the
study of the so-called direct problems the solution of a given differential
equation or system of equations is realised by means of supplementary con-
ditions, while in inverse problems the equation itself is also unknown. The
determination of both the governing equation and its solution necessitates
imposing more additional conditions than in related direct problems.

The sources of the theory of inverse problems may be found late in the
19th century or early 20th century. They include the problem of equilibrium
figures for the rotating fluid, the kinematic problems in seismology, the
inverse Sturm-Liuville problem and more. Newton’s problem of discovering
forces making planets move in accordance with Kepler’s laws was one of the
first inverse problems in dynamics of mechanical systems solved in the past.
Inverse problems in potential theory in which it is required to determine
the body’s position, shape and density from available values of its potential
have a geophysical origin. Inverse problems of electromagnetic exploration
were caused by the necessity to elaborate the theory and methodology of
electromagnetic fields in investigations of the internal structure of Earth’s
crust.

The influence of inverse problems of recovering mathematical physics
equations, in which supplementary conditions help assign either the values
of solutions for fixed values of some or other arguments or the values of cer-
tain functionals of a solution, began to spread to more and more branches
as they gradually took on an important place in applied problems arising
in “real-life” situations. From a classical point of view, the problems under
consideration are, in general, ill-posed. A unified treatment and advanced
theory of ill-posed and conditionally well-posed problems are connected
with applications of various regularization methods to such problems in
mathematical physics. In many cases they include the subsidiary infor-
mation on the structure of the governing differential equation, the type of
its coefficients and other parameters. Quite often the unique solvability
of an inverse problem is ensured by the surplus information of this sort.
A definite structure of the differential equation coeflicients leads to an in-
verse problem being well-posed from a common point of view. This book
treats the subject of such problems containing a sufficiently complete and
systematic theory of inverse problems and reflecting a rapid growth and
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iv Preface

development over recent years. It is based on the original works of the
authors and involves an experience of solving inverse problems in many
branches of mathematical physics: heat and mass transfer, elasticity the-
ory, potential theory, nuclear physics, hydrodynamics, etc. Despite a great
generality of the presented research, it is of a constructive nature and gives
the reader an understanding of relevant special cases as well as providing
one with insight into what is going on in general.

In mastering the challengés involved, the monograph incorporates the
well-known classical results for direct problems of mathematical physics
and the theory of differential equations in Banach spaces serving as a basis
for advanced classical theory of well-posed solvability of inverse problems
for the equations concerned. It is worth noting here that plenty of inverse
problems are intimately connected or equivalent to nonlocal direct problems
for differential equations of some combined type, the new problems arising
in momentum theory and the theory of approximation, the new types of

" linear and nonlinear integral and integro-differential equations of the first
and second kinds. In such cases the well-posed solvability of inverse prob-
lem entails the new theorems on unique solvability for nonclassical direct
problems we have mentioned above. Also, the inverse problems under con-
sideration can be treated as problems from the theory of control of systems
with distributed or lumped parameters.

It may happen that the well-developed methods for solving inverse
problems permit. one to establish, under certain constraints on the input
data, the property of having fixed sign for source functions, coefficients and
solutions themselves. If so, the inverse problems from control theory are
in principal difference with classical problems of this theory. These special
inverse problems from control theory could be more appropriately referred
to as problems of the “forecast-monitoring” type. The property of having
fixed sign for a solution of “forecast-monitoring” problems will be of crucial
importance in applications to practical problems of heat and mass transfer,
the theory of stochastic diffusion equations, mathematical economics, var-
ious problems of ecology, automata control and computerized tomography.
In many cases the well-posed solvability of inverse problems is established
with the aid of the contraction mapping principle, the Birkhoff-Tarsky
principle, the Newton-Kantorovich method and other effective operator
methods, making it possible to solve both linear and nonlinear problems
following constructive iterative procedures.

The monograph covers the basic types of equations: elliptic, parabolic
and hyperbolic. Special emphasis is given to the Navier—Stokes equations as
well as to the well-known kinetic equations: Bolzman equation and neutron
transport equation.

Being concerned with equations of parabolic type, one of the wide-
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spread inverse problems for such equations amounts to the problem of de-
termining an unknown function connected structurally with coefficients of
the governing equation. The traditional way of covering this is to absorb
some additional information on the behavior of a solution at a fixed point
u(Zo,t) = ¢(t). In this regard, a reasonable interpretation of problems with
the overdetermination at a fixed point is approved. The main idea behind
this approach is connected with the control over physical processes for a
proper choice of parameters, making it possible to provide at this point a
required temperature regime. On the other hand, the integral overdeter-
mination

[ utetyu(e) do = ptt),
Y]

where w and ¢ are the known functions and u is a solution of a given par-
abolic equation, may also be of help in achieving the final aim and comes
first in the body of the book. We have established the new results on
uniqueness and solvability. The overwhelming majority of the Russian and
foreign researchers dealt with such problems merely for linear and semi-
linear equations. In this book the solvability of the preceding problem is
revealed for a more general class of quasilinear equations. The approximate
methods for constructing solutions of inverse problems find a wide range
of applications and are gaining increasing popularity.

One more important inverse problem for parabolic equations is the
problem with the final overdetermination in which the subsidiary informa-
tion is the value of a solution at a fixed moment of time: u(z,T) = ¢(z).
Recent years have seen the publication of many works devoted to this
canonical problem. Plenty of interesting and profound results from the
explicit formulae for solutions in the simplest cases to various sufficient
conditions of the unique solvability have been derived for this inverse prob-
lem and gradually enriched the theory parallel with these achievements.
We offer and develop a new approach in this area based on properties of
Fredholm’s solvability of inverse problems, whose use permits us to estab-
lish the well-known conditions for unique solvability as well.

It is worth noting here that for the first time problems with the in-
tegral overdetermination for both parabolic and hyperbolic equations have
been completely posed and analysed within the Russian scientific school
headed by Prof. Aleksey Prilepko from the Moscow State University. Later
the relevant problems were extensively investigated by other researchers in-
cluding foreign ones. Additional information in such problems is provided
in the integral form and admits a physical interpretation as a result of mea-
suring a physical parameter by a perfect sensor. The essense of the matter
is that any sensor, due to its finite size, always performs some averaging of
a measured parameter over the domain of action.
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Similar problems for equations of hyperbolic type emerged in theory
and practice. They include symmetric hyperbolic systems of the first order,
the wave equation with variable coefficients and the system of equations
in elasticity theory. Some conditions for the existence and uniqueness of a
solution of problems with the overdetermination at a fixed point and the
integral overdetermination have been established.

Let us stress that under the conditions imposed above, problems with
the final overdetermination are of rather complicated forms than those in
the parabolic case. Simple examples help motivate in the general case the
absence of even Fredholm’s solvability of inverse problems of hyperbolic
type. Nevertheless, the authors have proved Fredholm’s solvability and
established various sufficient conditions for the existence and uniqueness of
a solution for a sufficiently broad class of equations.

Among inverse problems for elliptic equations we are much interested
in inverse problems of potential theory relating to the shape and density
of an attracting body either from available values of the body’s external or
internal potentials or from available values of certain functionals of these
potentials. In this direction we have proved the theorems on global unique-
ness and stability for solutions of the aforementioned problems. Moreover,
inverse problems of the simple layer potential and the total potential which
do arise in geophysics, cardiology and other areas are discussed. Inverse
problems for the Helmholz equation in acoustics and dispersion theory are
completely posed and investigated. For more general elliptic equations,
problems of finding their sources and coeflicients are analysed in the situa-
tion when, in addition, some or other accompanying functionals of solutions
are specified as compared with related direct problems.

In spite of the fact that the time-dependent system of the Navier—
Stokes equations of the dynamics of viscous fluid falls within the category
of equations similar to parabolic ones, separate investigations are caused
by some specificity of its character. The well-founded choice of the inverse
problem statement owes a debt to the surplus information about a solu-
tlon as supplementary to the initial and boundary conditions. Additional
information of this sort is capable of describing, as a rule, the indirect
manifestation of the liquid motion characteristics in question and admits
plenty of representations. The first careful analysis of an inverse prob-
lem for the Navier—Stokes equations was carried out by the authors and
provides proper guidelines for deeper study of inverse problems with the
overdetermination at a fixed point and the same of the final observation
conditions. This book covers fully the problem with a perfect sensor in-
volved, in which the subsidiary information is prescribed in the integral
form. Common settings of inverse problems for the Navier-Stokes system
are similar to parabolic and hyperbolic equations we have considered so
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far and may also be treated as control problems relating to viscous liquid
motion.

The linearized Bolzman equation and neutron transport equation are
viewed in the book as particular cases of kinetic equations. The linearized
Bolzman equation describes the evolution of a deviation of the distribution
function of a one-particle-rarefied gas from an equilibrium. The statements
of inverse problems remain unchanged including the Cauchy problem and
the boundary value problem in a bounded domain. The solution existence
and solvability are proved. The constraints imposed at the very beginning
are satisfled for solid sphere models and power potentials of the particle
interaction with angular cut off.

For a boundary value problem the conditions for the boundary data
reflect the following situations: the first is connected with the boundary
absorption, the second with the thermodynamic equilibrium of the bound-
ary with dissipative particles dispersion on the border. It is worth noting
that the characteristics of the boundary being an equilibria in thermody-
namics lead to supplementary problems for investigating inverse problems
with the final overdetermination, since in this case the linearized collision
operator has a nontrivial kernel. Because of this, we restrict ourselves to
the stiff interactions only.

Observe that in studying inverse problems for the Bolzman equa-
tion we employ the method of differential equations in a Banach space.
The same method is adopted for similar problems relating to the neutron
transport. Inverse problems for the transport equation are described by
inverse problems for a first order abstract differential equation in a Ba-
nach space. For this equation the theorems on existence and uniqueness
of the inverse problem solution are proved. Conditions for applications
of these theorems are easily formulated in terms of the input data of the
initial transport equation. The book provides a common setting of in-
verse problems which will be effectively used in the nuclear reactor the-
ory.

Differential equations in a Banach space with unbounded operator
coefficients are given as one possible way of treating partial differential
equations. Inverse problems for equations in a Banach space correspond to
abstract forms of inverse problems for partial differential equations. The
method of differential equations in a Banach space for investigating various
inverse problems is quite applicable. Abstract inverse problems are consid-
ered for equations of first and second orders, capable of describing inverse
problems for partial differential equations.

It should be noted that we restrict ourselves here to abstract inverse
problems of two classes: inverse problems in which, in order to solve the
differential equation for wu(t), it is necessary to know the value of some
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operator or functional Bu(t) = ¢(t) as a function of the argument ¢, and
problems with pointwise overdetermination: u(T) = u,.

For the inverse problems from the first class (problems with evolution
overdetermination) we raise the questions of existence and uniqueness of a
solution and receive definite answers. Special attention is being paid to the
problems in which the operator B possesses some smoothness properties.
In context of partial differential equations, abstract inverse problems are
suitable to problems with the integral overdetermination, that is, for the
problems in which the physical value measurement is carried out by a per-
fect sensor of finite size. For these problems the questions of existence and
uniqueness of strong and weak solutions are examined, and the conditions
of differentiability of solutions are established. Under such an approach the
emerging equations with constant and variable coefficients are studied.

It is worth emphasizing here that the type of equation plays a key
role in the case of equations with variable coefficients and, therefore, its
description is carried out separately for parabolic and hyperbolic cases.
Linear and semilinear equations arise in the hyperbolic case, while parabolic
equations include quasilinear ones as well. Semigroup theory is the basic
tool adopted in this book for the first order equations. Since the second
order equations may be reduced to the first order equations, we need the
relevant elements of the theory of cosine functions.

A systematic study of these problems is a new original trend initiated
and well-developed by the authors.

The inverse problems from the second class, from the point of pos-
sible applications, lead to problems with the final overdetermination. So
far they have been studied mainly for the simplest cases. The authors be-
gan their research in a young and growing field and continue with their
pupils and colleagues. The equations of first and second orders will be of
great interest, but we restrict ourselves here to the linear case only. For
second order equations the elliptic and hyperbolic cases are extensively in-
vestigated. Among the results obtained we point out sufficient conditions
of existence and uniqueness of a solution, necessary and sufficient condi-
tions for the existence of a solution and its uniqueness for equations with a
self-adjoint main part and Fredholm’s-type solvability conditions. For dif-
ferential equations in a Hilbert structure inverse problems are studied and
conditions of their solvability are established. All the results apply equally
well to inverse problems for mathematical physics equations, in particu-
lar, for parabolic equations, second order elliptic and hyperbolic equations,
the systems of Navier-Stokes and Maxwell equations, symmetric hyper-
bolic systems, the system of equations from elasticity theory, the Bolzman
equation and the neutron transport equation.

The overview of the results obtained and their relative comparison
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are given in concluding remarks. The book reviews the latest discoveries
of the new theory and opens the way to the wealth of applications that it
is likely to embrace.

In order to make the book accessible not only to specialists, but also
to students and engineers, we give a complete account of definitions and
notions and present a number of relevant topics from other branches of
mathematics.

It is to be hoped that the publication of this monograph will stimulate
further research in many countries as we face the challenge of the next
decade.

Aleksey 1. Prilepko
Dmitry G. Orlovsky
Igor A. Vasin
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Chapter 1

Inverse Problems for Equations

of Parabolic Type

1.1 Preliminaries

In this section we give the basic notations and notions and present also
a number of relevant topics from functional analysis and the general the-
ory of partial differential equations of parabolic type. For more detail we
recommend the well-known monograph by Ladyzhenskaya et al. (1968).
The symbol €2 is used for a bounded domain in the Euclidean space

R™ z = (2,,...,,) denotes an arbitrary point in it. Let us denote by
Qr a cylinder  x (0,7T) consisting of all points (z,t) € R*™! with z € Q
and t € (0,T).

Let us agree to assume that the symbol 0 is used for the boundary
of the domain  and St denotes the lateral area of Q7. More specifically,
Sr is the set 9Q x [0, T] € R™*! consisting of all points (z,t) with z € Q
and t € [0, T7.

In alimited number of cases the boundary of the domain €2 is supposed
to have certain smoothness properties. As a rule, we confine our attention
to domains 2 possessing piecewise-smooth boundaries with nonzero interior

angles whose closure ) can be represented in the form Q = UT,Q; for

1



2 1. Inverse Problems for Equations of Parabolic Type

QNQ; =2, i # j, and every O can homeomorphically be mapped onto
a unit ball (a unit cube) with the aid of functions ¥¥(z), i = 1,2,... ,n;
k = 1,2,...,m, with the Lipschitz property and the Jacobians of the

transformations
ok
Oz

are bounded from below by a positive constant.

We say that the boundary 09 is of class C', I > 1, if there exists a
number p > 0 such that the intersection of 0X2 and the ball B, of radius p
with center at an arbitrary point z° € 89 is a connected surface area which
can be expressed in a local frame of reference (§;,&,, ... ,&,) with origin at
the point z° by the equation &, = w(&;, ... ,€,_1), where w(&;,...,&,_,)
is a function of class C' in the region D constituting the projection of D
onto the plane £, = 0. We will speak below about the class C'(D).

We expound certain exploratory devices for investigating inverse prob-
lems by using several well-known inequalities. In this branch of mathemat-
ics common practice involves, for example, the Cauchy inequality

n 2 , . 1/2
S(E aijfifj) (Z aijﬂiﬂj) ,
i 1

i, = 1,5=1

n

Z a;; & U

i,j=1

which is valid for an arbitrary nonnegative quadratic form a;; §; 7; with
a;; = a;; and arbitrary real numbers ¢;,...,§, and n,...,n,. This is
especially true of Young’s inequality

1

(1.1.1) ab < ! P af + - 67909,
' p q

which is more general than the preceding and is valid for any positive a, b,

6 and p, ¢ > 1.
In dealing with measurable functions u(z) defined in Q we will use

also Holder’s inequality
s 1/)\k
< ( [ 1u@ep dx) ,

8

(1.1.2) /H uy(z) dz
Q k=1 k=1 \gq
8
A > 1, S oAt =1.
k=1

In the particular case where s = 2 and A\; = Ay = 2 inequality (1.1.2) is
known as the Cauchy-Schwartz inequality.
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Throughout this section, we operate in certain functional spaces, the
elements of which are defined in  and Q7. We list below some of them. In
what follows all the functions and quantities will be real unless the contrary
is explicitly stated.

The spaces Ly(2), 1 < p < oo, being the most familiar ones, come
first. They are introduced as the Banach spaces consisting of all measurable
functions in Q that are p-integrable over that set. The norm of the space

Ly(Q) is defined by
i/p
Nulpo=( [ 1u@p) "
Q

It is worth noting here that in this chapter the notions of measurability
and integrability are understood in the sense of Lebesgue. The elements of
Ly(Q) are the classes of equivalent functions on Q.

When p = oo the space Lo, (£2) comprises all measurable functions in
2 that are essentially bounded having

Ftllco, = ess sup u(z) |-

We obtain for p = 2 the Hilbert space Ly(Q) if the scalar product
in that space is defined by

(u,v) = / w(z) v(z) dz .

Q

The Sobolev spaces W;(Q), where [ is a positive integer, 1 < p < oo,
consists of all functions from L,(£2) having all generalized derivatives of the
first [ orders that are p-integrable over Q. The norm of the space W;(Q)
is defined by

I 1/p
||u||,£l,)n:(k > ||Dg“||;,n) )

=0 |a|=k
where @ = (y,...,,) is a multiindex, |o| =a; + @y + - + @,
oty
Dju =

Oz{* 0z3? ... 0z2»

and )7, =) denotes summation over all possible ath derivatives of w.
Generalized derivatives are understood in the sense of Sobolev (see
the definitions in Sobolev (1988)). For o = 1 and & = 2 we will write, as
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usual, uy and ugy, respectively, instead of D, u and D2 u. This should not
cause any confusion.

It is fairly common to define the space V%/% () as a subspace of W1(Q)
in which the set of all functions in Q that are infinite differentiable and
have compact support is dense. The function u(z) has compact support in
a bounded domain € if u(z) is nonzero only in a bounded subdomain
of the domain 2 lying at a positive distance from the boundary of €.

When working in Holder’s spaces C*(Q) and C'**(Q), we will as-
sume that the boundary of Q is smooth. A function u(z) is said to satisfy
Holder’s condition with exponent h, 0 < h < 1, and Holder’s constant
HE(u) in Qif

p L@ = u()

= Hi(u) < .
z, '€ |I~x/|h

By definition, C"(Q) is a Banach space, the elements of which are contin-
uous on 2 functions u having bounded

|uly) = sup |ul+ HA(w).

In turn, C’+h(Q), where [ is a positive integer, can be treated as a Banach
space consisting of all differentiable functions with continuous derivatives
of the first [ orders and a bounded norm of the form

!
lulg™ =3 3 sup|Dgul+ T HA(DLu).
k=0 |al=k £ a|=t
The functions depending on both the space and time variables with dis-
similar differential properties on & and ¢ are much involved in solving non-
stationary problems of mathematical physics.
Furthermore, Lp,q(QT), 1< p, ¢ < o0, 1s a Banach space consisting of
all measurable functions u having bounded

T g/p q1/q
lullp, g 0r = [/(/Iul”dm) dt} .
b V0 ‘

The Sobolev space VV}';"2 (@), p > 1, with positive integers [; > 0,
i =1, 2, is defined as a Banach space of all functions u belonging to the
space L,(Q,) along with their weak z-derivatives of the first [, orders and
t-derivatives of the first [, orders. The norm on that space is defined by

: 1/p
w2 = [j(Z v |D°‘uF’+Z|Dkulp)dIdt} .

Qr k=0 |a|=k
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The symbol W3 4(Q;.) is used for a subspace of W2 '(Q,) in which
the set of all smooth functions in Q7 that vanish on Sy is dense.

The space C?t*1+2/2(Qr), 0 < a < 1, is a Banach space of all
functions u in Q7 that are continuous on Q7 and that possess smooth z-
derivatives up to and including the second order and t-derivatives of the
first order. In so doing, the functions themselves and their derivatives
depend continuously on z and ¢ with exponents o and a2, respectively.
The norm on that space is defined by

Iulgra el Z Z sup|D°‘U|+sup|Dtu|
k=0}aj=k

+ Y sup | D2u(z,t) — DXu(z',t)|/| e — z' |
|a|:2(x,t),(21,t)€QT

+ sup | Dyu(z,t) — Diu(z,t') |/|t-—t'|"/2
(2.1),(=,t")eQT

+ ) sup | Dfu(z,t) - Dfu(z,t) |/t =1'|*/?
la|=2 (z,t), (z,t)EQT

+ sup | Diu(z,t) — Dyu(a’ ) |/|z — ' |*.
(a:,t),(z‘,t’)EQT
In specific cases the function u depending on & and ¢ will be treated as
an element of the space V3 °(Q,) comprising all the elements of W, °(Q,.)
that are continuous with respect to ¢ in the L3(€Q)-norm having finite

T u TQT: [?Jl,lg] ”u("u)|l2,ﬂ+”ur”2,QT )

where u, = (Ug,,...,ug,) and u? = |u, |°. The meaning of the continuity
of the function u( -, %) with respect to ¢ in the Ly(Q2)-norm is that

fu(- t+At) —u(-,t)|l,a—0 as At—0.

For later use, the symbol \;;O(QT) will appear once we agree to con-
sider only those elements of V3 °(Q,) that vanish on Sy.

In a number of problems a function depending on z and ¢ can be
viewed as a function of the argument ¢ with values from a Banach space
over 2. For example, L,(0,T; WJI)(Q)) is a set of all functions u(-,?) on

(0, T) with values in W;(Q) and norm

/g
[REBIEAK: } :

T

”U”Lq(o,T;W;,(ﬂ)) = {/
0
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Obviously, the spaces Ly(0,T; Ly(R2)) and L, (@) can be identified in a
natural way. In a similar line, the space

C(lo, 7 W)

comprises all continuous functions on [0, 7] with values in W}D(Q) We
obtain the Banach space C([0,T]; W}’)(Q)) if the norm on it is defined by

D)
u . = su u( -,t .
I ”cqo,:r],w;,(n)) [Oy% fhu( )“p,ﬂ

We quote below some results concerning Sobolev’s embedding theory
and relevant inequalities which will be used in the sequel.
Recall that the Poincare—Friedrichs inequality

(1.1.3) /u2(m) dz < ¢ (Q) / lu, |%(z) dz
0

0

o
holds-true for all the functions u from W1(Q2), where Q2 is a bounded domain
in the space R"”. The constant ¢;(Q) depending only on the domain Q is
bounded by the value 4 (diam €)?.

Theorem 1.1.1 Let Q be a bounded domain in the space R™ with the
precewise smooth boundary 02 and let S, be an intersection of  with any
r-dimensional hypersurface, » < n (in particular, if r = n then S, = Q;
if r = n— 1 we agree to consider 9Q as S,). Then for any function
u € W;(Q), where | > 1 is a positive integer and p > 1, the following
assertions are valid:
(a) forn > pl and r > n—pl there exists a trace of u on S belonging
to the space L,(S,) with any finite ¢ < pr/(n—pl) and the estimate
15 true:

(1.1.4) Felly,s, < e llullyq -

For g < pr/(n— pl) the operator embedding WL(Q) into Ly(S,) s
completely continuous;

(b) for n = pl the assertion of item (a) holds with any q < oo;

(c¢) forn < pl the function u is Hélder’s continuous and belongs to the
class C¥+*(Q), where k = 1—1—[n/p] and h = 1 + [n/p] ~ n/p
if n/p is not integer and Vh < 1 if n/p is integer. In that case the
estimate

(1.1.5) | )

1
<cllullpg

is valid (here [n/p] denotes, as usual, the integral part of n/p).
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Notice that the constants ¢ arising from (1.1.4)-(1.1.5) depend only
onn,pl,r q S and Q and do not depend on the function u. The proof
of Theorem 1.1.1 can be found in Sobolev (1988).

In establishing some subsequent results we will rely on Rellich’s the-
orem, whose precise formulation is due to Courant and Hilbert (1962).

[o]
Theorem 1.1.2 If Q is a bounded domain, then W3() is compactly em-
bedded into the space Lo(Q), that is, a set of elements {u,} of the space

o
W3(2) with uniformly bounded norms is compact in the space Lo(2).

Much progress in solving inverse boundary value problems has been
achieved by serious developments in the general theory of elliptic and par-
abolic partial differential equations. The reader can find deep and diverse
results of this theory in Ladyzhenskaya (1973), Ladyzhenskaya and Uralt-
seva (1968), Friedman (1964), Gilbarg and Trudinger (1983), Berezanskij
(1968). Several facts are known earlier and quoted here without proofs,
the others are accompanied by explanations or proofs. Some of them were
discovered and proven in recent years in connection with the investigation
of the series of questions that we now answer. Being of independent value
although, they are used in the present book only as part of the auxiliary
mathematical apparatus. The theorems concerned will be formulated here
in a common setting capable of describing inverse problems of interest that
make it possible to draw fairly accurate outlines of advanced theory.

Let €2 be a bounded domain in the space R™ with boundary 92 of class
C?. In the domain 2 of such a kind we consider the Dirichlet boundary
value (direct) problem for the elliptic equation of the second order

(1.1.6) (Lu)(z) = f(x), z€Q,
(1.1.7) u(z) =0, r € 0Q,

where L is an elliptic differential operator of the type

n n
(11.8) Lu= X (aij(z)ux‘)xj + g:l bi(z)ug, +c(z)u, a; =aj;,

i,j=1

which is assumed to be uniformly elliptic for every 2 € Q in the sense of
the following conditions:

= i,7=1

(1.1.9) 0<v z"jl €2 < i a;;(2) &€ < p il &
1= 1=

with certain positive constants p and v and arbitrary real numbers &, ...,
&, The left inequality (1.1.9) reflects the ellipticity property and the right

one means that the coeflicients ,; are bounded.
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In trying to solve the direct problem posed above we look for the
function u by regarding the coefficients of the operator L, the source term
f and the domain Q to be known in advance.

Theorem 1.1.3 Let the operator L satisfy (1.1.8)~(1.1.9), a;; € C(),
%L € C(Q), b; € Lo and ¢ < 0 almost everywhere (a.e.) in Q. If
f E Lp(R), 1 < p < o0, then the Dirichlet problem (1.1.6)~(1.1.7) has
a solution u € W;(Q), this solution is unique in the indicated class of
functions and obeys the estimate

(1.1.10) lull?h < ¢ f llpas

where the constant c¢* s independent of u.

A similar result concerning the unique solvability can be obtained re-
gardless of the sign of the coefficient ¢. However, in this case the coefficients
of the operator L should satisfy some additional restrictions such as, for
example, the inequality

v

A1) - = (e + 55 lleliza) >0.

where b_[ Yoimq 03( :c)] and ¢;(f2) is the same constant as in (1.1.3).

For further motivations we cite here the weak principle of maximum
for elliptic equations following the monograph of Gilbarg and Trudinger
(1983), p. 170-173. To facilitate understanding, it will be convenient to
introduce some terminology which will be needed in subsequent reasonings.
A function u € W3(Q) is said to satisfy the inequality v < 0 on 9% if its

positive part u* = max {u, 0} belongs to V%/;(Q) This definition permits
us to involve inequalities of other types on 9Q. Namely, v > 0 on 99 if
—u < 0 on 09; functions u and v from W}(Q) satisfy the inequality u < v
on N if u—v <0 on 09

supu=inf{k € R: u <k on 9Q}.
20

We say that a function u satisfies the inequality Zu > 0 in € in the weak
or generalized sense if

/(Zi aij(:c)uz' Ve, _zZ::l bi(l‘)ux,-v—c(ﬂl?)uv) dz < 0

for all nonnegative functions v € C*(2) such that v(z) = 0 for z € 9Q.
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Theorem 1.1.4 (the weak principle of maximum) Let the conditions
of Theorem 1.1.3 hold for the operator L and let a function u € W3 (Q)
satisfy the inequality Lu > 0 in Q in a weak sense. Then

sup u < sup ut.
Q a0

Corollary 1.1.1 Let the operator L be in line with the premises of Theorem
0
1.1.3 and let a function p € W2(Q) N WL(R) comply with the conditions

p(x) >0 ae m Q and @(z)# const .
Then there exists a measurable set Q' C Q with
mes, Q' >0
such that L < 0 in Q.

Proof On the contrary, let Ly > 0 in Q. If so, the theorem yields either
¢ < 0in Q or ¢ = const in Q. But this contradicts the hypotheses of
Corollary 1.1.1 and proves the current corollary. B

Corollary 1.1.2 Let the operator L meel the requirements of Theorem
[+]
1.1.3 and let a function ¢ € W3(Q,.) N W3(Q) follow the conditions

p(r) >0 ae in Q and Lp(z)#const in Q.
Then there ecists a measurable set Q' C Q with
mes, ¥ >0
such that Lo < 0 in Q.

Proof Since Ly # 0, we have ¢ # 0, giving either ¢ = const > 0 or
¢ # const . If ¢ = const > 0, then

(Le)(z) = c(z) ¢(z)

and the above assertion is simple to follow. For ¢ # const applying Corol-
lary 1.1.1 leads to the desired assertion. B
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For the purposes of the present chapter we refer to the parabolic
equation

(1.1.12)  wy(z,t) — (Lu)(z,t) = F(z,t), (2,t) € Qr =2 x (0,7,

supplied by the initial and boundary conditions

(1.1.13) u(z,0)=a(z), =z€Q,
(1.1.14) u(z,t) =0, (z,t)e Sr=0Qx[0,T],

where the operator L is supposed to be uniformly elliptic. The meaning of
this property is that we should have

n

(1.1.15) Lu= ) %(Aij(w)un)

i,j=1 J

+ Z Bi(z) uy, + C(z) u,
i=1

iL,j=1

Aij = Aji, 0<”253$ Y O Ay)&GE <u Yy €2,
i= i=1
v, p =const > 0.

In what follows we impose for the coefficients of the operator L the following
constraints:

(1.1.16) Aij € C(Q), (—9%— Aij € C(Q), B; € LOO(Q), Ce LOO(Q).
J

The direct problem for equation (1.1.12) consists of finding a solution
u of the governing equation subject to the initial condition (1.1.13) and the
boundary condition (1.1.14) when operating with the functions F' and a,
the coefficients of the operator L and the domain Q x (0,T).

Definition 1.1.1 A function u is said to be a solution of the direct problem
(1.1.12)~(1.1.14) from the class W3 '(Q,) if u € W3 4(Q,) and relations
(1.1.12)—(1.1.14) are satisfied almost everywhere in the corresponding do-
mains.

Theorem 1.1.5 Let the coefficients of ‘the operator L satisfy (1.1.15)-
0
(1.1.16) and let F € Ly(Qr) and a € W3(Q). Then the direct problem
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(1.1.12)~(1.1.14) has a solution v € W5 §(Q;), this solution is unigue in
the indicaled class of functions and the following estimate is valid:

(1.1.17) ). < (||F||2 on +llallSh )

where the constant c¢* does not depend on u.

In subsequent studies of inverse problems some propositions on solv-
ability of the direct problem (1.1.12)—(1.1.14) in the “energy” space

o
V2 °(Q,) will serve as a necessary background for important conclusions.

Definition 1.1.2 A function u is said to lge a weak solutoion of the direct
problem (1.1.12)«1.1.14) from the class V3 °(Q,) ifu € V3 °(Q,) and the
system (1.1.12)«1.1.14) is satisfied in the sense of the following integral
identity:

t n
(1.1.18) //(—ucb,+ S Aiju,, @
0 O
n

i,j=1

_Z B,-u,l.CD—Cu(D) dx dr

i=1

+/u(z‘,t)<1>(:c,t) dz

1)

—/a(m)@(:v,O) dz
Q

:
://F@dxdr, 0<t<T,
0

where ® is an arbitrary element of W3 '(Q,) such that ®(z,t) = 0 for
(z,t) € Sp.

The following result is an excellent start in this direction.

Theorem 1.1.6 Let the coefficients of the operator L satisfy (1.1.15)-
(1.1.16) and let F € Ly (Qr) and a € Ly(R). Then the direct problem

(1.1.11)~(1.1.14) has a weak solution u € I;;'O(QT), this solution is unique
in the indicated class of functions and the energy balance equation is valid:

(1.1.19) —Hu Hm+// Z Aijug, u,

i,j=1
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- i Biu,, u-— C‘uz) dz dr

i=1

¢
1
:§||a1]22’9+//Fu dzdr,
0 Q

0<t<T.

Differential properties of a solution u ensured by Theorem 1.1.6 are
revealed in the following proposition.

Lemma 1.1.1 If all the conditions of Theorem 1.1.6 are put together with
F e Ly(Qr), then

u€ Wii(Qx (,T)) N Clle, T, W;(Q))

for any ¢ € (0, T).
For the further development we initiate the derivation of some esti-
mates. If you wish to explore this more deeply, you might find it helpful

first to establish the estimates for solutions u € I;;’O(QT) of the system

(1.1.12). These are aimed to carry out careful analysis in the sequel.
Suppose that the conditions of Theorem 1.1.6 and Lemma 1.1.1 are

satisfied. With this in mind, we are going to show that any solution of

(1.1.12)-(1.1.14) from I;;O(QT) admits for 0 < ¢ < T the estimate

(1.1.20) lu(-,0) |l o < exp {—at}{[all;, o

+/exp{~a<t—r)}llF(»r)lu,adr,

14

- #1
where o= [ 2 e () (lh + == 2, )}
n 1/2
p1 = max< esssup | C(z)|, esssup [ > Bf(x)]
Q Q i=1

and ¢;(R) is the constant from the Poincare-Friedrichs inequality (1.1.3).
Observe that we imposed no restriction on the sign of the constant «.
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At the next stage, holding a number ¢ from the interval (0,T) fixed
and taking ¢ = £, we appeal to identity (1.1.18). After subtracting the
resulting expression from (1.1.18) we get

t n
(1.1.21) //(—uq>,+ S Aijug, O,
e

i,j=1
—Z Biuziq)—C(x)u@) de dr
i=1
+fu(m,t)¢(m,t) dzr
Q

—/ u(z, ) ®(z,€) dz

Q

t
://F(I)d:udr, 0<e<tLT,
e Q

where @ is an arbitrary element of W3 ' (Q;) that vanish on Sr. Due to
the differential properties of the function u established in Lemma 1.1.1 we
can rewrite (1.1.21) for 0 < e <t < T as

t :
(1.1.22) / /(u,—Lu)@dzdr:/ / F& dedr.
e N e 0

It is important for us that the preceding relation occurs for any
® € WL (Q x (¢,T)) vanishing on 0 x [¢, T].

Let 7(t) be an arbitrary function from the space 8’00([5,T]). Obvi-
ously, the function ® = u(z,¢)n(t) belongs to the class of all admissible
functions subject to relation (1.1.22). Upon substituting ® = u(z,?) n(t)
into (1.1.22) we arrive at

t

(1.1.23) /[/(u,—Lu)udw}n(*r) dr

€ Q

t

-]

€

/Fudx}n(r)dr, 0<e<t<T.
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It is worth noting here that é’w([e, T7]) is dense in the space Ly([e,T]). By
minor manipulations with relation (1.1.23) we are led to

1d '
(1.1.24) == ||u(-,t ”220+ Z Aij ug; u,, dz
3@ 2

/ Bi(z)u,, u+ C(z) u )dx
S 1=1
+/F(:c,t)uda:, 0<e<t<T.

By successively applying (1.1.2) and (1.1.15) to (1.1.24) we are led to

1d

(11.25) o = llu(- Oz 0 +v llw(-,)ll2a

S llug(-3 ) Moy - Hw(-0) ]l 0

+uffuC )0+ 1 FC ) - w0k a,
0<e<t<T,

where

41 = max {essgup | C(2)], essgup {é:l Bf(z)] 1/2} .

The estimation of the first term on the right-hand side of (1.1.25) can be
done relying on Young’s inequality with p = ¢ = 2 and 62 = v/pu,, whose
use permits us to establish the relation

(1126) 5 S D Ia+ Y (0 a

(u1+— ) llu(-, 1) 12,0

+HEC )0 - u(- )l a-
Applying the Poincare—Friedrichs inequality to the second term on the
right-hand side of (1.1.26) yields

(1.1.27) %”u('vt)”z,ﬂ+a”u(’»i)”2,ﬂ SNFCG D0,
0<e<tT,
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where
_ v N_l ]
a_[ch(Q) (m+5,)

and ¢;(f) is the same constant as in (1.1.3).

Let us multiply both sides of (1.1.27) by exp {at} and integrate then
the resulting expression from ¢ to ¢. Further passage to the limit as ¢ — 0+
leads to the desired estimate (1.1.20).

The second estimate for u € I;;'O(QT) in question follows directly
from (1.1.20):

(1128) oup f[u(:,7) MnSM)@Nm+/W1 mnm)

0<t<T,

where
er(t) = exp {|e|t}.

In the derivation of an alternative estimate we have to integrate rela-
tion (1.1.26) from ¢ to ¢ with respect to ¢ and afterwards pass to the limit
as € — 0+. The outcome of this is

(1.1.29) .ﬂ%( M3 dr < 5 llu(-,0)

x sup [lu(-,7)|l2, 0
0.4

2
L IE:
+ (i + QU)i sup [[u(>7) Il

+sup flu(-,7) [0
(0,4

Substituting estimate (1.1.28) into (1.1.29) yields that any weak solution



16 1. Inverse Problems for Equations of Parabolic Type

u € &%’O(QT) of the direct problem (1.1.12)-(1.1.14) satisfies the estimate

(1130) /nu Tmﬂﬂh<%m[WMQ+2/”F mnw}

0<t<T,

where
)= 3 e®[142000(m + 41 )].

The next goal of our studies is to obtain the estimate of || u,(-,1)||, o
for the solutions asserted by Theorem 1.1.6 in the case when ¢ € (0, T7.
Before giving further motivations, one thing is worth noting. As stated
in Lemma 1.1.1, under some additional restrictions on the input data any
solution u of the direct problem (1.1.12)-(1.1.14) from I;QO(QT) belongs to
the space W5 1(Q x (¢, T)) for any € € (0, T'). This, in particular, means
that the derivative u, (-,t) belongs to the space Lo(Q2) for any t € (¢,T)
and is really continuous with respect to ¢ in the L3(2)-norm on the segment
e, T4.
| ]Let t be an arbitrary number from the half-open interval (0, T]. Hold-
ing a number ¢ from the interval (0, ¢) fixed we deduce that there exists a
moment 7* € [¢, t], at which the following relation occurs:

(1.1.31) /uu OlZade=(t—)llual-, ) [0,

™ € le, 1], 0<e<t<T.

In this line, it is necessary to recall identity (1.1.22). Since the set of
admissible functions ® is dense in the space Lo(Qr), this identity should
be valid for any ® € Ly(Qr). Because of this fact, the equation

(1.1.32) u(z,t) — (Lu)(z,t) = F(z,t)

is certainly true almost everywhere in @ = Q x (g,¢) and implies that

t 1
(1.1.33) / /(u, — Lu) dx dr:/ / F? dzdr, ™ € [e, 1],
T Q T O

0<e<t<T,
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if 7* and ¢ were suitably chosen in conformity with (1.1.31). One can
readily see that (1.1.33) yields the inequality

(1.1.34) Zn: Aij () ug (z,1) vy (2,t) da

i,j=1

With the aid of Young’s inequality (1.1.1) the second term on the right-
hand side of (1.1.34) can be estimated as follows:

(1.1.35) 2

j!uf [;::1 Bi(“’)ua:,-+C(:c)u] dz dr

t
1
S.ul//[26|UT|2+3(|U$|2+IUP)} de dr,

*Q

where

n 1/2
ty = max{esssup |C(z)], esssup [Z Blz(a:)] }
Q

Q i=1

and é is an arbitrary positive number.
By merely setting 6§ = 1/(4 ;) we derive from (1.1.34)-(1.1.35) one



18 1. Inverse Problems for Equations of Parabolic Type

useful inequality

(1.1.36) lue( 0130 < & llual- ™) 30

102 (1+a(Q) |
+—u——// |u, | dz dr
Tt

t
1
+—//F2d:cdr,
v
T Q

whose development is based on the Poincare-Friedrichs inequality (1.1.3)
and conditions (1.1.15). Having substituted (1.1.31) into (1.1.36) we find

that
t t
s ) < oo //:umdxm;//mmdr,
0 0 0
0<e<t<T,
where , 42 (14 ex(@)
c(t) = v(t—e) l v

and ¢ is an arbitrary positive number from the interval (0, ¢).
The first term on the right-hand side of the preceding inequality can
be estimated on the basis of (1.1.30) as follows:

(L.137)  lug(-, D) llz < es(®)llall3 o+ cslt) / I1EC, )3 dr,
0

€ (0,717,

where
C5(t) =2 Cg(t) C4(t)
and
co(t) = v+ 812 es(t) cu(t) -
In this context, it is necessary to say that estimates (1.1.20), (1.1.28),
(1.1.30) and (1.1.30) hold for any solution u € I;é’o(QT) of the direct prob-
lem (1.1.12)-(1.1.14) provided that the conditions of Theorem 1.1.6 and

Lemma 1.1.1 hold.
Differential properties of a solution u ensured by Theorem 1.1.5 are

established in the following assertion.
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Lemma 1.1.2 [f, in addition to the premises of Theorem 1.1.5, F; €
La(Qr) and a € W3(Q), then the solution u(z,t) belongs to C([0,T];
W2(RQ)), its derivative u,(x,t) belongs to

[+]
C([0,T), L2()) N C([e, T), Wi(R)), 0<e<T.
Moreover, uy gives in the space \;;'O(QT) a solution of the direct problem

wy(z,t) - (Lw)(z,t) = Fy(z,t), (2,t) € Qr,
(1.1.38) w(z,0) = (La)(z) + F(z,0), r€eQ,
w(z,t) =0, € Sr.
Roughly speaking, Lemma 1.1.2 describes the conditions under which
one can “differentiate” the system (1.1.12)-(1.1.14) with respect to ¢.
Let us consider the system (1.1.38) arguing as in the derivation of
(1.1.20), (1.1.28), (1.1.30) and (1.1.37). All this enables us to deduce that

in the context of Lemma 1.1.2 a solution u of the system (1.1.12)—(1.1.14)
has the estimates

(1.1.39) lu-Dlha < exp {-at} | La+ F(- 0}l
+/e (=a(t= D} F( )l dr,
0<t<T

(1.1.40) [SOU?IH Ur( M) b, S () ([ La+ F(-,0) ||, q

/HF mndr], 0<t<T,

(1.1.41) / lureC 0 dr < cx(®) || La+ F(,0) g

-

2
+2/||FT(-,T)||2,ndr] ,

0<t<T,

o
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(1.1.42) () ll5a <) (I Za+ F(-,0) 130

t 2
+%U)/”FWWTHKnd4’
0
0<t<T,

where «, ¢,(t), ¢3(t), cs(t) and cs(t) are involved in estimates (1.1.20),
(1.1.28), (1.1.30) and (1.1.37), respectively.

In subsequent chapters we shall need, among other things, some spe-
cial properties of the parabolic equation solutions with nonhomogeneous
boundary conditions. Let a function u € V3 °(Q,) be a generalized so-
lution of the direct problem '

(1.1.43) u,(z,t) — (Lu)(z,t) = F(z,1), (z,t) € Qr,
(1.1.44) u(z,0) = a(z), T EQ,
(1.1.45) u(z,t) = b(z, 1), (z,1) € St

where the operator L is specified by (1.1.15)—(1.1.16), it being understood
that the function u satisfies the integral identity

t

(1.1.46) //(—uQT;I- Zn: Aij(2) ug; Do,
Q

0 1,j=1

_ i Bi()u,, ®— C(z)u® ) dedr
i=1

+/ u(z,t) ®(z,t) dz——/a(x)@(z,O) dz

9] 9]

t
://F(I)da:dr, 0<t<T,
0 N

where & is an arbitrary element of W3 '(Q,.) such that
&(z,1)=0

for all (z,t) € Sr.
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Note that we preassumed here that the function b(z,t) can be ex-
tended and defined almost everywhere in the cylinder Q7. The boundary
condition (1.1.45) means that the boundary value of the function

u(z,t) — b(z,t)

is equal to zero on Sp. Some differential properties of the boundary traces
of functions from the space Wf’"*’"(QT) are revealed in Ladyzhenskaya et

al. (1968).
Lemma 1.1.3 If u € W2™™(Qr) and 2r + s < 2m — 2/q, then

D} Dfu(-,0) € Wim I == 2qqy

Moreover, if 2r + s < 2m — 1/q, then
2m—2r—s—1/g, m—r—5s/2—-1/(2
D} D ulen 5, € W; / 2100y,

In what follows we will show that certain conditions provide the solv-
ability of the direct problem (1.1.43)-(1.1.45) in the space V3 °(Q,) (for
more detail see Ladyzhenskaya et al. (1968)).

Theorem 1.1.7 There ezists a solution u € V3 °(Q,.) of problem (1.1.43)-
(1.1.45) for any a € L2(R), b € W5 (Q,) and F € L21(QT), this solution
15 unique in the indicaled class of functions and the stability estimate is
true:

o lu( O lloa +lluslh gr < ¢ (I F N1, 0r +llall o +118lI5700) -

To decide for yourself whether solutions to parabolic equations are

positive, a first step is to check the following statement.

Theorem 1.1.8 (Ladyzhenskaya et al. (1968) or Duvant and Lions (1972))
Let F € L2(QT), a € L2(Q), b€ W21 (Q,) and let

the coefficient C(z) <0 for ze€Q;

a(z) >0 for z€Q;
b(z,t) >0 for (z,t) € Sr;
F(%t)ZO fOT (.’l?,t)GQT

Then any solution u € Vy°(Q,.) of problem (1.1.43)—~(1.1.45) satisfies the
inequality u(z,t) > 0 almost everywhere in Qr.
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Our next step is to formulate two assertions revealing this property
in more detail. In preparation for this, we introduce additional notations.
The symbol K (z, p) is used for a cube of the space R™ centered at a point
zo with p on edge. By subrectangles of a rectangle

R = K(zo, p) x (to — Tp%, to)
we shall mean the following sets:
R™ = K(zo,p') X (to — 11 p*, to — 70 p?),
R* = K(zo,p") X (to = 7p* 10 — 2 %),

where 0 < p/ < p' and 0< < << 7T <T.
Recall that a function u € V3 °(Q,) is called a weak supersolution
to the equation u, — Lu = 0 in Q7 if this function satisfies the inequality

i,j=1

1
//(—-u@r-{-.z Aij(z) u,, O,
0

- zn: Bi(2)u,, ® - C(z)ud) ddr

i=1

+/ u(z,t) ®(z,t) dz

Q

—/u(z,O)@(m,O) de>0, 0<t<T,
Q

for all bounded functions @ from the space € W3 '(Q,) such that
&(x,t) >0 and  ®(z,t)=0
for all (z,t) € St.

Lemma 1.1.4 (Trudinger (1968)) Let u(x,t) be a weak supersolution to
the equation
u,—Lu=0

imRCQand 0 <u< M in R. Then

P~ Dl e < Y L u(z,1),

where the constant v is independent of the function u.
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Lemma 1.1.5 Let all the conditions of Theorem 1.1.8 hold. Then the
function u € I;é’O(QT) possesses the following properties:
(1) ifa(z) Z0 in Q, then u(x,t) > 0 in Q for any t € (0,T);
(2) ifa(z) =0 in Q and F(z,t) Z 0 in Qr, then u(z,t) > 0 in Qr and
u(z,T) >0 in Q.

Proof Let a function v € V'°(Q,) be a generalized solution of the direct
problem
(1.1.47) v,(z,t) — (Lv)(z,t) = F(z,t), (z,t)€Qr,
(1.1.48) v(z,0) = a(z), e,
(1.1.49) v(z,t) =0, (z,t) € Sp.
It is clear that the difference
ui(z,t) = u(z,t) — v(z,t)
belongs to the space 2°(Q,) and by Theorem 1.1.8 we obtain for all
(x,t) € Q7 the governing inequality
uy(z,t) > 0
or, what amounts to the same in Qr,
u(z,t) > v(z,t).

The lemma will be proved if we succeed in justifying assertions (1)—(2) for
the function v(z,t) and the system (1.1.47)—(1.1.49) only.

We first choose monotonically nondecreasing sequences of nonnegative
functions

{F®Y F® e c*Qr),
and .
{a®}0,, o® e (@),

such that F(¥) — F as k — oo almost everywhere in Q7 and a(¥) — ¢ as
k — oo almost everywhere in Q. They are associated with a sequence of
direct problems

(1.1.50) o (z,8) = (Lo®)(2,8) = F®)(z,1),  (2,t) € Qr,

(1.1.51)  v®)(z,0) = a®)(z), z€eQ,
(1.1.52) Bz, t) =0, (z,t) € ST .
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Using the results obtained in Ladyzhenskaya et al. (1968), Chapter 4, we
conclude that there exists a unique solution v(¥) € W21 (@), ¢ >n+2,of

problem (1.1.50)—(1.1.52). Therefore, the function v(*) and its derivatives
v:(:) satisfy Holder’s condition with respect to  and ¢ in Q7. This provides

support for the view, in particular, that v(¥) is continuous and bounded
in Q7 and so the initial and boundary conditions can be understood in a
classical sense. The stability estimate (1.1.20) implies that

(1.153) |[(v=v®)( )< (la=a® o +I1F = F®|, o),

0<ti<T.

We proceed to prove item (1). When a(z) # 0 in §2, we may assume
without loss of generality that in Q

a®) £0

for any k € N. We have mentioned above that the function v(¥) is contin-
uous and bounded in @r. Under these conditions Theorem 1.1.8 yields in

Qr
v®)(z, 1) > 0.

From Harnack’s inequality it follows that
v®)(z,1) > 0

for any t € (0,7], z € Q and k£ € N. We begin by placing problem
(1.1.50)—(1.1.52) with regard to

w(z,t) = v (e, 1) — v®)(z,1).

It is interesting to learn whether w(z,t) > 0 in @r and, therefore, the
sequence {v(k)}:’:l is monotonically nondecreasing. It is straightforward
to verify this as before. On the other hand, estimate (1.1.53) implies that
for any t € (0, 7] there exists a subsequence {”(k")};o:1 such that

o) (2, 1) — v(z,1)

as p — oo for almost all z € Q. Since {v(’”P)};OZI is monotonically nonde-
creasing, v(z,t) > 0 for almost all z € Q and any t € (0, 7.

We proceed to prove item (2). When a(z) # 0 in Q and F(z,t) #0
in Qr, we may assume that F(¥) # 0 in Qr for any k¥ € N. Arguing as in
item (1) we find that v*) > 0 in @7 and by Harnack’s inequality deduce
that v(®)(z, T) > 0 for all z € Q. What is more, we establish with the aid
of (1.1.53) that v(z,T) > 0 almost everywhere in 2 and thereby complete
the proof of Lemma 1.1.5. W
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Other ideas in solving nonlinear operator equations of the second kind
are connected with the Birkhoff-Tarsky fixed point principle. This
principle applies equally well to any operator equation in a partially ordered
space. Moreover, in what follows we will disregard metric and topological
characteristics of such spaces.

Let E be a partially ordered space in which any bounded from above
(below) subset D C E has a least upper bound sup D (greatest lower bound
inf D). Every such set D falls in the category of conditionally complete
lattices.

The set of all elements f € E such that a < f < b, where a and &
are certain fixed points of F, is called an order segment and is denoted
by [a, b]. An operator A: E +— F is said to be isotonic if f; < f, with
fi, f» € E implies that

Af<Af.

The reader may refer to Birkhoff (1967), Lyusternik and Sobolev
(1982).

Theorem 1.1.9 (Birkhoff-Tarsky) Let E be a conditionally complete lat-
tice. One assumes, in addition, that A is an isotonic operator carrying an
order segment [a, b] C E into itself. Then the operator A can have at least
one fized point on the segment [a, b].

1.2 The linear inverse problem: recovering a source term

In this section we consider inverse problems of finding a source function
of the parabolic equation (1.1.12). We may attempt the function F in the
form

(1.2.1) F = f(z) h(z,t) + g(z,1),

where the functions h and ¢ are given, while the unknown function f is
sought.

Being concerned with the operators L, B, I, the functions h, g, a, b
and x, and the domain @, we now study in the cylinder Qr = Q x (0, T)
the inverse problem of finding a pair of the functions {u, f}, satisfying the
equation

(1.2.2) wu(z,t) - (Lu)(z,t)
= f(z) h(z,t) + g(z,t), (z,t)E€EQ,,
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the initial condition

(1.2.3) u(z,0) = a(z), r e,

the boundary condition

(1.2.4) (Bu)(z,t) = b(z,t), (;,t) € St =00 x [0,T7,
and the overdetermination condition

(1.2.5) (lu)(z) = x(=), . €.
Here the symbol L is used for a linear uniformly elliptic operator, whose
coefficients are independent of ¢ for any z € Q.

n

(1.2.6) (Lo = Y 5= [A,, ) s, (2,1)]

1,j=1
+ Z B,‘(:E) ux;(x)t)
i=1

+ C(z) u(z,t),

n
Aij=Aji, O<v) €< ZA,]£,£J<[JZ§ v, = const > 0.

i=1 i, j=1

The meaning of an operator B built into the boundary condition (1.2.4) is
that

either (Bu)(z,t) = u(x,t)

(1.2.7) Bu(z, )

or (Bu)(z,t) = + o(z) u(z, 1),

ON
where
Ou _ Zn: u, (z,t) cos (n/O\a:)
BN T %2 Aij ug (@, I

and n is the external normal to dQ2. Throughout the entire subsection,
we will assume that the function o is continuous on the boundary dQ and
o> 0.
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The expression for {u from (1.2.5) reduces to

either (lu)(z) = u(z,ty), 0<t, <T, r€Q,
(1.2.8) T
or (lu)(z) = / u(z, Nw(r)dr, z€Q,
0

if ¢, is held fixed and w is known in advance.

Although the complete theory could be recast in this case, we confine
ourselves to the homogeneous conditions (1.2.3)—(1.2.4) and the function g
equal to zero in (1.2.2). Indeed, consider the direct problem of recovering
a function v from the relations

v, (2z,t) — (Lv) (z,t) = g(z,t), (z,t) € Qr,
(1.2.9) v(z,0) = a(z), e,
(Bv) (z,t) = b(z,1), (z,t) € St,

if the subsidiary information is available on the operators L and B and the
functions g, @ and b. While solving problem (1.2.9) one can find a unique
solution v in the corresponding class of functions. Therefore, (1.2.2)-(1.2.5)
and (1.2.9) imply that a pair of the functions {u—v, f} satisfies the equation

(1.2.10)  (u—v), — L(u —v) = f(z) h(z,1), (z,t) € Qr,
the initial condition

(1.2.11)  (u—v)(z,0)=0, e,

the boundary condition

(1.2.12)  [B(u—v)|(z,t)=0, (z,t) € St,
and the overdetermination condition

(1.2.13)  [l(u—v)](z) = xa(z), z€Q,

where x;(z) = x(z) — (lv)(z) and v is the unknown function to be deter-
mined as a solution of the direct problem (1.2.9). This approach leads to
the inverse problem of a suitable type.
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More a detailed exposition is based on the inverse problem with
Dirichlet boundary data corresponding to the first relation (1.2.7). The
overdetermination here will be taken in the integral form associated with
the second relation (1.2.8).

To get an improvement of such an analysis, we set up the inverse prob-
lem of finding a pair of the functions {u, f} satisfying the set of relations

(1.2.14) uy(2,t) = (Lu)(z,t) = f(2) h(z,1),  (e,t) € Qr,

(1.2.15) u(z,0) =0, z €,

(1.2.16) u(z,t) =0, ’ (z,t) € St
T

(1.2.17) of u(z, 7)w(r) dr = p(z), z e,

where the operator L, the functions h, w, ¢ and the domain ) are given.
A rigorous definition for a solution of the above inverse problem is
presented for later use in

Definition 1.2.1 A pair of the functions {u, f} is said to be a generalized
solution of the inverse problem (1.2.14)—(1.2.17) if

u € Wio(Qr), fe L)
and all of the relations (1.2.14)—(1.2.17) occur.

Let us briefly outline our further reasoning. We first derive an oper-
ator equation for the function f in the space Ly(§2). Second, we will show
that the equation thus obtained is equivalent, in a certain sense, to the
inverse problem at hand. Just for this reason the main attention will be
paid to the resulting equation. Under such an approach the unique solv-
ability of this equation under certain restrictions on the input data will
be proved and special investigations will justify the validity of Fredholm’s
alternative for it. Because of this, we can be pretty sure that the inverse
problem concerned is of Fredholm’s character, that is, the uniqueness of
the solution 1mplies its existence.

Following the above scheme we are able to derive an operator equation
of the second kind for the function f assuming that the coefficients of the
operator L satisfy conditions (1.1.15)-(1.1.16) and

h, h, € Loo(QT),
(1.2.18) f h(z,t)w(t)dt|>6>0
0

for 2€Q (§=const), we€Ly0,T).
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By regarding an arbitrary function f from the space L3(£2) to be fixed and
substituting it into equation (1.2.14) we are now in a position on account
of Theorem 1.1.5 to find u € W3 ((Q,) as a unique solution of the direct

problem (1.2.14)-(1.2.16). If this happens, Lemma 1.1.2 guarantees that
the function u in question possesses the extra smoothness:

u(+,t) € C([0,T}; W3(Q))

and

u,(+,t) € C([0,T); La()) .
In the light of these properties the intention is to use the linear operator
All LQ(Q) — LZ(Q)

acting in accordance with the rule

T
(1.2.19) (A f)() = ﬁ /ut(z,t)w(t) &, zeQ,

where

T
hi(z) = / h(z,t)w(t) dt.
0

Of special interest is a linear operator equation of the second kind for
the function f over the space Ly(Q):

(1.2.20) F= AL f+9,

where a known function % belongs to the space L2(Q).
In the sequel we will assume that the Dirichlet (direct) problem for
the elliptic operator

(1.2.21) (Lv)(z) =0, z€Q, v(z) =0, =z€0Q,

has only a trivial solution unless the contrary is explicitly stated. Possible
examples of the results of this sort were cited in Theorem 1.1.3.

The following proposition provides proper guidelines for establishing
interconnections between the solvability of the inverse problem (1.2.14)-
(1.2.17) and the existence of a solution to equation (1.2.20) and vice versa.
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Theorem 1.2.1 One assumes thal the operator L satisfies conditions
(1.1.15)~(1.1.16), h, h, € Lo (Qr) and

>6>0

/T h(z, T)w(r) dr
0

forz € Q (6 = const ), w € L3(0,T) and

€ W2(Q) (| WAQ).

Let the Dirichlet problem (1.2.21) have a trivial solution only. If we agree
to consider

. T
(1.2.22)  o(z) = - EET) (Lo)(z), hl(z):/h(x,r)w(r) dr,

then the following assertions are valid:

(a) if the linear equation (1.2.20) is solvable, then so is the inverse
problem (1.2.14)-(1.2.17),

(b) if there exists a solution {u, f} of the inverse problem (1.2.14)-
(1.2.17), then the function f involved gives a solution to equation

(1.2.20)

Proof We proceed to prove item (a) accepting (1.2.22) to be true and
equation (1.2.20) to have a solution, say f. If we substitute the function f
into (1.2.14), then (1.2.14)~(1.2.16) can be solved as a direct problem. On
account of Theorem 1.1.5 there exists a unique solution u € W2 ¢(@,) and
Lemma 1.1.1 gives

u(-,t) € ([0, T); W3()

and
u,(-,t) € C([0,T); L2(2)) -

The assertion will be proved if we succeed in showing that the function
u so constructed satisfies the supplementary overdetermination condition
(1.2.17). By merely setting

T
(1.2.23) / u(z, T)w(r) dr = @1 (2), r€Q,
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it makes sense to bear in mind the above properties of the function u, by
means of which we find out that

o1 € WE(Q) N WA(Q).

Let us multiply both sides of (1.2.14) by the function w(t) and integrate
then the resulting expression with respect to ¢t from 0 to T'. After obvious
rearranging we are able to write down

T

(1.2.24) /ut(z,t)w(t) dt— (Lo)(@) = f(@)h(z), zEQ.

0

On the other hand, we must take into account that f is a solution of
(1.2.20), meaning

(1.2.25) hi(z) (A1 )(z) = (L)) = f(=) hl(m) , zef.

From (1.2.24)—(1.2.25) it follows that the function ¢ — ¢, is just a solution
of the direct stationary boundary value problem for the Laplace operator

(1226) [L(Sﬁ"‘%)](w):(), .’L'EQ, (30_‘/’1)(1'):0! xeaﬂ,

having only a trivial solution by the assumption imposed at the very begin-
ning. Therefore, ¢; = ¢ almost everywhere in © and the inverse problem
(1.2.14)-(1.2.17) is solvable. Thus, item (a) is completely proved.

Let us examine item (b) assuming that there exists a pair of the
functions {u, f} solving the inverse problem (1.2.14)-(1.2.17). Relation
(1.2.14) implies that

T

(1.2.27) / u(z, ) w(t) dt — / (Lu)(z,t)w(t) dt = f(z) hy(z),

0

where h;(z) = fo (z, TYw(r) dT.
With the aid of the overdetermination condition (1.2.17) and relation
(1.2.22) one can rewrite (1.2.27) as

T
(12.28) ] w2, 1) w(t) dt + p(z) hy(2) = £(z) b (2).

Recalling the definition of the operator A;. (see (1.2.19)) we conclude that
(1.2.28) implies that the function f is a solution to equation (1.2.20),
thereby completing the proof of the theorem. B
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The following result states under what sufficient conditions one can
find a unique solution of the inverse problem at hand.

Theorem 1.2.2 Let the operator L comply with (1.1.15)-(1.1.16),
h, h; € Loo(Qr) and let

>6>0 (6 = const ),

T
/h (z,t)w(t) dt
0

[s]
w € Ly([0,T)), ¢ € WiQ2) N W(Q). One assumes, in addition, that
the Dirichlet problem (1.2.21) has a trivial solution only and the inequality
holds:

(12-29) m; < 1,

where my =671 ||w ||2,(0,T) < |l mg ||2,(0,T) )

my(t) = exp {—at} esssup|h(z,0)]
Q
¢
+/ exp{—a(t — )} esssup | h.(-,7)]| dT,
Q
0

= [ 5oz~ (m+ 55 4]
f; = max {esssup [C(z) ], esssup [é: }1/2}

and ¢,(Q) is the constant from the Poincare—Friedrichs inequality (1.1.3).
Then there exists a solution u € WQZ,’OI(QT), f € Ly(2) of the inverse prob-
lem (1.2.14)—(1.2.17), this solution s unique in the indicated class of func-
tions and the following estimates are valid with constant ¢* from (1.1.17):

6—1

(1.2.30) I lln € 7= W Lelln,
1
6*6—1

(1.2.31) lellaar < 7= 1 Lelln

my
T 1/2

( / esssup | h(z,t)|? dt) .
0
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Proof We begin our proof by considering equation (1.2.20). A case in
point is one useful remark that if (1.2.20) has a solution, then Theorem
1.2.1 will ensure the solvability of the inverse problem concerned.

We are going to show that for the linear operator A; the estimate

(1.2.32) A1 fllo, 0 Small Fllo e feL(9),

is valid with constant m,; of the form (1.2.29). Really, (1.2.19) is followed
by

T 1/2
(12.33)  [[41 ]l < rlnwnz,(o,m( [ 0120 dt) -
0

On the other hand, as f € Ly(§2), the system (1.2.14)—(1.2.16) turns
out to be of the same type as the system (1.1.12)—(1.1.14), making it pos-
sible to apply Lemma 1.1.2 and estimate (1.1.39) in the form

Nu( )0 € Mm@ || fll,,  t€[0,T],
where

my(t) = exp {—at} esssup | h(z,0)|
Q

¢
+/exp{—a(t—~7')} esssup | h, (-, 7)]| dr,
) Q
- v 1
“‘[2c1(9)‘<“1+%“1>]’

n 1/2
1 :max{esssup |C(z) |, esssup [ > BZ(:L')] ! }
Q Q i=1
and the constant c¢,(§2) is involved in the Poincare-Friedrichs inequality
(1.1.3). Now the desired estimate (1.2.32) follows directly from the combi-
nation of (1.2.33) and the last inequality.

As m; < 1, the linear equation (1.2.20) has a unique solution with any
function % from the space Ly(§2) and, in particular, we might agree with
¥ = —Ly/h,, what means that (1.2.22) holds. If so, estimate (1.2.30) is
certainly true. Therefore, Theorem 1.2.1 (see item (a)) implies the existence
of a solution of the inverse problem (1.2.14)—(1.2.17).
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In conclusion it remains to prove the uniqueness for the inverse prob-
lem (1.2.14)-(1.2.17) solution found above. Assume to the contrary that
there were two distinct sets {u;, f,} and {u,, f.}, each of them being a so-
lution of the inverse problem at hand. When this is the case, the function
fi cannot coincide with f,, since their equality would immediately imply
(due to the uniqueness theorem for the direct problem (1.1.12)-(1.1.14))
the equality between u, and u,.

Item (b) of Theorem 1.2.1 yields that either of the functions f; and
f2 gives a solution to equation (1.2.20). However, this disagrees with the
uniqueness of the equation (1.2.20) solution stated before. Just for this
reason the above assumption concerning the nonuniqueness of the inverse
problem (1.2.14)-(1.2.17) solution fails to be true. Now estimate (1.2.31)
is a direct implication of (1.1.17) and (1.2.30), so that we finish the proof
of the theorem. W

We now turn our attention to the inverse problem with the final
overdetermination for the parabolic equation

(1.2.34) u,(z,t) — (Lu)(z,t) = f(z) h(z,t), (z,t) € Qr,

(1.2.35)  w(z,0)=0, zeQ,
(1.2.36) u(z,t) =0, (z,t) € Sr,
(1.2.37) u(z, T) = ¢(z), reQ.

In such a setting we have at our disposal the operator L, the functions h
and ¢ and the domain Qr = Q x (0, 7).

To facilitate understanding, we give a rigorous definition for a solution
of the inverse problem (1.2.34)—(1.2.37).

Definition 1.2.2 A pair of the functions {u, f} is said to be a gener-
alized solution of the inverse problem (1.2.34)-(1.2.37) if u € W5 3(Q;.),
f € Ly(§2)-and all of the relations (1.2.34)—~(1.2.37) occur.

We outline briefly further treatment of the inverse problem under
consideration. More a detailed exposition of final overdetermination will
appear in Chapter 4 for the system of Navier-Stokes equations.

Assume that the coefficients of the operator L meet conditions
(1.1.15)-(1.1.16) and

(1.2.38) h, hy € Loo(Qr), |h(2,T)|>6>0 forzeQ (§=const).

Under this agreement, the collection of relations (1.2.34)-(1.2.36) can be
treated as a direct problem by taking an arbitrary function f from the space



1.2. The linear inverse problem: recovering a source term 35
L»(R2) and substituting it into equation (1.2.34). According to Theorem

1.1.5 there exists a unique solution u € Wg:é(QT) of the direct problem
(1.2.34)-(1.2.36) with the extra smoothness property:

u(-,t) € C([0,T); W3())

and
ut(’vt) € C([O’T]: L2(Q))'

For further analysis we refer to the linear operator

Az: LQ(Q) L d LQ(Q)

acting in accordance with the rule

(1.2.39) (43 f)(=) = WlT‘) u,(2,T), zeQ,

and the linear operator equation of the second kind for the function f over
the space Ly(R2):

(1.2.40) f=A2+9,

where a known function 1 belongs to the space La((2).

Theorem 1.2.3 Let the operator L satisfy conditions (1.1.15)-(1.1.16) and
let h, hy € Lo(Qr), |M(z,T)| > 86 > 0 forz € Q (6§ = const), ¢ €

W) n V%/;(Q) Assuming that the Dirichlet problem (1.2.21) can have @
trivial solution only, set

a
Q

(1.2.41) P(z) =~ W:l_T-) (Le)(=).

Then the following assertions are valid:

(a) if the linear equation (1.2.40) is solvable, then so is the inverse
problem (1.2.34)-(1.2.37);

(b) if there exists a solution {u, f} of the inverse problem (1.2.34)-
(1.2.37), then the function f involved gives a solution to the linear
equation (1.2.40).

Theorem 1.2.3 can be proved in the same manner as we carry out the
proof of Theorem 1.2.1 of the present chapter or that of Theorem 4.2.1
from Chapter 4.
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So, the question of the inverse problem solvability is closely connected
with careful analysis of equation (1.2.40) of the second kind. By exactly

the same reasoning as in the case of inequality (1.2.32) we deduce that the
operator A; admits the estimate

(1.2.42) 142 fll2,0 < msll flloq, feLy(®),

where

{exp {-aT} ess Sup | h(z,0)]
T
+0/ exp{—a (T - 1)} esssup [ hy(-,1)| dt},

=| 5o~ (435 4)
@ = 2 ¢ (Q) H 20 Hy ’
n 1/2
p1 =max< esssup | C(z)|, esssup [ > B,z(:c)]
Q Q i=1
and ¢;(2) is the constant from the Poincare-Friedrichs inequality (1.1.3).

After that, applying estimate (1.2.42) and the fixed point principle to
the linear operator A; with the subsequent reference to Theorem 1.2.3 we

obtain an important result.

Theorem 1.2.4 Let the operator L satisfy conditions (1.1.15)~(1.1.16) and
let h, hy € Loo(Qr), |R(2,T)| > 6 >0 forz € Q (6 = const ) and

o € WAQ) WAQ).

One assumes, in addition, that the Dirichlet problem (1.2.21) has a trivial
solution only. If the inequality .

(1.2.43) ms < 1

is valid with constant m, arising from (1.2.42), then there exists a solu-
tion u € sz,’ol(QT), f € L,(Q) of the inverse problem (1.2.34)—(1.2.37),
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this solution is unique in the indicated class of functions and the following
estimates

6—1
2. < L ,
(1.2.44) 1710 < T 120l
C*(S_l
(1.2.45) lullsg)y < T L2l 0

ms
T 1/2
</esssup | h(z,t) | dt)
0

are valid with constant ¢* from (1.1.17).

Theorem 1.2.4 can be proved in a similar way as we did in the proof
of Theorem 1.2.2.

We now present some remarks and examples illustrating the results
obtained.

Remark 1.2.1 In dealing with the Laplace operator

- 2’U T
(Lu)(z,t) = Au(z,t) = Z f?%

=1
we assume that the function h depending only on ¢ satisfies the conditions
h, K € Cl0,T], h(t), K()>0, h(T)#0.

Plain calculations give

where

T
My = o h(T) O/h(t) exp {—a (T —1t)} dt.

Since ms > 0, the inequality m; < 1 holds true. On the other hand, /m; > 0
for an arbitrary function h(t) > 0 with A(T) # 0. Therefore, 0 < m; < 1
for any 7' > 0 and, in that case, Theorem 1.2.4 turns out to be of global
character and asserts the unique solvability for any T, 0 < T < oo.



38 1. Inverse Problems for Equations of Parabolic Type

Example 1.2.1 Let us show how one can adapt the Fourier method
of separation of variables in solving inverse problems with the final
overdetermination. With this aim, we now turn to the inverse problem of
recovering the functions u(z) and f(z) from the set of relations

(1.2.46)  u,(z,t) = ug(z,t)+ f(z), O<e<m, 0<t<T,

(1.2.47)  u(z,0)=0, O<z<m,
(1.2.48) u(0,t) = u(m,t)=0, 0<t<T,
(1.2.49)  u(z,T) = p(z), o O0<e<m,

keeping ¢ € W?2(0,1) with the boundary values

p(0) = ¢(m) = 0.

It is worth noting here that in complete agreement with Remark 1.2.1 the
inverse problem at hand has a unique solution for any 7', 0 < T < co.
Following the standard scheme of separating variables with respect to the
system (1.2.46)—(1.2.48) we arrive at

1
o
(1.2.50) u(z,t) = z / fi exp {—k*(t — 1)} dr sinkz
k=17
= Z fi k721 — exp {—k%t}] sinkz,
k=1
where

fi= ;Qr-/f(a:) sinkz dz .

0
The system {Xi(z) = sinkz}$2, and the sequence {d; = k?}$2, are
found as the eigenfunctions and the eigenvalues of the Sturm-Liouville
operator associated with the spectral problem

(1251) XP(z)+ X\ X(z)=0, O<a<m,  Xp(0)=Xi(r)=0.
Being a basis for the space Ly(0, ), the system {sinkz}$2, is orthogonal

and complete in it. In this view, it is reasonable to look for the Fourier
coefficients f, of the unknown function f with respect to the system
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{sinkz}g2,. Subsequent calculations will be done formally by reasonings
substantiated. Substituting (1.2.50) into (1.2.49) yields

(1.2.52) p(z) = Z fi k72 (1 —exp {—k*T}) sinkz.
k=1

The expansion in the Fourier series of the function ¢ with respect to the
basis {sin kx}$2., is as follows:
m

oo
p(z) = E @y sinkz = 2 / p(z) sinkz de.

T
0

Equating the corresponding coefficients we thus have

(1.2.53) fo=k* (1—exp {-E2T}) " oy,

thereby justifying that the function f in question can be expressed explic-
itly:

(1.2.54) f(z) = kil k2 (1 — exp {~k? T})_1 ¢y sinkz .

On account of (1.2.50) and (1.2.53) we conclude that this procedure works
with another unknown function u. The outcome of this is

o
(1.2.55) wu(z,t) Z (1 —exp {-k? T})_1 (1 —exp {-k*t}) o, sinkz.
k=1

The expansion (1.2.54) needs investigation. As far as the underlying or-
thogonal system is complete, Parseval’s equation takes the form

o0

2 -
I B0=2" ~ k(1-exp{-k"T}) 7" ¢}

k=1

Therefore, for the existence of a solution f in the space Ly(0,7) it is nec-
essary to have at your disposal a function ¢ such that the series on the
right-hand side of the preceding equality would be convergent. With the
relation

2
T

>—!|w

1—exp{ k2TY)” goi < = (1-exp{-T}) 22’“4‘19
k=1
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in view, the convergence of the series in (1.2.54) in the space L2(0,r)
depends on how well the Fourier coefficients of the function ¢ behave when
k — 4o0o. A similar remark concerns the character of convergence in
(1.2.55). Special investigations of (1.2.54) and (1.2.55) can be conducted
in the framework of the general theory of Fourier series. If, in particular,
@(z) = sinz, then (1.2.54)-(1.2.55) obviously imply that

u(z,t) = (1 —exp {—T})_1 (1 —exp {—t})—l sinz,

f(z) = (1 —exp {—T})_1 sinz.

We would like to give a simple, from a mathematical point of view, ex-
ample illustrating one interesting property of the inverse problem with the
final overdetermination. Theorem 1.2.4, generally speaking, does not guar-
antee any global result for inverse problems of the type (1.2.34)-(1.2.37).
Because the original assumptions include inequality (1.2.43) this theorem
allows us to establish a local result only. However, the forthcoming exam-
ple will demonstrate that the locality here happens to be of the so-called
“Inverse” character in comparison with that of direct problems. That is
to say, the final observation moment T' cannot be made as small (close to
zero) as we like and vice versa the moment T' can be taken at any level
exceeding a certain fixed value T expressed in terms of input data.

Example 1.2.2 Being concerned with the functions k and ¢, we are inter-
ested in the one-dimensional inverse problem for the heat conduction
equation

u,(z,1) = 2ug (2,t) + f(z)h(z,t), 2€(0,1), te(0,T),

u(z,0) =0, ze(0,1),
(1.2.56)

u(0,¢) = u(1,t) = 0, telo, 77,

u(z,T) = ¢(z), z€(0,1).

Let h(z,t) = ¢ +  and ¢ be an arbitrary function with the necessary
smoothness and compatibility. It is required to indicate special cases in
which Theorem 1.2.4 will quarantee the unique solvability of (1.2.56). Di-
rect calculations of my from (1.2.42) show that

ms = T—l.
The inverse problem (1.2.56) will meet condition (1.2.43) if
(1.2.57) T>1.
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So, according to Theorem 1.2.4 the inverse problem (1.2.56) has a unique
solution if the final moment of observation T satisfies (1.2.57). Just this
inequality is aimed to substantiate why the final measurement of the func-
tion u should be taken at any moment 7" exceeding the fixed value 7" = 1.
In the physical language, this is a way of saying that for the unique re-
covery of the coefficient f(z) in solving the inverse problem (1.2.56) in the
framework of Theorem 1.2.4 it should be recommended to avoid the final
measuring “immediately after” the initial (starting) moment of observation
(monitoring).

In the above example we obtain a natural, from our standpoint, result
concerning the character of locality in the inverse problem with the final
overdetermination. Indeed, assume that there exists a certain moment T,
at which we are able to solve the inverse problem (1.2.56) and thereby
recover uniquely the coefficient f(x) with the use of the final value u(z, T).
Because the source term f(z)h(z,t) is known, other ideas are connected
with the transition to the related direct problem with the value u(z,T)
as an initial condition and the determination of the function u(z,t) at any
subsequent moment ¢ > T. Summarizing, in context of the theory of inverse
problems the principal interest here lies in a possibility to take the moment
T as small as we like rather than as large as we like.

In subsequent investigations we will establish other sufficient condi-
tions for the unique solvability of the inverse problem with the final overde-
termination. In contrast to Theorem 1.2.4 the results stated below will
guarantee the global existence and uniqueness of the solution.

Among other things, we will be sure that the inverse problem (1.2.56)
has, in fact, a unique solution {u, f} for any 7' € (0, + c0) (see Theorem
1.3.5 below). However, the success of obtaining this result will depend on
how well we motivate specific properties of the parabolic equation solutions
established in Theorem 1.1.8 and Lemmas 1.1.4-1.1.5.

1.3 The linear inverse problem: the Fredholm solvability

This section places special emphasis on one interesting property of the
inverse problem (1.2.2)-(1.2.5) that is related to its Fredholm character.
A case in point is that the events may happen in which the uniqueness
theorem implies the theorem of the solution existence. We outline further
general scheme by considering the inverse problem (1.2.34)-(1.2.37) with
the final overdetermination. In Theorem 1.2.3 we have proved that the
solvability of this inverse problem follows from that of the operator equation
(1.2.40) of the second kind and vice versa, so there is some reason to be
concerned about this. In subsequent studies the linear operator specified
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by (1.2.39) comes first. This type of situation is covered by the following
assertion.

Theorem 1.3.1 Let the operator L satisfy conditions (1.1.15)~(1.1.16) and
let h, h, € Loo(Q7), |h(:L',T)| >8>0 forzeQ (6 =const). Then the
operator Ay is completely continuous on Ly(Q2). '

Proof First of all we describe one feature of the operator Ay emerging from
Lemmas 1.1.1 and 1.1.2. As usual, this amounts to considering an arbitrary
function f from the space Ly(f2) to be fixed and substituting it into (1.2.34).
Such a trick permits us to demonstrate that the system (1.2.34)-(1.2.36)
is of the same type as the system (1.1.12)—(1.1.14). When solving problem
(1.2.34)—(1.2.36) in the framework of Theorem 1.1.5 one finds in passing a
unique function u € Wg:(l,(QT) corresponding to the function having been

fixed above. Lemma 1.1.2 implies that

u, € C([0,T); L) N C(le, TEWA(Q)), 0<e<T.

Therefore, the operator Ay specified by (1.2.39) acts, in fact, from Ly(Q)
] ,
into W1(Q). )
. 0
In the estimation of Ay(f) in the W3(2)-norm we make use of in-
equality (1.1.42) taking in terms of the system (1.2.34)—(1.2.36) the form

(131 Nug(, Do < es(D) [ 1FA(C0) 130

T
+cs(T)/||fht(’,f)H22,n dt}, VfeE L),
0

where ¢s and cg are the same as in (1.1.42) and do not depend on f.
Combination of relations (1.2.39) and (1.3.1) gives the estimate

(1.3.2) (A2 Nz 20 < erllfllo,ar VI € LAQ),

where
T 1/2
ey = {cs(T)[ esssup | h(z,0)|? + cs(T) / esssup | h,(z,t) |2 dt] } :
Q Q
0

Note that estimate (1.3.2) is valid for any function f from the space L2(2)
and the constant ¢; is independent of f.
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As can readily be observed, estimate (1.3.2) may be of help in es-
tablishing that the linear operator A, is completely continuous on Ly(£2).
Indeed, let D be a bounded set of the space Ly(f2). By virtue of the prop-
erties of the operator A, and estimate (1.3.2) the set As(D) belongs to

[+
I/%/é(Q) and is bounded in W3(€2). In that case Rellich’s theorem (Theo-
rem 1.1.2) implies that the set A;(D) is compact in the space Ly(€2). In so
doing any bounded set of the space Ly(2) is mapped onto a set which is
compact in L2(§2). By definition, the operator A3 is completely continuous
on Ly(2) and the theorem is proved. W

Corollary 1.3.1 Under the conditions of Theorem 1.3.1 the following Fred-
kolm alternative is valid for equation (1.2.40): either a solution to equation
(1.2.40) exzists and 1s unique for any function ¢ from the space Lo(S2) or
the homogeneous equation

(1.3.3) f=4Af

can have a nontrivial solution.

The result cited above states, in particular, that if the homogeneous
equation (1.3.3) has a trivial solution only, then equation (1.2.40) is uni-
quely solvable for any ¢ € Ly(£2). In other words, Corollary 1.3.1 asserts
that for (1.2.40) the uniqueness theorem implies the existence one. With
regard to the inverse problem (1.2.34)-(1.2.37) we establish the following
theorem.

Theorem 1.3.2 Let the operator L satisfy conditions (1.1.15)~(1.1.16) and
let h, h, € Lo (QT), | h(2,T) | >6>0 forz € (6 = const),

o€ W2Q) NWLQ).

If the Dirichlet problem (1.2.21) has a trivial solution only, then the follow-
ing assertions are valid:

(a) of the linear homogeneous equation (1.3.3) has a trivial solution
only, then there exists a solution of the inverse problem (1.2.34)-
(1.2.37) and this solution is unique in the indicated class of func-
tions;

(b) if the uniqueness theorem holds for the inverse problem (1.2.34)-
(1.2.37), then there exists a solution of the inverse problem (1.2.34)-
(1.2.37) and this solution is unique in the indicated class of func-
tions.
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Proof We proceed to prove item (a). Let (1.3.3) have a trivial solution
only. By Corollary 1.3.1 there exists a solution to the nonhomogeneous
equation (1.2.40) for any ¥ € Lo(2) (and, in particular, for ¢ of the form
(1.2.41)) and this solution is unique. The existence of the inverse problem
(1.2.34)—(1.2.37) solution follows now from Theorem 1.2.3 and it remains
to show only its uniqueness. Assume to the contrary that there were two
distinct solutions {u;, fi} and {u,, fo} of the inverse problem (1.2.34)-
(1.2.37). It is clear that f; cannot be equal to f,, since their coincidence
would immediately imply the equality between u; and u, by the uniqueness
theorem for the direct problem of the type (1.2.34)-(1.2.36). According to
item (b) of Theorem 1.2.3 the function f; — f is just a nontrivial solution
to the homogeneous equation (1.3.3). But this disagrees with the initial
assumption. Thus, item (a) is completely proved.

We proceed to examine item (b). Let the uniqueness theorem hold
for the the inverse problem (1.2.34)~(1.2.37). This means that the homo-
geneous inverse problem

(1.3.4) u(e, 1) — (Lu)(z,t) = f(z) h(z,t),  (z,1) €Qr,
(1.3.9) u(z,0) =0, T e,
(1.3.6) u(z,t)=0, (2,t) € S,
(1.3.7) u(z,T)=0, z€Q,

might have a trivial solution only. Obviously, the homogeneous equation
(1.3.3) is associated with the inverse problem (1.3.4)-(1.3.7) in the frame-
work of Theorem 1.2.3.

Let us show that (1.3.3) can have a trivial solution only. On the
contrary, let f € Ly(Q2) be a nontrivial solution to (1.3.3). Substituting
f into (1.3.4) and solving the direct problem (1.3.4)-(1.3.6) by appeal to
Theorem 1.1.5, we can recover a function u € W3 o(Q,) with the extra
smoothness property indicated in Lemma 1.1.2. It is straightforward to
verify that the function u satisfies also the overdetermination condition
(1.3.7) by a simple observation that equation (1.3.4) implies that

u (e, T) = (Lu)(e, T) = f@) W, T),  (2,0) € Q.
On the other hand, the function f is subject to relation (1.3.3), that is,
h(z,T)(Az f)(z) = f(z)h(z,T), (2,1) €.

From definition (1.2.39) of the operator Aj, two preceding relations in
combination with the boundary condition (1.3.6) it follows that the function
u(z,T') solves the Dirichlet problem

L[u(:c,T)]:O, z €N, u(z,T)=0, z€0dQ;
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which possesses only a trivial solution under the conditions of the theorem.
Therefore, u(z,7) = 0 for z € Q and the pair {u, f} thus obtained is
just a nontrivial solution of the inverse problem (1.3.4)-(1.3.7). But this
contradicts one of the conditions of item (b) concerning the uniqueness
theorem. Thus, the very assumption about the existence of a nontrivial
solution to the homogeneous equation (1.3.3) fails to be true. Finally,
equation (1.3.3) can have a trivial solution only and the assertion of item
(b) follows from the assertion of item (a). Thus, we arrive at the statement
of the theorem. B

The result thus obtained gives a hint that the inverse problem with
the final overdetermination is of the Fredholm character. Before placing
the corresponding alternative, we are going to show that within the frame-
work of proving the Fredholm solvability it is possible to get rid of the
triviality of the Dirichlet problem (1.2.21) solution. In preparation for this,
one should “shift” the spectrum of the operator L. This is acceptable if
we assume that conditions (1.1.15)-(1.1.16) are still valid for the operator
L. Under this agreement there always exists a real number A such that the
stationary problem

(1.3.8) Lx(z)+ Mx(z) =0, ze€Q; x(z) =0, z€dQ;
has a trivial solution only. Via the transform
u(z,t) = exp {—At}v(z,1)

we establish that the inverse problem (1.2.34)-(1.2.37) is equivalent to the
following one:

(1.3.9) v(x,t) — (Lv)(z,t) — Av(z, 1)

= f(2) exp M} A(z,1), (2,0) € Qr,
(1.3.10) v(z,0) =0, z€Q,
(1.3.11) v(z,t) =0, (z,t) € St
(1.3.12) v(z,T) = exp {AT} ¢(z), z€eQ.

Arguing as in specifying the operator Az we refer to a linear operator with
the values

exp {—AT}

(1.3.13) (A3 f)(z) = o D) v(z,T),

z €Q,
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and consider the related linear equation of the second kind
1
TheT) [(Le)(2) + Ap(z)] -

For the inverse problem (1.3.9)-(1.3.12) and equation (1.3.14) it is
possible to obtain a similar result as in Theorem 1.2.3 without the need for
the triviality of the unique solution of the corresponding stationary direct
problem (1.3.8). The well-founded choice of the parameter A assures us
of the va,ligity of this property. By analogy with Theorem 1.3.1 the linear
operator A, turns out to be compact. By exactly the same reasoning as in
Theorem 1.3.2 we introduce a preliminary lemma.

(1.3.14) f= Ay f+9, where ¥(z)=

Lemma 1.3.1 Let the operator L satisfy conditions (1.1.15)~(1.1.16) and
let h, by € Loo(Qr), | h(2,T)| > 6 > 0 for z € Q (6 = const ) and -

(]
p € Wi QN Wi(Q).
Then the following assertions are valid:

(a) if the linear equation f = ng has a trivial solution only, there
exists a solution of the inverse problem (1.3.9)~(1.3.12) and this
solution 1s unique in the indicated class of functions;

(b) if the uniqueness theorem holds for the inverse problem (1.3.9)-
(1.3.12), there ezists a solution of the inverse problem (1.3.9)-
(1.3.12) and this solution is unique in the indicated class of func-
tions.

It is worth emphasizing once again that the inverse problems (1.2.34)-
(1.2.37) and (1.3.9)-(1.3.12) are equiv‘alent to each other from the stand-
point of existence and uniqueness. With this equivalence in view, Lemma
1.3.1 permits us to prove the assertion of Theorem 1.3.2 once we get rid
of the triviality of the inverse problem (1.2.21) solution after the appro-
priate “shift” of the spectrum of the operator L. This profound result is
formulated below as an alternative.

Theorem 1.3.3 Let the operator L satisfy conditions (1.1.15)-(1.1.16) and
let h, hy € Loo(Qr), | h(2,T) | >8>0 forz e (6 =const) and

v € WAQ) | WiQ).

Then the following alternative is true: either a solution of the inverse prob-
lem (1.2.34)-(1.2.37) exists and is unique or the homogeneous inverse prob-
lem (1.3.4)(1.3.7) has a nontrivial solution.

In other words, this assertion says that under a certain smoothness
of input data (see Theorem 1.3.3) of the inverse problem with the final
overdetermination the uniqueness theorem implies the existence one.
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Remark 1.3.1 A similar alternative remains valid for the inverse problem
of recovering the source function coefficient in the general setting (1.2.2)-
(1.2.5) (see Prilepko and Kostin (1992a)).

We now raise the question of the solvability of the inverse problem
(1.2.34)-(1.2.37) with the final overdetermination in Holder’s classes.

Definition 1.3.1 A pair of the functions {u, f} is said to be a classical
solution of the inverse problem (1.2.34)~(1.2.37) if u € C?**1+e/2(Qy),
f € C%(£2) and all of the relations (1.2.34)—(1.2.37) occur.

In subsequent arguments the boundary 9Q happens to be of class
C?**, 0 < a < 1, and the coefficients of the uniformly elliptic operator L
from (1.1.15) meet the smoothness requirements

(1.3.15) Aij —8‘Aij , Bi, CeC*(Q).

Also, the compatibility conditions
(1.3.16) o(z) =0, h(z,0) - (Le)(z) =0, =€ N,

are imposed. By the way, the second relation is fulfilled if, for example,
© € C***(Q) and h(z,0) = 0 for all z € 69.

The study of the inverse problem (1.2.34)-(1.2.37) in Hélder’s classes
can be carried out in just the same way as we did in the consideration of
Sobolev’s spaces. In this line, we obtain the following result.

Theorem 1.3.4 Let the operator L satisfy conditions (1.1.15) and (1.3.8)
and let h, h, € C**'%(Qr), |h(z,T)| > 6 > 0 for z € Q (§ = const),
¢ € C***(Q). Under the compatibility conditions (1.3.16) the following
alternative s true: etther a solution in the sense of Definition 1.3.1 of the
inverse problem (1.2.34)-(1.2.37) exists and is unique or the homogeneous
inverse problem (1.3.4)~(1.3.7) has a nontrivial solution.

We should focus the reader’s attention on one principal case where
one can prove the global theorem of uniqueness (and hence of existence)
for the inverse problem with the final overdetermination. Along with the
assumptions of Theorem 1.3.4 we require that

(1.3.17) h(z,t), hy(z,t) >0 for (z,¢) € Qr, C(z)<0, z€Q.

Returning to the homogeneous inverse problem (1.3.4)—(1.3.7) we assume
that there exists a nontrivial solution

ue 02+a'1+a/2(QT), f € CG(Q),
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in which the function f involved cannot be identically equal to zero, since
otherwise the uniqueness theorem related to the direct problem for para-
bolic equations would immediately imply the same property for the function
u.

It is customary to introduce the well-established representation for
the function f

(1.3.18) f(g) = f*(z) = f (),

where
f*(z) = max {0, f(2)}

and
f7(z) = max{0,—f(z)} .

Let us substitute into the system (1.3.4) in place of f, first, the func-
tion f* and, second, the function f~. When solving the direct problem
(1.3.4)—~(1.3.6) in either of these cases, we denote by u; and u, the solutions
of (1.3.4)-(1.3.6) with the right-hand sides f*(z)h(z,t) and f~(z) h(z, ),
respectively. Via the transform f = f+ — f~ we deduce by the linearity of
the operator L and the uniqueness of the solution of (1.3.4)—(1.3.6) that

(1.3.19) u(z,t) = ui(z,t) — us(z,t), (z,t) € Qr.

In addition to (1.3.4)-(1.3.6), the function u also satisfies (1.3.7).
With this relation in view, we deduce from (1.3.7) and (1.3.19) that

(1.3.20) up(z,t) = ua(z, t) = p(z), z€Q,

where the function p is introduced as a common notation for the final values
of the functions u; and u,. This provides reason enough for decision-making
that several relations take place for ¢ = 1, 2:

(1321)  (u)(e,t) — (Lu)(z,0) = FE(@)h(z,2),  (2,8) € Qr,
(1.3.22)  wu(z,0)=0, reQ,
(1.3.23)  w(z,t)=0, (z,t) € Sp.

In addition to the conditions imposed above, the solutions of (1.3.21)-
(1.3.23) must satisfy (1.3.20).

It is clear that the functions fT and f~ cannot be identically equal
to zero simultaneously. In this context, it is of interest three possible cases.
Special investigations will be done separately.
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Case 1. Let ft(z) £ 0 and f~(z) = 0. In that case u,(z,t) = 0 in
Qr and (1.3.20) implies that

(1.3.24) w(z,T)=0, z€Q.

On the other hand, since f*(z)h(z,t) > 0 and f*h # 0 in @7, on account
of Lemma 1.1.5 for z € Q we would have u,(z,T) > 0, violating (1.3.24).
For this reason case 1 must be excluded from further consideration.

Case 2. Let f~(z) # 0 and f*(z) = 0. By the linearity of the homo-
geneous inverse problem (1.3.4)—(1.3.7) that case reduces to the preceding.

Case 3. Suppose that f* and f~ both are not identically equal to
zero. Observe that the functions v; = (v;),, 7 = 1,2, give solutions of the
direct problems

(13.25)  (vi)y(,t) = (L;)(z,8) = f¥(2) bz, 1), (2,1) € Qr,
(1.3.26)  w;(z,0) = f*(z) h(z,0), z€Q,
(1.3.27)  v(z,t)=0, (z,t) € St,

and in so doing the relations

(1.3.28) (2, T) = (Lp)(z) + fE(z) h(z,T), e, i=1,2,

occur. Let h and h, belong to the space C**/2(Qp). Then by the
Newton-Leibniz formula we can write

T
fi(z)h(z,T):fi(x)h(x,0)+/ 2 (2) by (2, 1) dt.

With this relation established, one can verify that the right-hand side of
equation (1.3.25) and the right-hand side of the initial condition (1.3.26)
are not identically equal to zero simultaneously. Indeed, let

() h(z,0) = 0

and
(@) hy(z,0) = 0

simultaneously. Then the Newton—Leibniz formula implies that

@) h(z,T) = 0
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in Q. However, neither f* nor f~ is identically equal to zero. Then
h(z,T) = 0in Q, violating one of the conditions of the theorem | h(z,T) | >
6>0.

After this remark we can apply Lemma 1.1.5 to the system (1.3.25)—
(1.3.27) to derive the inequality

v (2, T) >0, z€Q, i=1,2.

Let 2o € © be a maximum point of the function . Then (Lu)(z,) < 0 and,
in view of (1.3.28), the inequality f*(z,) > 0 should be valid. Therefore,

f¥(xo) f7(z0) #0,

which is not consistent with the fact that f*(z)f~(z) = 0 for z € Q.
The contradiction obtained shows that the assumption about the existence
of a nontrivial solution of the inverse problem (1.3.4)-(1.3.7) fails to be
true and, therefore, the homogeneous inverse problem (1.3.4)—(1.3.7) has
a trivial solution only. By virtue of the alternative from Theorem 1.3.4
another conclusion can be drawn concerning the solvability of the inverse
problem under consideration.

Theorem 1.3.5 Let the operator L satisfy conditions (1.1.15) and (1.3.15)
and let the coefficient C(z) < 0 for ¢ € Q. One assumes, in addition,
that h, h, € C**/%(Qr), h(z,t) > 0 and hy(z,t) > 0 for (z,t) € Qr,
h(z,T)> 6 > 0 forz € Q (6 = const ), ¢ € C?**(Q). Under the compat-
thility conditions (1.3.16) the inverse problem (1.2.34)-(1.2.37) possesses a
solution ’

u € 02+a,1+a/2(Q'T)’ fe Ca(Q)

and this solution is unique in the indicated class of functions.

Recall how we pursued a detailed exploration of the initial inverse
problem (1.2.2)-(1.2.5) in Sobolev’s spaces (see Definition 1.2.2) by relating
the values r and p as

r=2 for p =00,
(1.3.29) r= 1—3—2_—1)_2 for p € (2, 00),
T =00 for p=2.

As we have mentioned above, the question of the uniqueness of the inverse
problem (1.2.2)-(1.2.4) solution is equivalent to decision-making whether
the corresponding homogeneous inverse problem with ¢ = b = 0 in Q7 and
a = ¢ = 0 in Q possesses a trivial solution only. In the case of the Dirichlet
boundary data and the final overdetermination the answer to the latter is
provided by the following proposition. '
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Theorem 1.3.6 Let the operator L satisfy conditions (1.1.15)—(1.1.16) and
let the coefficient C(z) < 0 for x € Q. One assumes, in addition, that h,
h, € L »(Qr), h(z,T) > 0 for x € Q; h(x,t) > 0 and h(z,t) > 0 for
(z,t) € Q. Suppose that a pair of the functions u € W;:é(QT) and f €
L, () with r and p related by (1.2.39) gives a solution of the homogeneous
inverse problem (1.3.4)-(1.3.7). Then u =0 and f = 0 almost everywhere
in Qp and £, respectively.

Proof On the contrary, let f # 0 and u # 0. As before, it is customary to
introduce the new functions

ft(z) = max {0, f(z)}
and
f(z) = max{0,~f(z)}.
Then, obviously, f* € L,(Q) and hf%, h, f* € Ly(Qr). When solving
the direct problems (1.3.21)-(1.3.23) with the right-hand sides h f* and
h f~, respectively, as in Theorem 1.3.5, the functions u; and u, emerge
as their unique solutions. Via the transform f = f*¥ — f~ we deduce by
the linearity of the operator L and the uniqueness of the direct problem
solution (compare (1.3.4)-(1.3.6) and (1.3.21)-(1.3.23)) that v = u; — u,.
Since the function u satisfies the condition of the final overdetermination
(1.3.7), the values of the functions u, and u, coincide at the final moment
t=1T:
u(z,T) = uy(z,T) = p(z),

where p is a known function. Due to the differential properties of the
direct problem solution (see Lemma 1.1.2) the function p belongs to the

class W3 (Q)HK;,V;(Q) From such reasoning it seems clear that the functions
ft and f~ cannot be identically equal to zero in Q simultaneously. In this
context, it is necessary to analyze three possible cases separately.

Case 1. Let f*(z) Z 0 and f~(z) = 0in Q. Then u,(z,t) = 0 almost
everywhere in Qr and f(z) = f*(z), u(z,t) = u;(z,t). Consequently,
u;(z,T) = 0 almost everywhere in Q. On the other hand, it follows from
Lemma 1.1.5 that uy(x,7) > 0 in Q if we deal in @7 with fTh > 0 and
f~h £ 0. The obtained contradiction shows that case 1 must be excluded
from further consideration.

Case 2. Let f*(z) = 0 and f~(z) # 0 in . By the linearity and
homogeneity of the inverse problem (1.3.4)-(1.3.7) that case reduces to the
preceding.

Case 3. Assume that f*(z) # 0 and f~(z) # 0 in Qr. Applying
Lemma 1.1.5 to the system (1.3.25)-(1.3.27) yields

(1.3.30) u;(z,T) = p(z) >0, z€eQ, i=1,2.
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In complete agreement with Lemma 1.1.2 the functions
vi(z,t) = (v;),(z,1), i=1,2,

belong to &;’O(QT) and the following relations

(1'3‘31) (vi)t(x’t)_([/vi)(m)t):fi(x)ht(m’t)) (:E,t)GQT,
(1.3.32)  v;(2,0) = f£(2) h(z,0), zteQ,
(1.3.33)  wv(z,t)=0, (z,t) € St,
are valid in the sense of the corresponding integral identity.

Before we undertake the proof with the aid of Lemma 1.1.5, let us
observe that the functions f*h(z,0) and f*h,(z,t) can never be identi-
cally equal to zero once at a time. Indeed, assume to the contrary that

fEfh(z,0) = 0 and f*h,(z,t) = 0 simultaneously. Then the Newton-—
Leibniz formula gives

T

£ (@) e, T) = P @) b, 0) + [ F5@) a0 dt,

0

yielding
fE@)h(z, T)=0

over ). However, by requirement,
fr#0
and
fm#0.
This provides support for the view that h(z,T) = 0, z € 2, which disagrees
with h(z,T) > 0.

In accordance with what has been said, Lemma 1.1.5 is needed to
derive the inequality

(1.3.34) (v)(z,T) = v;(2,T) >0, z€eQ, 1=1,2.
On the other hand, Lemma 1.1.2 implies that
u € C([0,T); W5(Q)

along with

(u;); € C((0,T); L2(9)) -
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Having stipulated these conditions, equation (1.3.21) leads to the relations
(13.35) (u),(e,T) - (L)(z) = F£(2)h(e,T), =€Q, i=12.

Here we used also that the values of u; and u, coincide at the moment
t = T and were denoted by pu.

When Ly 2 0in €, it follows from (1.3.30) and Corollary 1.1.2 that
there exists a measurable set ' C € such that

mes, Q' > 0
and
(1.3.36) (Lp)(z) <0, zeQ.

By assumption, h(z,T) > 0. In view of this, relations (1.3.356)-(1.3.36)
imply that f*(z) > 0 and f~(z) > 0 in . But this contradicts in
Q the identity f* .- f~ = 0, valid for the functions f* and f~ of such
constructions.

For the case Ly = 0 relation (1.3.35) can be rewritten as

(1.3.37) (w;),(2,T) = fE(z)h(e,T), z€Q, i=12.

Therefore, relations (1.3.34) and (1.3.37) imply that again f* > 0 and
f~ > 01in . As stated above, this disagrees with constructions of the
functions f* and f~. Thus, all possible cases have been exhausted and the
theorem is completely proved. W

Remark 1.3.2 A similar uniqueness theorem is still valid for the inverse
problem of recovering the source term coeflicient in the general statement
(1.2.2)-(1.2.5) (see Prilepko and Kostin (1992a)).

Theorems 1.3.3 and 1.3.6 imply immediately the unique solvability of
the inverse problem (1.2.34)—(1.2.37). We quote this result for the inverse
problem (1.2.2)—(1.2.5) in a common setting.

Theorem 1.3.7 Let the operator L satisfy conditions (1.1.15)-(1.1.16) and
the coefficient C(z) > 0 for ¢ € Q. One assumes, in addition, that h,
hi € Lo (Qr), 0 € C(0R), g=0,a=0,b=0, w € Lo([0,T]), x € W2()
and (Bx)(z) = 0 for z € 0Q. Also, let h(z,t) > 0 and h,(z,t) > 0 almost
everywhere in Qp; o(x) > 0 for z € 0Q; w(t) > 0 almost everywhere on
(0,7) and [I(R)](z) > 6 > 0 for z € Q (6 = const ). Then the inverse prob-
lem (1.2.2)~(1.2.5) has a solution u € W2'(Q,), f € La(Q), this solution
is unique in the indicated class of functions and the estimate

ull$o) + 11 Fllpa < cllxN15h

is true, where the constant ¢ is expressed only in terms of the input data
and does not depend on u and f.
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1.4 The nonlinear coefficient inverse problem:
recovering a coefficient depending on x

In this section we study the inverse problem of finding a coefficient at the
function u involved in the equations of parabolic type.

Let us consider the inverse problem of recovering a pair of the func-
tions {u, f} from the equation

(1.4.1)  u,(z,t)— (Lu)(z,t)
= f(z)u(z,t) + g(z,t), (z,t)€eQr=Q2x(0,T),

the initial condition

(1.4.2)  u(z,0)=0, z€eQ,

the boundary condition

(1.4.3)  u(z,t) =b(z,t), (z,t) € Sr,
and the condition of final overdetermination

(1.4.4)  u(z,T)=¢(x), z€QN.

Here we have at our disposal the operator L, the functions g, b and ¢ and
the domain .

The linear operator L is supposed to be uniformly elliptic subject to
conditions (1.1.15)—(1.1.16). In what follows we will use the notation

E = Lo(Q)

and
B ={f(z) € E: f(x) <0,2€Q}.

Definition 1.4.1 A pair of the functions {u, f} is said to be a solution of
the inverse problem (1.4.1)—(1.4.4) ifu € W5 '(Q,.), f € E_ and all of the
relations (1.4.1)~(1.4.4) take place.

Recall that, in general, the boundary condition function b is defined on
the entire cylinder Q7. The boundary condition (1.4.3) is to be understood
in the sense that the function u — b vanishes on Sr.
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One can readily see that the present inverse problem of recovering the
coefficient is nonlinear. This is due to the fact that the linear differential
equation contains a product of two unknown functions. As a first step
towards the solution of this problem, it is necessary to raise the question
of the solution uniqueness. Assume that there were two distinct pairs
of functions u;, fi and us, f,, solving the inverse problem (1.4.1)-(1.4.4)
simultaneously. Note that fi cannot coincide with f;, since otherwise the
same would be valid for the functions u; and u, due to the direct problem
uniqueness theorem with regard to (1.4.1)—(1.4.3). Since the functions
v=u; —u; and f = f; — f, give the solutions of the inverse problem

(1.4.5) v, (z,t) — (Lv)(z,t) — fi(z) v(z,1)

= f(&) ur(ar1), (e,0) €Qr,
(1.4.6) o(z,0) =0, c€Q,
(1.4.7) v(z,t) =0, (z,t) € St
(1.4.8) v(z,T) =0, reQ,

the way of proving the uniqueness for the nonlinear coefficient inverse prob-
lem (1.4.1)—(1.4.4) amounts to making a decision whether the linear inverse
problem (1.4.5)~(1.4.6) has a trivial solution only.

In what follows we will assume that the coefficient C(z) of the operator
L satisfies the inequality C(z) < 0 in Q and

9,9 € L2(Q1); 920 ¢,>0 in Qr;
(1.4.9)
b, b, e W3'(Q.); ©>0 b >0 on Sr.

With these assumptions, joint use of Theorem 1.1.8 and Lemma 1.1.5
permits us to deduce that u,(z,t) > 0 and (u2),(z,t) > 0 in Qr, and
uo(z, T) > 0 in Q. This provides support for the view that the linear in-
verse problem (1.4.5)—(1.4.8) of finding a pair of the functions {v, f} is of
the same type as (1.3.4)-(1.3.7). Applying Theorem 1.3.6 yields that v = 0
and f = 0 almost everywhere in Qr and Q, respectively. Summarizing, we
obtain the following result.

Theorem 1.4.1 Let the operator L satisfy conditions (1.1.15)-(1.1.16) and
let the coefficient C(z) < 0 in Q. One assumes, in addition, that condition
(1.4.9) holds for the functions g and b. Then the inverse problem (1.4.1)-
(1.4.4) can have at most one solution.
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In this regard, the question of the solution existence for the nonlinear
inverse problem (1.4.1)-(1.4.4) arises naturally. We begin by deriving an
operator equation of the second kind for the coefficient f keeping

96,9, €W N(Q), p2n+l; LyekE;
(1.4.10)
p()>6>0 in Q; b,00=0 for z€dQ.

By relating a function f from E to be fixed we substitute it into equation
(1.4.1). The well-known results of Ladyzhenskaya and Uraltseva (1968)
guide the proper choice of the function u as a unique solution of the direct
problem (1.4.1)-(1.4.3). It will be convenient to refer to the nonlinear

operator
A E— F

with the values
1
p(z)

and consider over E the operator equation of the second kind associated
with the function f:

(14.11)  (Af)(=) = u(e,T) = (Le)(z) - 9(=,T)|, z€Q,

(1.4.12) f=Af

We will prove that the solvability of equation (1.4.12) implies that of the
inverse problem (1.4.1)—(1.4.4).

Lemma 1.4.1 Let the operator L satisfy conditions (1.1.15)~(1.1.16), the
coefficient C(z) < 0 for z € Q and condition (1.4.10) hold. Also, let the
compatibility condition

bz, T) = ¢(a)
be fulfilled for x € 0Q. One assumes, in addition, that equation (1.4.12)
admits a solution lying within E_. Then there exists a solution of the

inverse problem (1.4.1)~(1.4.4).

Proof By assumption, equation (1.4.12) has a solution lying within E_,
say f. Substitution f into (1.4.1) helps find u as a solution of the direct
problem (1.4.1)—(1.4.3) for which there is no difficulty to establish that
u, € W2H(Qr), w,(+,T) € E and (Lu)(-,T) € E (see Ladyzhenskaya and
Uraltseva (1968)). We will show that the function u so defined satisfies
also the overdetermination condition (1.4.4). In preparation for this, set

u(z,T) = p1(z), z €.
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By the construction of the function wu,
(1.4.13) u(z, T) — (L1 )(z) — g(z, T) = f(z) a1 ().

On the other hand, the function f being a solution to equation (1.4.12)
provides

(1.4.14) p(z) (Af)(2) = f(z) p(2) .

After subtracting (1.4.13) from (1.4.14) we conclude that the function p—¢,
satisfies the equation

(1.4.15) [Lp = p)](2) + f(2)(p 1) =0, z€Q.

Combination of the boundary condition (1.4.3) and the compatibility con-
dition gives

(1.4.18) (¢ ~p1)(2)=0, z €00.

As C(z) < 0in Q and f € E_, the stationary direct problem (1.4.15)-
(1.4.16) has only a trivial solution due to Theorem 1.1.3. Therefore, the
function u satisfies the final overdetermination condition (1.4.4) and the
inverse problem (1.4.1)~(1.4.4) is solvable, thereby completing the proof of
the lemma. W

As we have already mentioned, the Birkhoff-Tarsky theorem is much
applicable in solving nonlinear operator equations. A key role in developing
this approach is to check whether the operator A is isotonic.

Lemma 1.4.2 Let the operator L satisfy conditions (1.1.15)~(1.1.16), the
coefficient C(z) < 0 in Q, conditions (1.4.10) hold, g(z,t) > 0 and g,(x,t) >
0 in Q7. If, in addition, the compatibility conditions

b(z,T) = p(x) and b,(x,0)=g(z,0)
are fulfilled for any x € 99, then A is an isotonic operator on E_.

Proof First of all we stress that F_ is a conditionally complete lattice.
Let f; and f; be arbitrary elements of E_ with f; < f,. One trick we
have encountered is to substitute f; and f, both into equation (1.4.1) with
further passage to the corresponding direct problems for i = 1, 2:

(1.4.17) ui(z,t) = (Lu') (z,1)
= fi(z)u'(z,t) + g(z,t), (z,1)€Qr,
(1.4.18) ui(z,0) =0, e,

(1.4.19) ui(z,t) = b(z, 1), (z,t) € St
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In this regard, the conditions of the lemma assure that the function w' = :

presents a solution of the direct problem

(1.4.20) wi(z,t) — (Lw')(=,t)

| = fi(z)w'(z, ) + g,(2,1), (2,t) €Qr,
(1.4.21) w(z,0) = g(z,0), : z€Q,
(1.4.22) w'(z,t) = by(z, 1), (z,t) € Sr.

Being solutions of (1.4.17)—(1.4.19), the functions v = u? — u! and h =
f2 — f1 are subject to the set of relations:

(1.4.23) v(z,t) — (Lv)(z,t) — foz) v(z,t)

= h(z)u'(2,1), (2,1) € Qr,
(1.4.24) v(z,0) =0, reQ,
(1.4.25) v(e,t) =0, . (z,t) € Sr.

Just now it is necessary to keep in mind that f; < f,. On account of
Theorem 1.1.8 and Lemma 1.1.5 the systems (2.4.17)-(2.4.19) and (2.4.20)-
(2.4.22) provide that h(z) ul(z,t) > 0 and h(z) u}(z,t) > 0 for (z,t) € Qr.
Once again, appealing to Theorem 1.1.8 and Lemma 1.1.5, we deduce that
vy (z,T) > 0 in Q. By definition (1.4.11) of the operator A, Af, < Afs,
what means that A is isotonic on E_. This proves the assertion of the
lemma. B

We now turn to a common setting and proving the principal global
result concerning the unique solvability of the inverse problem at hand.

Theorem 1.4.2 Let the operator L satisfy conditions (1.1.15)-(1.1.16) and
the coefficient C(z) < 01in Q. Letg, b, b, € W;'I(QT), p>n+l; g(z,t) >0
and g,(z,t) > 0 for (z,t) € Qr; Ly € E; p(z) > 6> 0 in Q (6 = const ).
Also, we take for granied the compatibility conditions

b(z,0) =0, b=, T)=p(x) and b(z,0)=g(z,0) for z€Q
and require that
(1.4.26) L[u(z,T) - ¢(z)] <0, =z€Q,

where u® refers to a solution of problem (1.4.1)-(1.4.3) with f = 0. Then
the inverse problem (1.4.1)-(1.4.4) has a solution v € W2 '(Q;), f € E-
and this solution is unique in the indicated class of functions.
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Proof First we are going to show that on E_ there exists an order segment
which is mapped by the operator A onto itself. Indeed, it follows from the
foregoing that (1.4.26) implies the inequality

1

(1.4.27) A0)= — L[u%=,T) - p(z)] <0, =z€Q,

(z)
and, consequently,

: A E_ — FE_.
Let us take a constant M from the bound
1

(1.4.28) M > @ (Lo)(z) + 9(x, )}, z€Q.

By definition (1.4.10) of the operator A,
1
(1.4.29) A(-M)= @) [u(z,T) - (Le)(z) — g(z,T)], e,

where u is a solution of the system (1.4.1)-(1.4.3) with constant —M stand-
ing in place of the coefficient f.

Before giving further motivations, let us recall that the coefficients of
the operator L do not depend on t. For the same reason as before, the

)
function u, gives a solution from V3 °(Q,) of the direct problem

wt_Lw:—Mw+gty (.’l?,t)EQT,
w(z,0) = 9(z,0), r €2,
Cw(x,t) = b,(z,t), (z,t) € S,
whence by Theorem 1.1.8 and Lemma 1.1.5 it follows that in Q
u,(z,T) = w(z,T) > 0.
Thus, (1.4.28)—(1.4.29) imply the inequality
(1.4.30) A(-M)>-M.
Because of (1.4.27) and (1.4.30), the operator A being isotonic carries the
order segment
[-M,0)={feE: -M< f<0}

of the conditionally complete and partially ordered set E_ into itself. By
the Birkhoff-Tarsky theorem (Theorem 1.1.9) the operator A has at least
one fixed point in [~ M, 0] C E_ and, therefore, equation (1.4.11) is solvable
on E_. In conformity with Lemma 1.4.1 the inverse problem (1.4.1)-(1.4.4)

has a solution. The uniqueness of this solution follows immediately from
Theorem 1.4.1 and thereby completes the proof of the theorem. R

Remark 1.4.1 A similar theorem of existence and uniqueness is valid for
the case where the boundary condition is prescribed in the general form
(1.2.4) (see Prilepko and Kostin (1992b)).
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1.5 The linear inverse problem: recovering the evolution
of a source term

This section is devoted to inverse problems of recovering the coefficients
depending on t. The main idea behind method here is to reduce the inverse
problem to a certain integral equation of the Volterra type resulting in
global theorems of existence and uniqueness. We consider the two types
of overdetermination: pointwise and integral. In the case of a pointwise
overdetermination the subsidiary information is the value of the function
u at a point z, of the domain Q at every moment within the segment
[0, T]. In another case the function u is measured by a sensor making a
certain averaging over the domain 2. From a mathematical point of view
the result of such measurements can be expressed in the form of integral
overdetermination. We begin by placing the problem statement for the
latter case.

Being concerned with the functions g, w and ¢, we study in the cylin-
der Qp = Q x (0, T) the inverse problem of finding a pair of the functions
{u, f} from the equation

(1.5.1)  wy(z,t) — Au(z,t) = f(t) 9(z,t), (z,t) €Qr,

the initial condition

(1.5.2) wu(z,0)=0, zr € Q,

the boundary condition

(1.5.3) wu(z,t)=0, (z,t) € Sp =00 x 0,17,
and the condition of integral overdetermination

(1.5.4) / u(z, t)w(z) dz = ¢(1), tel0,7].
Q

A rigorous definition for a solution of this inverse problem is presented
below.

Definition 1.5.1 A pair of the functions {u, f} is said to be a gener-
alized solution of the inverse problem (1.5.1)~(1.5.4) if u € W3 ¢(Q.),
f € L3(0,7T) and all of the relations (1.5.1)~(1.5.4) occur.
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In what follows we agree to consider

g€C(0,T],Lo(Q), weWQNWIR), ¢eWi0,T),

(1.5.5) :
>g"=const >0 for 0<t<T.

[ st@ e &

(Y

The first goal of our studies is to derive a linear second kind equation
of the Volterra type for the coefficient f over the space L,(0,7). The
well-founded choice of a function f from the space L2(0,T) may be of help
in achieving this aim. Substitution into (1.5.1) motivates that the system
(1.5.1)-(1.5.3) serves as a basis for finding the function u € W3 4(Q,) as a
unique solution of the direct problem (1.5.1)-(1.5.3). The correspondence
between f and u may be viewed as one possible way of specifying the linear
operator

A: Lz(O,T) — LQ(O,T)

with the values

(1.5.6) (Aﬂ@):—%al/u@J)mAxﬁh,

<

Q

where
g:1(t) = / g(z,w(z) dz.
Q
In this view, it is reasonable to refer to the linear equation of the
second kind for the function f over the space L,(0,T):
(1.5.7) f=Af+9,
where ¥(t) = ¢'(t) g1 (¢).

Theorem 1.5.1 Let the inputl data of the inverse problem (1.5.1)~(1.5.4)
satisfy (1.5.5). Then the following assertions are valid:

(a) ifthe inverse problem (1.5.1)~(1.5.4) is solvable, then so is equation

(15.7);
(b) if equation (1.5.7) possesses a solution and the compatibility con-
dition
(1.5.8) ¥(0) =0

holds, then there exists a solution of the inverse problem (1.5.1)~
(1.5.4).
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Proof We proceed to prove item (a) assuming that the inverse problem
(1.5.1)—(1.5.4) is solvable. We denote its solution by {u, f}. Multiplying
both sides of (1.5.1) by the function w(z) scalarly in Lo(£2) we establish
the relation

(1.5.9) dit/u(a:,t)w(a:) d:c+/u(z,t)Aw(a:,t) dt

Q 1)

:f(t)/ g(z,t)w(z) dz.
Q

Because of (1.5.4) and (1.5.6), it follows from (1.5.9) that f = Af +¢'/g:.
But this means that f solves equation (1.5.7).

We proceed to prove item (b). By the original assumption equation
(1.5.7) has a solution in the space Lo(0,T), say f. When inserting this
function in (1.5.1), the resulting relations (1.5.1)—(1.5.3) can be treated as
a direct problem having a unique solution u € W3 §(Q,).

In this line, it remains to show that the function u satisfies also the
integral overdetermination (1.5.4). Indeed, (1.5.1) yields

(1.5.10) 4 / u(z, t) w(z) d:c+/ u(z,t) Aw(z,t) dt = f(t)g:(t).

dt
Q Q

On the other hand, being a solution to equation (1.5.7), the function wu is
subject to the relation

(1.5.11) o'(t)+ / u(z,t) Aw(z,t) dt = f(2) g: ().

Q

After subtracting (1.5.11) from (1.5.10) we finally get

d
- /u(x,t)w(a:) do— /(1) = 0.
0
Integrating the preceding differential equation and taking into account the
compatibility condition (1.5.8), we find out that the function u satisfies the
overdetermination condition (1.5.4) and the pair of the functions {u, f} is
just a solution of the inverse problem (1.5.1)-(1.5.4). This completes the
proof of the theorem. W

Before considering details, it will be sensible to touch upon the prop-
erties of the operator A. In what follows the symbol A* (s = 1,2,...) refers
to the sth degree of the operator A.
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Lemma 1.5.1 Let condition (1.5.5) hold. Then there exists a positive
integer so for which A®° is a contracting operator in Lo(0,T).

Proof Obviously, (1.5.6) yields the estimate

1
(1512)  [Afllbo S = 180l lulho, 0<t<T.
Multiplying both sides of (1.5.1) by u scalarly in L(€2) and integrating the

resulting expressions by parts, we arrive at the identity

1 d
3 OB e +lu( D= [ FOs@ 0 e, 02T,
2

and, subsequently, the inequality

d
o 1eC oo SHFO (- Dk,  0t<T.

In this line,

(1818) 1w 0lka S N O+ sup o mn/ﬁﬂrwr

0<t<T.

Since u(z,0) = 0, relations (1.5.12) and (1.5.13) are followed by the esti-
mate

t

s \1/2
(1.5.14)  [[Afllz, 0,0 £ ﬂ(/ (1 £ 1l2,0,m)) dT) ; 0<t<T,

0

where
VT

. ) lla-

'u:

It is worth noting here that p does not depend on ¢.

It is evident that for any positive integer s the sth degree of the
operator A can be defined in a natural way. In view of this, estimate
(1.5.14) via the mathematical induction gives

. /123 T8 1/2
(1.5.15) || A°fll 0,1y < N 1 fll2, 0,7y s=1,2,....
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It follows from the foregoing that there exists a positive integer s = s, such
that

sto Tso 1/2
(1.5.16) < 1.

80!

This provides support for the view that the linear operator A®° is a con-
tracting mapping on L2(0,7") and completes the proof of the lemma. B

Regarding the unique solvability of the inverse problem concerned,
the following result could be useful.

Theorem 1.5.2 Let (1.5.5) and the compatibility condition (1.5.8) hold.
Then the following assertions are valid:

(a) a solution {u, f} of the inverse problem (1.5.1)~(1.5.4) ezists and

1S unique;
(b) with any initial iteration fy € Ly(0,T) the successive approzima-
tions
(1.5.17) fop1=Af,, n=01,2, ...,

converge 1o f in the Ly(0,T)-norm (for A see (1.5.18) below).

Proof We have occasion to use the nonlinear operator
A: Ly(0,T) — Lo(0,7T)

acting in accordance with the rule

’

(1.5.18) Zszf+:4,

where the operator A and the function g, arise from (1.5.6). From (1.5.18)
it follows that equation (1.5.7) can be recast as

(1.5.19) f=Af.

To prove the solvability of (1.5.19) it is sufficient to show that A has
a fixed point in the space L2(0,7"). With the aid of the relations

ASfy— A fy = Afi— A, = A (L — f)
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we deduce from estimate (1.5.15) that

(15.20) [|A*fs = A fo]ly 0.0y = | A% (fs = f2) ll2, (0,7

250 T 1/2
n o T'Se
( ) L fi = fallo, o,ry >

So !

IA

where sy has been fixed in (1.5.16). By virtue of (1.5.16) and (1.5.20) it
turns out that A®° is a contracting mapping on Ly(0,T"). Therefore, A®
has a unique fixed point f in L2(0,7) and the successive approximations
(1.5.17) converge to f in the Ly(0,T)-norm without concern for how the
initial iteration f, € Ly(0,T) will be chosen.

" Just for this reason equation (1.5.19) and, in turn, equation (1.5.7)
have a unique solution f in L2(0,7). According to Theorem 1.5.1, this
confirms the existence of the inverse problem (1.5.1)-(1.5.4) solution. It
remains to prove the uniqueness of this solution. Assume to the contrary
that there were two distinct solutions {u;, f1} and {u,, fi;} of the inverse
problem under consideration. We claim that in that case f, # f, almost
everywhere on [0,7]. Indeed, if f; = f,, then applying the uniqueness
theorem to the corresponding direct problem (1.5.1)—(1.5.3) we would have
u; = u, almost everywhere in Q...

Since both pairs satisfy identity (1.5.9), the functions f; and £, give
two distinct solutions to equation (1.5.19). But this contradicts the unique-
ness of the solution to equation (1.5.19) just established and proves the
theorem. H

Corollary 1.5.1 Under the conditions of Theorem 1.5.2 a solution to equa-
tion (1.5.7) can be ezpanded in a series

(1.5.21) f=v+ fj A%y
s=1

and the estimate

(1.5.22) 1 fll2,0m) < PI¥ 2, 01

18 valid with
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Proof The successive approximations (1.5.17) with f, = ¢ verify that
(1.5.23) fo=Afap = A fo=0+ Y A
s=1

The passage to the limit as n — oo in (1.5.23) leads to (1.5.21), since, by
Theorem 1.5.2,

| f— fa ||2,(0,T) -0

as n — 00.
Being concerned with A® satisfying (1.5.12) we get the estimate

@ 2s Ts 1/2
[
Wfll2 0y < ¥l 01 Z( o1 ) :
s=0 ’

By D’Alambert ratio test the series on the right-hand side converges,
thereby completing the proof of the theorem. B

As an illustration to the result obtained, we will consider the inverse
problem for the one-dimensional heat equation and find the corresponding
solution in the explicit form.

Example 1.5.1 We are exploring the inverse problem of finding a pair of
the functions {u, f} from the set of relations

(1.5.24)  wu,(z,t) = ug (2,t) + F(z,t), (z,t) € (0,7) x (0,T),

(1.5.25)  u(x,0)=0, z € [0,7],

(15.26)  u(0,t) = u(m,1) =0, te(0,T],

(1.5.27) f u(z,t) sin ¢ dz = (1), te0,7],
0

where

(1.5.28) F(z,t) = f(t) sinz, p(t)=t.

In trying to solve it we employ the Fourier method of separation of variables
with regard to the system (1.5.24)—(1.5.26), making it possible to derive
the formula

(1.5.29) u(z,t) = Z / Fi(7) exp {—k2(t —~ 1)} dr sinkz,

k=1
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where
™

Fy(r) = % / F(x,7)sinkx dz.
0

Because of (1.5.28) and (1.5.29), the function F' is representable by

t

(1.5.30) u(:c,t):/f(r) exp {—(t — 1)} dr sinz.

0

Substituting (1.5.30) into (1.5.24) and taking into account the overdetermi-
nation condition (1.5.27), we derive the second integral Volterra equation of
the type (1.5.7). In principle, our subsequent arguments do follow the gen-
eral scheme outlined above. However, in this particular case it is possible to
perform plain calculations by more simpler reasonings. Upon substituting
(1.5.30) into (1.5.27) we obtain the integral Volterra equation of the first
kind for the function f

(1.5.31)

T

/fr) exp{—(t—7)} dr.
0

Here we used also that ¢(t) = ¢ in view of (1.5.28). In order to solve
equation (1.5.31) one can apply the well-known integral transform

+o00

(15.32) fo)= [ exp(-pt) s at,

0

where the function f(p) of one complex variable is termed the Laplace
transform of the original function f(¢). The symbol <+ is used to indicate

the identity between f(t) and f(p) in the sense of the Laplace transform.
Within this notation, (1.5.32) becomes

f(t) = f(p).
Direct calculations by formula (1.5.32) show, for example, that

1 n . nl
(1533) exp{—t}—m [2 TW y n:0,1,2,... .

With a convolution of two functions one associates

(15.34) / ) gt — ) de + F(p) i(p),
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where f(t)+ f(p) and g(t)+§(p). The outcome of taking the Laplace trans-
form of both sides of (1.5.31) and using (1.5.34) is the algebraic equation
for the function f(p):

1 T . 1
1.5.35 - = = f—-
(15.35) S=5 it
giving

A 2 {1 1
(1.5.36) f= ;(;"'I?)

On the basis of (1.5.33) and (1.5.36) it is possible to recover the original
function f(t) as follows:

(1+41).

R

(1.5.37) f(t) =

Then formula (1.5.30) immediately gives the function
2.

(1.5.38) u(z,t)= — tsinz.
m

From such reasoning it seems clear that the pair of functions (1.5.37)-
(1.5.38) is just a solution of the inverse problem (1.5.24)—(1.5.27). But
this solution was found by formal evaluation. However, due to the unique-
ness theorems established above there are no solutions other than the pair
(1.5.37)—(1.5.38).

We now turn our attention to the inverse problem of recovering a
source term in the case of a pointwise overdetermination.

Assume that there exists a perfect sensor responsible for making mea-
surements of exact values of the function u at a certain interior point z, € 2
at any moment within the segment [0, 7). As a matter of fact, the pointwise
overdetermination u(z,,t) = ¢(t), t € [0,T), of a given function ¢ arises
in the statement of the inverse problem of finding a pair of the functions
{u, f}, satisfying the equation

(1.5.39) u,(z,t) — Au(z,t) = f(t) g(z,t), (z,t) € Qr,
the initial condition

(1.5.40) u(z,0) =0, zeQ,
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the boundary condition
(1.5.41) u(z,t) =0, (z,t) € St
and the condition of pointwise overdetermination

(1.5.42) u(zo,t) = (1), telo, 7],

when the functions g and ¢ are known in advance.

We outline here only the general approach to solving this inverse prob-
lem. Having no opportunity to touch upon this topic we address the readers
to Prilepko and Soloviev (1987a).

We are still in the framework of the Fourier method of separating
variables with respect to the system of relations (1.5.39)-(1.5.41), whose
use permits us to establish the expansion

(1543)  u(z,1) Z/f ™) ga(7) exp {=, (t = )} dr Xi(),

k=1

where

ge(1) = / 9(z,7) Xa() dr

X 2
XeEa

and {)\k, X };0:1 are the eigenvalues and the eigenfunctions of the Laplace
operator emerging from the Sturm-Liouville problem (1.2.51). By inserting
(1.5.43) in (1.5.42) we get a linear integral Volterra equation of the first
kind

o 1

(1544)  p(t)=3 / F(7) g0 (7) exp {=Ap(t = 1)} dr Xu(zo).
k=1 7}

Assuming the functions ¢ and g to be sufficiently smooth and accepting

tg(zo,t)| > ¢g* > 0, t € [0,7], we can differentiate both sides of (1.5.44)

with respect to ¢, leading to the integral Volterra equation of the sec-

ond kind

t
(1.5.45) fit) = / K(t,7) f(r) dr +9¥(1),
0
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where
_ ¥
‘/)(t) _g(Il?o,t) 3
K(t,7) :m kz::l A 9 (7) exp {2 (t — 1)} Xi(zo) -

As can readily be observed, the solvability of the inverse problem
(1.5.39)~(1.5.42) follows from that of equation (1.5.45) if the compatibility
condition ¢(0) = 0 was imposed (see a similar result in Theorem 1.5.1). The
existence and uniqueness of the solution to the Volterra equation (1.5.45),
in turn, can be established in the usual way. The above framework may be
useful in obtaining a unique global solution of the inverse problem (1.5.39)-
(1.5.42).

As an illustration of our approach we consider the following problem.

Example 1.5.2 It is required to recover a pair of the functions {u, f}
from the set of relations

(1.5.46)  u,(x,t) = uy,(z,t) + f(t) sinz, (z,t)€ (0,7)x (0,7,

(1.6.47)  u(z,0)=0, z € [0,7],
(1.5.48)  u(0,¢t) = u(m,t) =0, t€ (0,7,
(1.5.49) u<§,t>:t, te(0,1].

Now equation (1.5.44) becomes

(1.5.50) t= / f(r) exp{—(t — 1)} dr.
. 0

Because of its form, the same procedure works as does for equation (1.5.31).
Therefore, the functions f(t) = 1+t and u(z,t) = ¢ sinz give the desired
solution.

In concluding this chapter we note that the approach and results of
this section carry out to the differential operators L of rather complicated
and general form (1.1.8).



Chapter 2

Inverse Problems for Equations

of Hyperbolic Type

2.1 Inverse problems for x-hyperbolic systems

Quite often, mathematical models for applied problems arising in natural
sciences lead to hyperbolic systems of partial differential equations of the
first order. This is especially true of hydrodynamics and aerodynamics.
One more important case of such hyperbolic systems is connected with the
system of Maxwell equations capable of describing electromagnetic fields.
Until now the most profound research was devoted to systems of equations
with two independent variables associated with one-dimensional models
which do not cover fully the diversity of problems arising time and again
in theory and practice. The situation becomes much more complicated in
the case of multidimensional problems for which careful analysis requires
a somewhat different technique. Moreover, the scientists were confronted
with rather difficult ways of setting up and treating them on the same
footing. Because of these and some other reasons choosing the most com-
plete posing of several ones that are at the disposal of the scientists is
regarded as one of the basic problems in this field. On the other hand,
a one-dimensional problem can serve, as a rule, as a powerful tool for

71
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establishing the basic pattern and features of the behavior of solutions of
hyperbolic systems. Some of them are of general character and remain valid
for solutions of multidimensional problems. Adopting the arguments just
mentioned it would be reasonable to restrict yourself to the study of linear
hyperbolic systems of partial differential equations with two independent
variables.

With this aim, we consider the system of the first order linear
equations with two independent variables z,7 € R

(9u

(2.1.1) A(z,t) =— Bm

B(z t) 5 +C(:c t)u= F(z,t),

where

u=u(z,t) = (u(z,t),...,u,(z,t))

and
F(z,t) = (Fi(z,1),..., Falz2,1))

are vectors, A(z,t), B(z,t) and C(z,t) are n x n-matrices for any fixed =z
and t. The matrix A is assumed to be invertible and the matrix A~! B can
always be diagonalized. Any such system is said to be z-hyperbolic.

Let a matrix T reduce A~'B to a diagonal matrix K, that is, K =
T-1(A='B)T. Substituting v = T and multiplying (2.1.1) by the ma-
trix T-1A~! from the left yields the canonical form of the z-hyperbolic
system

Ov v

(2.12) 5. K 5 TDv=0,
where
D=T"" ‘;—T+T tAT lB%wa tATicT,
G=T"'A"'F.

In what follows we will always assume that any z-hyperbolic sys-
tem under consideration admits the canonical form (2.1.2). Under such a
formalization the method of integrating along the corresponding charac-
teristics will be adopted as a basic technique for investigating the system
(2.1.2) in solving inverse problems.

In order to understand nature a little better, we introduce as prelim-
inaries the auxiliary inverse problem in which it is required to find a pair
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of the functions vy, v, € C!([0, L] x [0,400]) and a pair of the functions
p1, P2 € C[0, L], satisfying the system of relations

(%léf’t)JFavléi’t):vz(r»t)wl(ﬁ), 0<z<L, t>0,
(2.1.3) avzéf’t)*avzgz’t)=v1(w‘,t)+pz(w), 0<z<L, t>0,

vi(2,0) = pi(z), wva(z,0) = pa(z), 0<z<1L,

[ vi(L,t) = ¥a(z), v2(0,1) = ¥a(2), t>0.

In the general case a solution of problem (2.1.3) is not obliged to be unique.
In this connection, we should raise the question of imposing additional
restrictions if we want to ensure the uniqueness of a solution of the inverse
problem under consideration.

There are various ways of taking care of these restrictions. For exam-
ple, the conditions for the exponential growth of the derivatives of the
functions v; and v, with respect to ¢, meaning

6'01 (ZE, t)
ot

Ovy(z,t)

(2.1.4) =

< M exp{ait}, < M, exp {a:t},

fall within the category of such restrictions. One succeeds in showing that
under a sufficiently small value L conditions (2.1.4) guarantee not only
the uniqueness, but also the existence of a solution of the inverse problem
(2.1.3). This type of situation is covered by the following assertion.

Theorem 2.1.1 Let 1, @,, Y1 and 1, be continuously differentiable func-
tions such that o1(L) = ¥1(0) and p,(0) = 9,(0). One assumes, in addi-
tion, that there are positive constants a and M such that for anyt > 0

| 45(t)| < M exp{at}

and

| 42(1)| < M exp{at}.

Then there exists a value Lo = Lo(a) > 0 such that for any L < Lo the
inverse problem (2.1.3) has a solution in the class of functions satisfying
estimates (2.1.4). Moreover, there exists a value Ly = Ly(a;) > 0 such that
for any Ly < L the inverse problem (2.1.3) can have at most one solution
in the class of functions for which estimates (2.1.4) are true.
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Theorem 2.1.1 follows from one more general theorem to be proved
below. Here we only note that the value L; decreases with increasing
a;. This property is of special interest and needs investigation. Accepting
w1 =0, 2 =0, ¥; =0 and 9, = 0 we say that the nontrivial solutions v,
and v, of the system (2.1.3) corresponding to certain p, and p, constitute
the eigenfunctions of the inverse problem (2.1.3). The meaning of
existence of eigenfunctions of this inverse problem is that its solution is not
unique there. Some of them can be found by the well-established method
of separation of variables. Let

t

(2.1.5) vi(x,t):pi(z)/exp{ozr} dr, i=1,2, aeR.
0

By separating variables we get the system coming from problem (2.1.3) and
complementing later discussions:

pi(®) + ap(e) = pa(a), 0<z< L,
py(x) —ap(z) = -pi(z), 0<z<L,
pl(L):Oa p2(0):0)
followed by
"+(1-a?)p, =0, i=1,2, 0<z<L,
(2.1.6) { pi +( )p <z<
p(L)=0,  p(0)=0.
For the purposes of the present chapter we have occasion to use the function
' arccos o la] <1
= 44 )
V1-a?
(2.1.7) L(e)=<( 1, a=1,
T2
log (@ + V1 - a?) a1,

Vi
One can readily see that problem (2.1.6) with L = L*(«) possesses
the nontrivial solution
asin(\/1~a2x) —V1—~a? cos(\/l_——zv—ia:), la| <1,
p(z)=¢ z—1, a=1,
« sh (\/az—l:c)—\/az—lch (\/mgv), a>1,
sin(\/l_——az:c), || < 1,
pa2)= ¢ =z, a=1,

sh (Va?—-1z), a>1.
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With these relations in view, we can specify by formulae (2.1.5) the eigen-
functions of the inverse problem (2.1.3).

The function L*(«) is monotonically decreasing on the semi-axis (-1,
+ 00) and takes the following limiting values:

lim L*(a) =400, lim L*(a)=0.
a-—140 a—+o0

From such reasgning it seems clear that for any L > 0 the inverse problem
(2.1.3) has the eigenfunctions of exponential type o > —1. Due to this fact
another conclusion can be drawn that if the exponential type o > —1 is
held fixed and L > L*(«), then a solution of the inverse problem turns out
to be nonunique in the class of functions of this exponential type.

Returning to the z-hyperbolic system in the general statement (2.1.2)
we assume now that the function G is representable by

(2.1.8) G(z,t) = H(z,t) p(x),

where an n X n-matrix H(z,t) is known, while the unknown vector function
p is sought. Under the approved form (2.1.2), we restrict ourselves to the
case where det K # 0. Assume also that the eigenvalues k,,...,k, of
the matrix K are bounded and continuously differentiable in the domain
{0<z <L, t>0}. In addition, let k; < 0 for 1 <7 < s and let k; > 0 for
s§<i<n(0<s<n). '

With these ingredients, we may set up the inverse problem of finding
a pair of the functions v

v(z,t) € C, p(z) € C,

which must satisfy relétions (2.1.2) and (2.1.8) together with the supple-
mentary conditions

v(z,0) =p(z), 0<z<L,
(219) 'Ui(o,t) = ’l/)z(t), tZ 0, 1<+ S S,
v (L,t) =¢;(t), t20, s<i<n.

Given a vector v = (z;,...,9,) € R", the norm on that space is defined
by -
llvll = max ol

The associated operator matrix norm || A|| of an n x n-matrix A is spec-
ified by

|All= sup [[Av].
lv]|=1
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When providing the uniqueness of a solution, we should restrict our-
selves to the class of functions being of great importance in the sequel and
satisfying the condition of exponential growth like

(E) llvi(z, ) || < cexp{bt}.
The following theorem is the precise formulation of one profound result.
\

Theorem 2.1.2 Let D, H, 8D/t and OH /Ot be continvous functions.
One assumes, in addition, that K and v are continuously differentiable and

D]l < M, H oD /ot H <M, “ 9H /ot ” <M, “ OK /0t H <M, |K|<8,

19'(t) || < aexp{at}

and

| det H(z,0)[27v>0

with certain constants M, a, «, B and v. Then there exist constants b,
¢ and Lo > 0 such that for L < Lo and any continuously differentiable
function ¢ satisfying the compatibility conditions

¢i(0) = ¥;(0), 1<:i<s,
and

wi(L) = ¥:(0), s<i<m,
the inverse problem (2.1.2), (2.1.8), (2.1.9) has a solution in the class of
functions satisfying condition (E).
Proof A key role in the current proof is played by the characteristic
7;(€; z,t) satisfying the system

dr;

(2.1.10) dE
(z;z,t) =1,

= ki(§m),

and passing through a point (z,?). Because of the representation

guEnEenn) =Zl+k iy

we can integrate each component of (2.1.2). The outcome of this is

(2.1.11) w(o,t) = (T, 0) + [ (~Do+ Hp), de.

@
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where
Ty(2,1) ( ) 0, 1<i<s,
A = T T, 3 a; = .
z(m T\ L, s<i<n.
Putting these together with (2.1.9) we arrive at the relations

T

(2.1.12) eila )= i (Ti(@,0)) = [ (~Dv-+ Hp); de,

g

which should be rearranged for the new functions

w;(z,t) = % v;(z,1).
As a final result we get
¢
(2.1.13) v;(z,1) = ¢;(x) +/ w(e,7) dT.
0

By differentiating (2.1.11) and (2.1.12) with respect to ¢ and z, respectively,
and involving (2.1.13) we derive the system of equations

x

(2.1.14) w;(z,1) = <I>,~(:c,t)+/(1\f1 w), dé

L

z T T

+/ /(K2 w); dr df'i‘/(KSp)i ¢,

a; 0 a;

x

(@115) (H@0n@), =86 + [ (Frw), &

@

¥

+/ /(R’2 w); dr df—i—/(f{’gp)i d¢
a; 0 )
related to the new variables

or, [ <~ 9Dy O
®;(z,t) = ¥, (T;(z,1)) 5t_+/ > —Bt—] a—;%(ﬁ) d¢,
o i=1
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(I{l)ij(x’t’é) ZJ (€a (6733 t)) (5:17 t)

. 0D;; :
(Kl (2,,6) = T5 (6,76 2,0) Ge(€2,0),
OH; :
(1{3)11(m7t’£) . %(éa’rz(é»x)i)) %(faxxt)s

3.(2) = ¢l(x) - ¥l (Ti(2, 0)) TE20

=Y Dij(2,0) ¢;(z)

i=t

6D1 0
_Z at] _T ](é) d&a

(‘f{’l)z](l',f) = —'Dij(ﬁ, &z O)) M ;

or;(€;2,0)

6DZ
. (5, 1(6)3: 0)) za—l‘ 3

(K2)ij(,€) =

K Hi‘ i\$ T,
(K (@:8) = “Ba—t’(ﬁ,n(ﬁ;x,o)) Inl&in0)

It is worth noting here two useful expressions for the derivatives

4
. Ok;
52 (62,) = —ki(z,1) exp { ¢ (&6 2,1)) df}’

4
or; (f,xt)_exp{/%(&Ti(&ﬁ:t)) df}-

T

Under the conditions of the theorem the functions ®;, ®;, 1 < i< n,
are really continuous and the matrices K;, K,, Kj, 1?1, I~&'2 and 1?3 are
continuous and bounded in complete agreement with a simple observation
that the inequalities

1K1l <8, Kl < M
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assure us of the validity of the estimates

<Bexp{ML}, <exp{ML}.

or ]
Oz ot

Most substantial is the fact that the system of the integral equations
(2.1.14)-(2.1.15) in the class w € C, p € C is equivalent (within the sub-
stitution formulae) to the inverse problem (2.1.2), (2.1.8), (2.1.9).

Let Q be a half-strip {(z,¢): 0 <z < L, t > 0}. The symbol C(Q) is
used for the space of all pairs of functions

r= (wap) = (wla"' 7wn7p1>"' )pn))

whose components w;, 1 < 2 < n, are defined and continuous on the half-
strip Q and p;, 1 <7 < n, are defined and continuous on the segment [0, L].
It will be sensible to introduce in the space C(2) the system of seminorms

pr(r) = max { max {|w;(z, 1) |, [ p;(2) 1}}
0221
03t2T

and the operator A acting in accordance with the rule
7= (ﬂ), 13) = Ar= A(w,p),

where the components of a vector w are defined by the last three terms in
(2.1.14) and p is a result of applying the matrix H(z,0)™! to a vector, the
components of which are defined by the last three terms in (2.1.15). Also,
we Initiate the construction of the vector

ro = (®1,..., P, ¥y,...,0,), ¥ = H(z,0)"!

by means of which the system of the 1ntegra,l equations (2.1.14)—(2.1.15)
can be recast as

(2.1.16) r=ro+ Ar.

The Neumann series may be of help in solving the preceding equation
by introducing

o
(2.1.17) r=> AFry.
k=0

In the current situation the derivation of some estimates, making it possible
to establish the convergence of (2.1.17) and showing that the sum of the
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series in (2.1.17) solves equation (2.1.16), becomes extremely important.
This can be done using the operator of integration

t+p1
anw=[ s ar
0
and the function defined by the recurrence relation
L(t)=1, Li(t) = I(Ii-1 (1)) -

The components of the image of the kth power of any operator A are
denoted by

(u"zgk), . ,wff%pﬁ”), . ,i)g“)n) = A"(wgk), . ,wff),pgk), .. ,pflk)n) .
With the obvious relation || K || < 8 in view, the characteristic of (2.1.10)
satisfies the inequality

n(§e,t) <t+ 8L, 1<i<n.
As far as the function Ii(¢) is nondecreasing and nonnegative, the following
estimates are true:

7;(€:x,t) t+8L
(2.1.18) dr < dr = 1,(1),
[ =]
(2.1.19) /Ik(n-(é;:c,t)ﬂm— 1)BL) d¢

z

< / Iu(t +mBL) de < LL(t +mPL),

@

z T3

(2.1.20) //Ik(r+(m— 1)BL) dr d¢

a; 0O

t+BL
<L / L(r+ (m—-1)pL) dr
0

t4+mpL (t+mpBL)+pL
=L / Ii(r)dr <L / Ii(7) dr
(m-1)8L 0

=1L Ik+1(t + mﬁL) .
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It is straightforward to verify the estimates

k

(2.1.21) |0{(e,1) | < BEpo(r) Y Ci Lt + kB L),
s=0
k

(2.1.22) 1589(2) | < B¥po(r) Y Cf L(t+ kBL)
s=0

by appeal to (2.1.18)-(2.1.20) and the well-known recurrence relation for
the binomial coefficients

Cklycf=ct,.
Observe that estimates (2.1.21) and (2.1.22) are valid with constants
B_QM’?u{lﬂH@O )7

M=

(z,1)eq

as long as 0 < ¢t < T —-kpBLIfT > kBL. The preceding estimates
can be derived by induction on k. We proceed as usual. For k¥ = 1 and
0 <t <T-—pBL we are led by the replacement of || K; || and || K; || both by
their common upper bound M to the following relations:

|07 | < Mp(r) L+ Mp,(r) LI + M py(r) L
<2M Lp,(r)(1+ 1),
1BV < 1 H =z, 07 || (M po(r) L
+Mp(r) LI+ Mp,(r) L)

<2M L || H(z,07" || po(r) (1 + L),

which confirm (2.1.21)-(2.1.22) for £ = 1. Suppose now that (2.1.21) and
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(2.1.22) hold true for £ = m — 1. With this in mind, we obtain

m—1

| @™ (e,t)| < M B™p, ()L Y Couy Lt +mpL)
s=0

m—1

+MB™'p,(r)L Y C5,_ 113+1(t+m,8L)

=0

m-1

+MB™ 'p (r)L Z Cr_1 L;(t + mBL)

s=0

<@ML)B™ ' pp(r) 3 (Cooy + Ch) Lt + mB L)
s=0

r) Y CnL(t+mpBL),

=0

thereby justifying the desired result for (2.1.21). The proof of (2.1.22) is
similar to follow.
Furthermore, the function It (t) admits the estimate

(2'.1.23) Ik(t) < (H—i,ﬂlk— ;

which can be established by induction on k as well. Letting £ = 1 we con-
clude that (2.1.23) follows directly from the definition of Ix(t). If (2.1.23)
holds true for £ = m — 1, then

t+BL t+8L

W= [ Wa@yars [T (m'_l)l)ﬂ,L "
0 0
(t+mpL"  (m-DBL" _ (L+mBL"
- m! m! - m!

This provides sufficient background for the conclusion that (2.1.23) is valid.
The well-known inequality C} < 2% for binomial coefficients leads to



2.1. Inverse problems for x-hyperbolic systems 83

the chain of relations

k
S ¢ L t)<§:2’° e Py

$=0

k 8
<y i+icﬂL)

s=0

<o Z (k9L

= 2% exp {t + kBL} .

Putting ¢ = 2 B exp {38 L} and replacing T by T+ k5L, we deduce from
(2.1.21) and (2.1.22) that

(2.1.24) pr(A*r) < ¢ €T proip(r).

We now proceed to estimate the seminorms of the element ry. As
stated above,
(&, t) <t+kpBL

and, therefore,
|9(Ti(2,0)) | < a exp {aT:)

< aexp{at+afL}

= a exp {afL} exp {at}.
Since the values 8D;; /0t, 87; /8t and 8T;/dt are bounded,

|i(2,1)] < co exp {at},

yielding
(2.1.25) pr(re) <1 exp{aT}.

All this enables us to estimate the members of Neumann’s series in (2.1.17).
From (2.1.24)-(2.1.25) it follows that

pr(A¥ro) < ¢ exp {(a+1) T} [g exp {a B L}]"*
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With the aid of the last inequality we try to majorize the series in (2.1.17)
by a convergent geometric progression keeping ¢q exp {a 3L} < 1. Having
stipulated this condition, the series in (2.1.17) converges uniformly over
0<t<T and

e exp {(e+ 1T}

1—qgexp{afL}

It follows from the foregoing that (2.1.17) is just a solution to equation
(2.1.16) and this solution is of exponential growth in agreement with rela-

tion (2.1.26).
The quantity ¢ exp {a B L} of the form

4 ML Orsnxa?(L{l,||H(x,0)‘1H} exp{38L}exp{afL}

(2.1.26) pr(r) <

is continuous and monotonically increasing as a function of L and vanishes
for L = 0. Hence there exists Ly > 0 such that for L < Lg

gexp{afL} <1
and, therefore, the inverse problem at hand possesses a solution of proper

form. Thus, the theorem is completely proved. B

Theorem 2.1.3 Let D, H, D; and H; be continuous functions and let K
be a continuously differentiable function. If

D<M, NIDfIsM, ||H| <M,

IKI<B, |det H(z,0)|27>0

with certain positive constants M, § and -y, then for any b > 0 there exists
Ly > 0 such that for L < L; the inverse problem (2.1.2), (2.1.8), (2.1.9) can
have at most one solution in the class of funciions satisfying the estimate

Nl < cexp{bt}.

Proof This assertion will be proved if we succeed in showing that the
homogeneous equation corresponding to (2.1.16) has a trivial solution only.
Let r = Ar and

pr(r) € ciexp{bT}.

Since A* r = r, relation (2.1.24) implies that

(21.21)  pa(r) = pr(AFr) < ¢ [gexp {bBLY]" exp {6+ 1)T].

Hence, if we choose L1 so as to satisfy ¢ exp {65 L} < 1 for L < Ly, then
the relation p.(r) = 0 is attained by letting k — oo in (2.1.27) and is valid
for any 7. But it is possible only if » = 0 and thereby the theorem is
completely proved. B
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Of particular interest is the situation in which the matrix K has fixed
sign. Under the assumption imposed above the existence and uniqueness of
a solution of the inverse problem concerned are obtained for any L. For the
sake of definiteness, the case of negative eigenvalues will appear in more a
detailed exposition.

Theorem 2.1.4 Let D, H, D; and H; be continuous functions and let , ¢
and K be continuously differentiable functions. One assumes, in addition,
that

IDII<M, [[Dff<M, [[H|l <M, [[K]j<M, [[K[<8,

9@ < aexp{at}, |det H(z,0)|27>0, ¢(0)=1(0),
—ki(z, )2y m Q@ (1<i<n)

with certain constants M, 3, v and a. Then in the domain Q the inverse
problem (2.1.2), (2.1.8), (2.1.9) has a solution

veCh peC, || v, ]| < cexp{bt}
and this solution is unique in the indicaled class of functions.

Proof The proof of the existence of a solution under the above agreements
is carried out as usual. This amounts to fixing a point (z,t) € Q and con-
sidering characteristic (2.1.10). Upon integrating along this characteristic
we arrive at relations (2.1.11) and (2.1.12), where all the o,’s are equal to
zero. After differentiating we get the system of equations (2.1.14)—(2.1.15)
of the second kind which can be rewritten in the concise form (2.1.16).

The idea behind derivation of the estimates in question is to refer,
in addition to the operator I, to another integration operator J with the
values

(1)) = / 7€) de.
0

The symbol Ji(x) stands for the functions defined by the recursion

Jo(.’l:) =1 y Jk(l‘) = J(Jk_l(x)) N
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we replace (2.1.21)-(2.1.22) by the following estimates:

k
|2 (2, )| < B* po(r) Ju(z) Y CLL(¢ + kBL),

=0

k
18 (2)| < B* p,(r) Ji(z) 3 CfL(t + kBL).

s=0
In this line, one useful inequality

k ¢* ¥
pr(A%r) < A exprT+kﬁL(7‘)

will be involved in place of (2.1.24) and will be useful in the estimation of
the sum of Neumann'’s series:

pr(r) < exp{(a+1)T}Z M]_

=c, exp{gexp{aBL}} exp{(a+1)T}.

Further reasoning is similar to the proof of Theorem 2.1.2.

To prove the uniqueness here one should reproduce almost word for
word the corresponding arguments adopted in proving Theorem 2.1.3 by
replacing the value [q exp {b,BL}]Ic by [q exp {b,BL}]k/k 1. As k — oo, the
last sequence tends to 0 for any L, thereby justifying the assertion of the
theorem. W

In view of the solution uniqueness established for the inverse problem
of finding the right-hand side function, one can easily prove the uniqueness
theorem for inverse problems of recovering other coefficients of the govern-
ing equations. The methodology of the considered problem provides proper
guidelines for subsequent investigations.

Let us consider the nonlinear inverse problem of finding a matrix
D = D(z) built into the system (2.1.2). As the total number of unknown
coefficients d;;(z), 1 <i<n,1<j <n, of the matrix D is equal to n?,
it is reasonable to absorb more information on the boundary behavior of n
solutions of the system

v®)(z,0) = p®)(z), 0<z<L, 1<k<n,
(2.1.28) o90,8) = pF (), >0, 1<i<s, 1<k<n,
oLt =P (@), 120, s<i<n, 1<k<n.
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In general, the solutions sought correspond to different right-hand side
functions
G(z,t) = GH)(z,1), 1<k<n,

which are assumed to be available.

Other ideas are connected with some reduction (within the aspect
of uniqueness) of the nonlinear coefficient inverse problem in view to the
linear inverse problem we have resolved earlier. In preparation for this,
we introduce the vector function v = (v, () ... »(™) and the diagonal
hypermatrix K with n blocks on the main diagonal, each of which coincides
with the matrix K. We deal also with the partitioned matrix D composed
of n x n-blocks ﬁij, 1<i<n,1<j<n Inthe block ﬁij the jth row
coincides with the vector v(*) and the others are taken to be zero. By a
vector G we mean one whose components are identical with vectors G(¥),
that is, G = (G, G®),... ,G™). By merely setting

P= (Hll)dma"' ’dln’d21>d22,"' >d2n¢"' >dn1)dn2"" )dnn)

the augmented system for the vector v reduces to

Ov - (‘9v -~ _
(2.1.29) 5. TR 5 +Dp=G.

Assume that the inverse problem of recovering a matrix D has two
distinct solutions (v(1),p(M)) and (v(®,p @), where the vectors p(!) and
p® are put in correspondence with the matrices D(*) and D(®), respec-
tively. By introducing u = v(®) —v() we subtract equation (2.1.29) written
for v = v(?) from the same equation but written for v = v(}). As a final
result we get the inverse problem to be investigated:

fu -~ fu =~ -
A L T T6.) I
8.7:+A 6t+D u=Ho®,
(2.1.30) u(z,0) =0, 0<z< L,
«W®o,1) =0, t>0, 1<i<s, k<n,

=0, t>0
where D(® stands for the diagonal hypermatrix with n blocks on the main
diagonal, fach of which coincides with the matrix D(®); H denotes the

matrix —D associated with v(1) and

&=p®_pWm,
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It is appropriate to mention that, because of its statement, the coeffi-
cient inverse problem can be treated as a linear inverse problem of the type
(2.1.2), (2.1.8), (2.1.9). Note that the determinant of the matrix I?(.r, 0) is
of the form

o) .. D))"
det ﬁ(:c,O): det
PM(2) ... e(e)

The following corollary can easily be deduced by applying Theorem
2.13tob=0.

Corollary 2.1.1 Let K € C!, || K || < B, || K¢ || £ M and let det (<p§z)(a:))
# 0. Then there exists a number Lo > 0 such that for L < Lo the in-
verse problem (2.1.2), (2.1.28) can have at most one solution in the class
of functions

W e, W) <M, 1<k<n; D@) eC.

2.2 Inverse problems for t-hyperbolic systems

In this section the system (2.1.1) is supposed to be t-hyperbolic. By
definition, this means an alternative form of writing

L a—v+Dv:G,

(2.2.1) 5 5

where K is a diagonal matrix with entries k;; = k; §;; and é;; is, as usual,
Kronecker’s delta. We agree to consider the right-hand side function in
the form

G(z,t) = H(z,t)p(t),

where an n X n-matrix H is known and the unknown vector function p is
sought. When recovering a pair of the functions {v, p} in such a setting,
equation (2.2.1) has to be supplied by the boundary condition

(2.2.2) vsn = ¢,
where 0Q designates the boundary of the half-strip

Q={(z,t): 0<2< L, t>0}.
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The function ¢(z,t) is assumed to be continuous on 9 and the functions
©(0,1), p(z,0) and ¢(L,t) are supposed to be continuously differentiable.
Let the eigenvalues of the matrix K obey the same properties as before.
Recall that k;(z,t), 1 < i < n, are bounded and continuously differentiable
inQ, k;, <0forl1 <i<sand#k; >0fors <¢<n. Inaddition, they
are supposed to be bounded away from zero, that is, there exists a positive
constant ¢ such that | k;(z,t)| > ¢, 1 <i < n, for all (z,t) € Q.

Along with the function 7;(¢; ¢, t) being a solution of problem (2.1.10)
we deal with the function §(r;z,t), which for fixed values z and t gives
the inverse function of 7;(¢; z,t) and satisfies the system

d¢;

- = k; i T )
(22'3) dT 1(51 )

E(tat) = o,

After integrating along the characteristics specified by (2.2.3) the inverse
problem (2.2.1)-(2.2.2) reduces to a system of integral equations. Let
(a;(z,1),B;,(z,1)), 1 < i < n, indicate a point at which the characteris-
tic (2.2.3) intersects the boundary 0Q and f;(z,¢) < t. Putting

®i(z,1) = ¢ (@i(2,1), Bi(2,1)), 1<i<n,

we integrate the equations of the system (2.2.1) along the characteristic to
establish the representations

(2.2.4) v(z,t) — Pi(z,t) = / (—Dv + Hp); dr, 1<i<n.
B;(z,t)

The next step is to define the numbers 7; as follows: v, =0 for 1 < i < s
and v, = L for s < ¢ < n and then set ¢;(t) = ¢;(v;,1), 1 < i < n.

Furthermore, substituting into (2.2.4) c =0 for I <i < sand z = L for
s < 1 < nyields

(2.2.5) g;(t) — ®i(y; 1) = / (—Dv + Hp), dr, 1<i<n.
Bi(vi,t)

The new variables
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are involved in the following relationships:

(2.2.6) v;(z, 1) :/ w;(€,t) d€ +¢,(t), 1<i<n.
Y

Let us differentiate (2.2.4) with respect to z and (2.2.5) with respect to ¢
and eliminate then the functions v; (1 < 1 < n) from the resulting expres-
sions with the aid of (2.2.6). The tacks and tricks demonstrated permit us
to derive the equations

(2.2.7) w;(z,t) = Fi(z,t) + i ( / Asj w; dr)

j=1 B;(z,t)

t & t .
+ / /B,-]-wjdde+ / Cijp; dr

Bi(=,)7j Bi(=.t)

- Z hi;(;(x,t), Bi(=, 1))
j=1

X Pj (ﬂi(z’t)) %(x’t)’
(2.2.8) Z hi;(7:,t) p;(t) = Fi(t) + Z hii (i (7:,1), Bi(7i, 1))

£y
x p; (B;(7:,t)) B_é (7, 1)

n 1
-I—Z( / Zijwj dr

7= N g0
t &5
+ / / Eij w; dédr
Bi(vit) Vg

i
Bi(vi 1)
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by introducing the set of new notations

1
0®; - ad;; o,
Fi(z,t) = e - Y / X % () ar

L HER)

+ [Z dj (ei(z, 1), Bz, 1)) (I)i(m‘t)] %% ’

Jj=1
0¢;
Aij = “dij(fi(T;l‘,t)»T) B
Bi= % 9 Gi= 5 o
~ , od; =
E@t) =€) - -0t + > (1) @ (1)
j=1
- [ dij (e (7i 1), Bi(7i 1)) B (%, 1)
j=1
~ o€,
Aij = d;; (&(T5 7 1), 7) G—Et ,
= _ 0di; 0§ L ohy e
Bi= 5 Ci="% B
5 — { L, 1<i<s,
¢ 0, s<i<n.

Here d;; and h; refer to the elements of the matrices D and H, respectively.

9B;
ot

91

In what follows we will assume that the matrices D, H, D, and H,
are continuous. Under this premise the coefficients of equation (2.2.7) may
have discontinuities only on the characteristics §;(¢;6;,0), 1 < i < n (it
may happen only with 3®;/0z and §0;/0z because other coefficients are

continuous). In equation (2.2.8) only the coefficients 0®;/dz and 8;/0x
Moreover,

may have discontinuities at a single point T; = 7;(y;;6;,0).
all discontinuities appear to be of the first kind. In that case the system
of equations (2.2.7)-(2.2.8) being viewed in the class w € C, p € C with
regard to relations (2.2.6) will be equivalent to the inverse boundary value

problem (2.2.1)-(2.2.2) in the class u € C', p€ C.
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Let us make the substitution

zi(z,t) = wi(z,t) + Z hy; (ai(l‘,t‘);ﬂi(‘”:t)) P; (Bi(z,1)) 6% Bi(z,1),

i=1
which is inverted by the transform

(2.2.9) w;(z,t) = z(z,t)
—Z hij (e Bi(z,1)) p; (Bi(z,1)) a% B;(z,1).

This yields the following system as far as the functions z; and p; are con-
cerned:

n t
(2.2.10) H(z,t)=Fi+y ( / Ayj zj dr
j=1 'Gi

/ / By s, de dr /a, )

Bi 7§ Bi

t
n n 98;
._Z Z(/ A,]h]k 6—;1}-[% dT

j=1 k=1 6;

t &
0B;
~ [ [ Ashyp e e dr),

Bi v

(2.2.11) Zh,,(’y,, p(t) = Fi(t)

Z A (37,8, i3, 1)) 25 (B ))} %

t
Z(/sz] d?‘-}-]/Bz}z} d¢ dr
t

Bi 5
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€
LG 58,
+// Bij hjy, 5. Pk d¢ dr | .
Bi Vj
In trying to derive necessary compatibility conditions one should con-
sider the ith equation of the governing system (2.2.1) at the points (y;,0)
and (§;,0) and then set E;(t) = ¢;(L,t) for 1 < i <s, E;(t) = ¢;(0,1) for
s <1< nand x(z) = ¢(z,0). Retaining only the terms containing p;(t),
1 < ¢ < n, we are led to the relations

(2.2.12) Y hij(7,0)p;(0) = €4(0) + k; (7 ,0) xi(%:)
j=1

+ Z d;;(7:,0)€;(0),
i=1

(2.2.13) > hii(6:,0)p;(0) = EH(0) + ki(6:,0) xi(5:)

+ Z d;;(8;,0) E;(0) .
j=1
Observe that the right-hand side of (2.2.12) coincides with the values of
the function F;(¢) at the point ¢ = 0. Assuming the matrix

Ho = (hij(’fz‘ 1)

to be nonsingular and composing the vector = HO_1 ﬁ, we conclude that
(2.2.12) and (2.2.13) imply the relations

(2.2.14)  E!(0) + k;(5; ,0) x +Z d;;(8;,0) E;(0)

:Zhi;’(éivo)$}'(0)’ l1<i<n.

j=1

Theorem 2.2.1 Let K € C!, ||K|| < M, k; <0 for1<i<s, k; >0
fors < i< n andlet | ki(z,t)| > ¢ >0, <p€C ©(0,1), o(L,1), <p(a: 0) €
C! and D, H, D, H, € C. Suppose that det (hij(7: ,1)) # 0 and the
compatibility conditions (2.2.14) hold. Then there ezists a solution u € C?1,
p € C of the inverse problem (2.2.1)~(2.2.2) and this solution is unique in
the indicated class of functions.
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Proof To prove the theorem, it suffices to establish the existence and
.uniqueness of the solution of the system of the integro-functional equa-
tions (2.2.10)—(2.2.11). One way of proceeding is to compose the set of all
vector functions

r=(2,0) =(21, .- 12y D1y sDn) s

where the first n components are defined in © and the remaining ones have
the semi-axis [0,00) as the common domain of definition. Each such set
with the usual operations of addition and multiplication on numbers is a
vector space. Let us define there a linear operator U acting in accordance
with the following rule: the first n components of the vector function Ur
are taken to be the right-hand sides of (2.2.10) with F; omitted and the last
n components make up a vector obtained by multiplying the matrix Hy!
by the initial vector, whose components are identical with the right-hand
sides of (2.2.11) with F; omitted. By involving one more vector function

To :(Fl)*'* an!$1)"' ,&)n)
the system of equations (2.2.10)-(2.2.11) can be rewritten as
(2.2.15) r=ro+Ur.

Let t, = 0 and ¢; > 0. We claim that it is sufficient to solve problem
(2.2.1)~(2.2.2) in the rectangle

Gi={(z,t): 0<z <L, t, <t<t,}.

Indeed, if we have at our disposal a solution of the problem in Gi, our
subsequent reasonings will be connected with further transition from the
domain 2 to the domain

Q1 ={(z,t): 0<z <L, t>1}.

In that case the problem of the same type arises once again. However,
we will be concerned with a new boundary function ¢, (z,t), which can be
constructed as follows: ¢;(z,t) is identical with ¢(z,t) on 0Q N 09, and
at t = ¢, is equal to the problem (2.2.1)-(2.2.2) solution we have found in
the domain G;. Since equations (2.2.1) are satisfied at the points (0,1;)
and (L,%,), the boundary function ¢,(z,t) does follow the compatibility
conditions as desired. Because of this fact, the inverse problem at hand
can be solved in the domain

GZI{(I',t): OSmSL,ilstStl},
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where 1, > t;, etc. By regarding the spacing
h=t,—to=t,—ty = =8, -t ;1= -
to be fixed we look for a solution of the inverse problem in every domain
Ge={(z,1): 0< e <L t,_, <t<ty},

by means of which it is possible to construct a solution of (2.2.1)-(2.2.2)
from the required class everywhere over Q.
Setting
p= sup |ki(z,1)]

z,teD
1<i<n

we are exploring the inverse problem (2.2.1)-(2.2.2) in the rectangle
G={(2,8): 0<z<L,0<t<L/p},

bearing in mind that the boundary function is unknown at the point
t = L/p. Now B;(v;,t) =0 (1 < i< n)and this considerably simplifies
equations (2.2.11) responsible, in the present framework, for the develop-
ment of the Volterra integral equations of the second kind.

The system of equations (2.2.10)-(2.2.11) written in the vector form
(2.2.15) can be solved by means of successive approximations satisfying the
recurrence relations

NOp-. P8 = gy g D)

Owing to the choice of the initial approximation and further iterations

the functions zz(k)(."c,t) may have discontinuities of the first kind on the
characteristic

= éi(t;éi)o))

whereas the functions ®() and all the approximations p; )(t) should be
continuous on the segment [0, L/y].

In mastering the difficulties involved due possible discontinuities of
the functions zgk)(;c,t), we try to adapt the functions wgk)(x,t) specified
by (2.2.9):

(2.2.9") wz(k)(% t) = l(k) Z hij(ai(z,t), Bi(z,1))

ij=1

x i (B (z, 1) 5+ 6ﬂ
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Observe that they are really continuous on G. To prove this assertion, it is
sufficient to reveal the continuity of wgk)(a:,t) in t at the point (Z,7), lying
on the characteristic passing through the point (§;,0). Via some transform
in which the functions p;(t), 1 < j < n, on the left-hand side of (2.2.11) are

taken to be p( )( t) and those on the right-hand one are replaced by pgk—l)(t)

it 1s not difficult to establish this property. In addition, we write z](.k—l)

instead of z; and put ¢ = 0. The transform just considered permits us
to reduce to zero the terms containing integrals. Consequently, by appeal
to the explicit formulae for fi(t), 1 < 7 < n, we arrive at the recurrence
relations

Zhu(vl, Zh“(%, P00y, 1<i<n,

which assure us of the validity of the equality
p(0) = p*(0)

for any positive integer k. Here we take into account that the matrices
(hij(v; ,0)) are nonsingular. Since pO(t) = ®(t), we obtain for any k

p(0) = 9(0).

Below the symbol A is used to indicate the value of the jump with
respect to t of a function u defined in the domain G:

Au(z,t) = lim u(Z,t)— lim u(z,t).
t—14+0 t—1{—0

Now by relation (2.2.9') we derive the following expression for the jump of
the function w®*)(z,):

Aw® = AP - Zh” 5’”( 8ﬂ) 1<i<n.

From the recurrence relation obtained for the functions sz) by attaching
the superscripts k and k£ — 1 to the function z; on the left-hand and right-
hand sides of (2.2.10), respectively, it follows that

(’C) = AF;
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and, therefore,

(2.2.16) sz(k):AFi—Zhijp(-k)<A %), 1<i<n.
i=1

If the point (Z,1) lies on the characteristic z = §;(¢; §;,0), then §;(z,1) =0
and the variation of the function pg-k) in (2.2.16) is equal to zero. Conse-

quently, the value of this function equals 6(0) and a minor manipulation
in (2.2.16) yields

2217 AwM(z,1) = EN0) ‘Z—}(éi  Z,1)

j=1
-zn: hy;(6;,0) ®;(0) @(5‘-5 )
= if\Yi> J Oz R A

Recall one useful result from mathematical analysis: if = ¢(y, p) is
the inverse function of a differentiable function y = f(z, p), then

Y R 7
fro,=—1,.

This formula immediately follows by letting to zero the coefficient at dp on
the right-hand side of the identity

dy= f,[g,dy+g,dp] + [, dp,
which can be established by formal differentiating of the equality

y= f(s(y,p),p).
The above remark implies that

0¢; o7 _ 9¢;

or 9z~ Oz

However, 0¢;/01 = k; and, given the compatibility conditions (2.2.14), the
right-hand side of (2.2.17) equals zero. This provides support for the view

that the functions wgk)(x, t) should be continuous.
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To complete the proof, we introduce a Banach space M (G) consisting
of all vector functions

r=(z,p) = (21, 25, Piy - yPn)>»

the first n components of which are measurable and bounded in the domain
G and the remaining n components are measurable and bounded on the
segment [0, L/p]. Developing the recurrence relations for (z(¥), p(¥)) and

(z6-1) p(k-1) from equations (2.2.10)—(2.2.11) and putting
Uty = (g(k)’ ﬁ(k)) ’
we get the standard Volterra estimates
(Mot)*
k!

128 < |, M(G)1,

k
159 Lo 1 vy,

where the norm of an element » = (2, p) on that space is defined by

|r, M(G)| = max{sup || 2], sup [Ipll}.
G (0, L/ ]

All this enables us to estimate the norm of the kth power of the operator
U in the space M(G) as follows:

(Mo T)*
k! !

(2.2.18) 1U*]) <

where T = L/u. From (2.2.18) it is clear that for all sufficiently large k
the operator U* becomes a contracting mapping. In turn, this property
ensures the convergence of the sequence {r(¥)} to an element (z,p) € M(G)
in the M (G)-norm. That is to say, the uniform convergence of the sequence
{z(F)(z,1)} to the function z(z,t) over the domain G and the uniform con-
vergence of the sequence {p(¥)(t)} to the function p(t) over the segment
[0, t1] occur as k — co. In view of (2.2.9"), the functions {w(*)(z,)} con-
verge uniformly over G and the limiting function w(z,t) will be related
with z(z,t) and p(t) by (2.2.9). The latter can be derived from (2.2.9)
by passing to the limit. The functions w(z,t) and p(t) being continuous
must satisfy (2.2.7)—(2.2.8). This proves the existence of the inverse prob-
lem solution. The uniqueness here follows from the contraction mapping
principle. B
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The result obtained applies equally well, in its uniqueness aspect, to
the question of uniqueness in the study of problems of recovering other
coefficients of the equations concerned. If you wish to explore this more
deeply, you might find it helpful first to study the problem of finding a
matrix D = D(t) of the system (2.2.1). Additional information is available
on the behavior of n solutions of this system on the boundary of the domain
Q. With this, we are looking for the set of functions

{v(l)(x,t), e ,v(")(m,t)}

and a matrix D(t) from the system

dvk) v
——+K

(2.2.19) 5

+ Dy®) = g(*), 1<k<n,
supplied by the boundary condition
(2.2.20) v B0 = o), 1<k<n.

The inverse problem so formulated will be reduced to problem (2.2.1)-
(2.2.2) once we pass to the augmented system related to the function

v = (v(l), v v("))
and the unknown vector

P= (d117d127 ceey dln’d217d22"" ,dzn,... rdnl’an"" ,dnn) .

Assume that the inverse problem (2.2.19)-(2.2.20) has two solutions (v},
p") and (v(z),p(z)). Putting v = v® — v(1) we subtract the system
(2.2.19) written for v(?) from the same system but written for v(!). The
outcome of this is

ov ~ Ov ~ ~
— +K —+Dv=AHp,

(2.2.21) ot Oz P
Vlpga =10,

where K is a diagonal hypermatrix with n blocks on the main diagonal
each of which coincides with the matrix K, D is a diagonal hypermatrix
with n blocks on the main diagonal each of which coincides with the matrix
D@ corresponding to the vector p (%) and Hisa hypermatrix consisting
of n x n-blocks H;j, 1 < i< n, 1 <j<n. Inthe block Hj; the jth row
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coincides with the vector —v{(1) and the others are taken to be zero. Here
alsop=p® —p®,

In what follows the main object of investigation is a pair of the func-
tions (v, p), for which relations (2.2.21) occur. The determinant arising
from the conditions of Theorem 2.2.1 is equal to

{ (soﬁ”(o,t) son1<1>(o,t>)}’
det .
P(0,1) ... eal™(0,2)
[ (wﬁl)(-’at) wnl(l)(L,t))r_s
- (det ;
ALY eal™(L,1)

where p(¥) 1 < k < n, are the vectors of the boundary conditions (2.2.20).
But in this respect a profound result has been derived from Theorem 2.2.1
with the following corollary.

Corollary 2.2.1 Let K € CY, || K || < M, k; < 0 for 1 <i < s, k; > 0 for
s<i<nand|k(z,t)|>c>0,1<i<n. Oneassumes, in addition, that
det (9§ (L, 1)) # 0 for s = 0, det (¢{(0,1)) # 0 and det (o*)(L, 1)) # 0
for0 < s <n and det (<pz(~k)(0,t)) # 0 for s = n. Then the inverse problem
(2.2.19)+(2.2.20) can have at most one solution in the class of functions

v(k)ECI, 1<k<n; D e C.

Let us dwell on the question of existence of the inverse problem
(2.2.19)-(2.2.20) solution. By employing the methods developed above
the existence can be achieved for sufficiently small values of the variable ¢.
Most of the relations established in the proof of Theorem 2.2.1 remain valid
if the function v will be replaced by v(*), 1 < k < n, and ¢®*) will stand
in place of Hp. Integrating the equations of the system (2.2.19) along the
characteristics yields

2222)  oP(z,0) - 0¥ (2 1) = / (=Do® 4 ¢)) dr
Bi(=,1)
t

(22923)  e®)— Py, 1) = / (=Do® 4 g0 dr
Bi(vi 1)
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The first step is to insert in the above calculations

Pz, 0)= Lo e,1),

which are inverted by the formulae

z

(2.2.24) v (2, 1) = / wi (e, ) de + (1) .

i

The next step in this direction is to differentiate (2.2.22) with respect to
z and (2.2.23) with respect to ¢. Via transform (2.2.24) it is possible to

eliminate the functions v,(k) from the resulting relations and derive the
following equations:

(2.2.25) wP(z,t) = F*)(a,1)
0
Z / §k)(£i(r;x’t)’T) _B%dT
RV ER)

(k) aﬂz(x)t)
Z (z,1)) @;"(2,1) oz’

(2.2.26) Y dy; (el (vit) = FOe)
j=1
+ Z dy; (ﬂi(’)’i ,t)) ¢>§-k)(7i,t) 'BﬂT
j=1
¢
- Z / dij(T)wJ('k)(fi(TWbt):T)‘ai.,.dT’
I=5(7;, 1)
where
F(k)(:l,' i) _ 8@5’“) .1,‘ t) / 891( ) af
¢ ’ Ox

i=1 gzt

9p;

—ggk)(ai(x t), B, 1)) i —(z,t),
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08" (v; 1)

&)y ¢
8t +gz (72) )

ﬁz’(k)(t) =

~ o (oo 1), B 0) ),

t
0g§k) 0¢; (k)
/ 3 Bt dr —¢; 7 (t)

ot
B (i 1)

and the functions @Ek)(ar, t) and Egk)(t) are of the same form as the functions
®;(2,t) and ¢,;(¢) involved in (2.2.7)-(2.2.8) once written for the function
o(z,t) = vF)(z,t), 1< k < n.

When considered only in the specified domain G, the system of equa-
tions (2.2.25)-(2.2.26) is much more simpler, since §;(y;,t) =0,1 <7 < n.
Replacing the unknown functions with the aid of substitutions

1

816i $,t
(2227)  w{(z,1) = £ wt+2dw (@,0) 9z, 0) 22D

we arrive at the system of the Volterra equations

(2.2.28) Pty = F,0)+ Y
1= (o,
(k)(é.“ ) 3& dr

B / (556, 7))

i=1lm= lﬁl(a:,t)

8B, O,
X ng)(éz”r) ali E%dT’

(2.2.29) f; Py, 1) = FP()

1
- [ dmdE G e

I=1 i )
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Y [ dsng ((sm)
)

08; ¢,
< a(e,r) 20 % gy

In the derivation of compatibility conditions one should consider the ith
equation of the governing system (2.2.19) at the points (7;,0) and (§;,0),
1 <i<n By Egk)(t) and x; k)( ) we denote the functions coinciding
with F;(t) and yx;(z) introduced above in establishing the compatibility
conditions (2.2.12)-(2.2.13). The superscript k there indicates that the
functions have been constructed for
v(z,t) = v(k)(x,i).
Equations (2.2.19) imply that

/ /
(2.2.30) EEk) (0) + ki(v: ’O)Xz(k) (n)
+ z d;]( (k)(‘rz 10)
j=1

= ¢*(7,0)

and

7 1
(2.2.31) EXV(0) + ki(8;,0) X (8)
+ Z d;;(0) <P§k)(‘5i ,0)
j=1

= gM(5;,0).

When the subscript 7 of the ingredients of (2.2.30) is held fixed, the
preceding relations for the unknowns

ail(o)’ ai2(0)7 R ain(O)
constitute a system of linear equations with the matrix coinciding with
(¢ (k)(O 0)) for 1 <i < s and (p; (k )(L,O)) for s < 7 < n. Being concerned
1th invertible matrices we can ﬁnd the elements a;; for 1 < ¢ < n, 1 <
J < n. Consequently, the compatibility conditions are convenient to be
presented by relations (2.2.31), whose elements a;;(0), 1 <é<n,1<j <
n, should be replaced by their values known from equations (2.2.30).
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Theorem 2.2.2 Let K € C*, |K|| < M, k; <0 for1<i<s, k; >0
fors <i<mn, and let |k(z,t)| >¢c>0, 1 <i<n Let o¥)(z,1) € C,
©¥)(0,1), o*)N(L,1), F)(z,0) € C; g®), gg“) € C and, in addition,
det (gogk)(L,t)) #0 for s =0, det (<p§")(0,z)) # 0 and det (<p§k)(L,t)) #0
for 0 < s < n, det (@Ek)(o,t)) # 0 for s = n. One assumes that the
compatibility conditions (2.2.31), whose ingredients a;;(0) are replaced by
their values from equations (2.2.30), hold. Then there ezist a time T > 0
such that for t < T the inverse problem (2.2.19)-(2.2.20) has a solution in
the class of functions

Wk e ot 1<k<n; DeC.

Proof By exactly the same reasoning as in the proof of Theorem 2.2.1 it
is convenient to operate in the domain

Qr = {(z,1): (z,8) €Q, t < T}
and the space M () of all bounded measurable functions
r={zV(,1),...,2") (1), D(t)}
with the norm

Iﬂﬂ4U%JI=(ggggT{HZUN$J)K-~,HZ“NEJ)HJID@)H}-

Let an operator U be defined by integral terms in relations (2.2.28)-
(2.2.29). We choose the “initial” element r, in such a way that the system
of equations (2.2.28)-(2.2.29) can be written in the form (2.2.15), mak-
ing it possible to solve the governing system by appeal to the successive
approximations

r© =gy ™ =+ Um0 m=1,2,....

Observe that the functions 2(*)(™)(z t) may have discontinuities of the
first kind on the characteristics, while the functions D(™)(¢) should be
continuous. By merely setting ¢t = 0 in (2.2.29) it is easily verified that the
values D™ (0) do not depend on m and coincide with the system (2.2.30)
solution. With the aid of (2.2.27) we construct the approximations for
w*)(z,t), 1 < k < n, and observe that the new functions turn out to be
continuous in Q. by virtue of the compatibility conditions (2.2.31).

The current proof differs from that carried out in the preceding theo-
rem, since the system (2.2.28)-(2.2.29) is nonlinear and its solution can be
shown to exist, generally speaking, only for sufficiently small values of the
variable t. This completes the proof. B
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It seems worthwhile to consider a particular case of problem (2.2.19)-
(2.2.20) to help motivate what is done. It is required to find the functions
v(z,t) and d(t) from the system of relations

v, + v, =d(t)v, 0<z<1, t>0,
v(z,0) = p(x), 0<z<1,
2.2.32 -
(2.2.32) v(0,) = 0, £>0,
w(l,t) =1, t>0,
where
0, 0<z<1l-¢,

(p(l’): (;[;—1-5--1

2, l-e<z<1,
—) <

and 0 < € < 1. The function ¢(z) so constructed is continuously differen-
tiable. By the replacement

v(z,t) = u(z,t) exp { Of d(r) dr}

we obtain the equation
u, +u, =0,

making it possible to derive for the inverse problem (2.2.32) solution the
explicit formulae

0, 0<z<1l-¢g,
0, >l—¢, t>z—1+¢,
v(z,t) = ‘ ¢ =7 te
—t —1\2
(E——l———), z>1—¢, t<z—1+4¢,
t—e¢
d{t) = 2

(t—e)?’

Unfortunately, this solution cannot be continuously extended to the domain
t > ¢ in spite of the fact that all the conditions of Theorem 2.2.2 are
satisfied. This example shows that usually a solution of (2.2.19)-(2.2.20)
exists only for sufficiently small values ¢ during which we could make the
interval of the solution existence as small as we like. We will not pursue
analysis of this: the ideas needed to do so have been covered.
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2.3 Inverse problems for hyperbolic equations
of the second order

Linear hyperbolic partial differential equations of the second order find a
wide range of applications in mathematical physics problems. As a rule,
they are involved in describing oscillating and wave processes in elastic and
electromagnetic mediums. Certain types of hyperbolic systems of the first
order can also be reduced to the wave equation. On the other hand, a
hyperbolic equation of the second order is, in turn, treated as a hyperbolic
system of the first order. In preceding subsections much progress has been
achieved for inverse problems with hyperbolic systems. Common practice
involves the reduction of the wave equation to such a system.
We now consider in the strip

Qr={(z,t): z€R, 0<t< T}
the hyperbolic eqﬁation of the second order
(2.3.1) uy = a’uy, +buy, +eu, +du+ F

with the supplementary Cauchy data

70 = ) R1
(2.3.2) { u(®,0) = ¢(z), <€
u,(z,0) =9(z), ze€R.
The subsidiary information about the problem (2.3.1)-(2.3.2) solutions is
(2.3.3) u(z; ,t) = x;(t), 0<t<T, 1<i<n.

We begin by placing the problem statement for finding a function F(z,t)
from (2.3.1)-(2.3.3) under the approved decomposition

(2.3.4) F(z,t) = ; g:(z, 1) p;(t) + h(z, 1),

where g;(z,t) and h(z,t) are the known functions, while the unknown func-
tions p;(t), 1 < i < n, are sought. In what follows the coefficient b(z,?) in
equations (2.3.1) will be taken to be zero without loss of generality. Indeed,
having performed the standard substitution

(2.3.5) u(z,t) = v(z,t) exP{_% / ;2’((562)) df}

To




2.3. Inverse problems for hyperbolic equations of the second order 107

we can always come to the same result. For the sake of definiteness, let
(2.3.6) 2 <2, <<z, <z,

and let the function a(z,t) be positive, bounded and twice continuously
differentiable. Currently the object of investigation is the equation of the
characteristics £ = §;(7; z,1) passing through a point (z,t)

d¢;

= =¢a,T),
(2.3.7) dr

& (e, t) =2,
where i = 1,2; ¢, = —land e, = 1.

Theorem 2.3.1 Let a(z,t) > 0, |a(z,t)| < M, a(z,t) € C?, b(z,t) = 0,
Y(z) € C! and let p(z), x;(t) € C%, 1 < i< n. One assumes, in addition,
that p(z;) = x;(0) and ¥(z;) = x}(0) for 1 <@ < n. Let c(z,t), d(z,1),
g;(z,t) and h(z,t) be continuous along with their first x-derivatives in the
domain Qp and let det (gi(z]-,t)) # 0. Then in the domain Qr there exists
a solution of the inverse problem (2.3.1)~(2.3.3) in the class

u € C?, p; € C, 1<i<n,
and this solution is unique in the indicated class of functions.

Proof There is a need to emphasize the following fact. If the continu-
ous functions p;, p. and p; are known, then the Cauchy (direct) prob-
lem (2.3.1)—(2.3.2) will be uniquely solvable in the class of functions u €
C?*(Qr). This feature of the direct problem enables us to consider the
inverse problem (2.3.1)—(2.3.3) in any subdomain Q C Qr, for which the
functions p;, p, and p; can uniquely be recovered. More specifically, by Q
we mean a bounded closed domain, whose boundary consists of two straight
lines ¢t = 0 and ¢ = T', and two graphs of the functions z = &;(t;z,,T) and
e =&t x,T).

A possibility of this inverse problem to be localized is based on the
assumptions that the functions p;, p, and p; in question depend only on
t. Let us show that in the specified domain  these functions can uniquely
be recovered.

Equation (2.3.1) can be viewed as a system of differential equations
related to the replacements u, = v and u, = w. Writing this as a vector
equality we arrive at

u 0 0 0 u 01 0 U 0
v = 0 0 a2 v +1d ¢ 0 v |+ | F
w 01 0 w 0 0 0 w 0

t T
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By the replacements

we are led to the canonical form

rn=Kr,+Dr+9,

where
™ 0 0 0
r=\|r|, K={0 a 0],
r3 0 0 —a
A 2a? 2a? p [ O
D=—1d a+aa,—a, ac+aa,—qa, |, ®=— | F
2a e v 2a
d ac-aa, —a, ac—aa, —a, F

Additional information provides the validity of the relations

vy, 1) = w2y, 1) = (), 0<i<n,
yielding
(2.3.8) a(z; ,t) [ra(z; 1) + ralz )] = X4i(2), 1<i<n.

Keeping the integral along the characteristic

1

(p) = / o(&(r;2,t),7) dr, i=1,2,

Li(z,t) 0

and the new parameters

d __ac+aa, —a,
B=g 5 7T
_ac—aa, —q __1_
E= 2a? ’ H_2a’

n
p:(ply'-')pn)) g:(glv"'>gn)) pg:;ngzl
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we prefer to deal with concise expressions which are good enough for our
purposes. Other ideas are connected with integral equations which are
capable of elucidating many of the facets of current problems. The first
equation is obtained by integrating the equality u, = v as follows:

¢

(2.3.9) u(z,t) = p(x) +/ v(z, T) dT.
0

Let us integrate the second and third equations of the system (2.3.8) along
the corresponding characteristics and then add one to another. Multiplying
the resulting expressions by a(z,t) and taking into account the relation
a(ry + r3) = v, we arrive at

(2.3.10) v(z,t) = R(z,t) + a(z,1)

X l / (Bu+Cv+ Hgp)
Lyi(z,t)

+ / (Bu+Ev+ng)] ,

La(z,t)
where
R(z,t) =a(z,t) [r2(€,0) + 5 (&2, 0)]
h h
+a(e,1) [ / (%) + / (%)} .
Li(z,t) La(z,t)

Since . .

ra(z,0) = %a Y(z) + B} @' ()
and

(2,0 = 5 ¥(z) -~ 3 (@),

one might expect that the function R(z,t) is known. The remaining integral
equations can be derived by merely inserting z = z;, 1 < ¢ < n, in (2.3.10).
By the same token,

(2.3.11) Xi(t) = R(z;,t)+ a(z; 1)

x[ / (Bu+Cv+ Hgp)
L)((lf,‘tb)

+ / (Bu+Ev+ng)}.
LQ(IL‘. ,‘l)
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Our further step is to differentiate relations (2.3.9)-(2.3.11). To avoid
cumbersome expressions, it is reasonable to introduce the following nota-
tions for the function F(z,t) of two independent variables:

(2.3.12) Fi(r,z,t) = Zliw F(&(rsz,t),7),
(2.3.13) Figo(r 2, t) = F (& 7 % )
(2314) ]:i+4(7->$at) = % '7:(51 ’ T)?
(2.3.15) Five(m,z,1) = F(&,7) % -

In formulae (2.3.12)-(2.3.15) the subscript ¢ takes the values 1 and 2. The
intervention of a new unknown function z(z,t) = v (z,t) = u,,(z,t) com-
plements the notation of the integral along characteristics. If F(r, z,t) is
an arbitrary function of three variables and X(z,t) refers to each of the
functions u, v, w, z and p, one trick we have encountered is to adopt

i
/ (f'X):/f(T,z,t)X(fi(r;:c,t),T) dr, i=1,2.
Li(z,t) 0
Differentiating relation (2.3.9) with respect to z yields
t
(2.3.16) w(z,t) = ¢'(z) +/ z(z,7) dT.
0
One more relation, namely,
OR(z,1) + da(z,t)
Oz Oz

(2.3.17)  z(z,t) = [/ (Bu+Cv+ Hgp)

Li(z,t)

+ a(z,t)

+ / (Bu+ Ev+ Hgp)

Lg(l’,t)

><|' / (Blu+Clv+(Hg)1p+ng+C3z)
L)_((L‘,t)

+ / (BzU+E’zv+(Hg)2p+B4w+D4Z)l

La(z,t)
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is a result of differentiating equation (2.3.10) with respect to z.
Let us introduce one of the integration operators acting in accordance
with the rule

1) = [ Fev ds.

By definition,
u(,1) = Iw(z,0)] +x (1)

and
v(@,t) = Iz(z, )] + x: (1)
and equation (2.3.17) takes the form

w[ / (BIw+ Clz+ Hgp)

L;(l‘,t)

(2.3.18) z(z,t) = ¥(z,t) +

+ / (BIw-%—EIz—i—ng)]
Lg(x,t)

+a(1‘,t)[ / (BiIw+Ci Iz
Li(z,t)

+(Hg)hip+ Bsw+ Csz)

+ / (BoIw+ Es Iz
La(z,t)

+ (Hg)p+ Baw+ Ey2)

3

where

OR(z,t) N Oa(z,t)

Ylat) = Oz Oz

(Bx: + Cx3)
L1($,t)
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+ [ B+
Lg(IL‘,t)

+a(:c,t)[ / (B1x1+Cix})
Li(z,t)

+ / (B2xa + E2x7)
La(z,t)
Differentiating (2.3.11) with respect to ¢ and denoting by G;;(t), 1 <i < n,
1 < j < n, the elements of the inverse of (gi(xj ,t)), the resulting equations
are solved with respect to the values p;(¢), 1 < i < n, leading to the
decompositions '

(2.3.19) Dt Z Gij (1) {aa z;,1)

x[ / (Blw+ CIz+ (Hg)p)

Ll(l‘j,t)

+ / (BIw+EIz+(Hg)p)}

LQ(ID] ,t)

+ a(z;,1) / (Bs Iw+ C5 Iz

Ll(zjvt)

+(Hg)sp+ Brw+Cr2)

+ / (Belw-{-EGIZ

Lg(z‘j ,t)

+(Hg)ep + Bsw+ Eq 2)

b

—d{z;,1) x;(1)

where

n . OR(z;,t
=) Gi(t) [Xil(t) - ———(5{]—)

i=1
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dalz.. ;0
_ (a(-’tj’t) e(e;pt) - (a; t)) “)(Zwt)

LY Ry

Ll(l‘] ,l)

+ [ )

Lg(z'j ,t)'

~a(e;.0) /‘ (Bs x: + Cs x))
Ll(:b‘J ,t)

+ / (BGX1+E6X'1)]] .
Lg(z‘j,t)

Let us assure ourselves that the system (2.3.16), (2.3.18), (2.3.19) in
the class w, z, p € C is equivalent to the inverse problem (2.3.1)-(2.3.4) in
the class u € C?, p € C. Assume that the functions w, z and p satisfy the
system (2.3.16), (2.3.18), (2.3.19). Furthermore, setting

u@ﬂ:/w@ﬂ&+mm,v@ﬂ:/d&ﬂ%+ﬁ@

Ty T

we integrate equation (2.3.16) over z. After scrutinising the compatibility
conditions we deduce that v = u,, w = u,, z = uy, v(z;,t) = x;(),
u(z;,t) = x1(¢) and u(z,0) = p(z). Hence equality (2.3.9) holds true.

Observe that relations (2.3.19) are equivalent to those derived from
(2.3.11) by differentiation. Just for this reason (2.3.11) can be recovered
up to constants equal to zero by virtue of the compatibility conditions

x1(0) = R(z; ,0), 1<i<n.

Similarly, equation (2.3.10) is reconstructed from (2.3.18) up to a function
depending on t. It turns out that a vanishing function happens to be
at our disposal if we assume here ¢ = z; and apply equality (2.3.11) to
¢ = 1. Therefore, the system (2.3.9)-(2.3.11) is an implication of the system
(2.3.16), (2.3.18), (2.3.19). Moreover,

v(z,0) = R(z,0) = ¥(z).
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Substituting z = z; into (2.3.10) and recalling (2.3.11) yield v(z; ,t) = x}(t)
for 1 < ¢ < n. Whence the compatibility conditions

e(z;) = x;(,0), 1<i<n,

provide u(z; ,t) = x;(t), thus causing the occurrence of relations (2.3.2)-
(2.3.3).

It remains to verify whether the function u(z,t) satisfies equation
(2.3.1). We proceed as usual. This amounts to inserting the new functions

ri(z,t) = u(z, 1),
(2.3.20) m2(z,t) = Ro(z,t)
h
+ / (Bu+Cv+ng+%>,
Ll(l‘,t)

(2.3.21) rs(z,t) = Ra(z,t)

h
+ / (Bu+Ev+ng+%)

La(z,t)
with
1 1,
Ry(z,t) = 706 (0;2,0),0) B (€:(0;z,1)) + R4 (&:(0;z, 1)),
1 1
Ra(z,t) = 7a60,2.0,0) $(€2(0;2,1)) — 3¢ (&2(0;2,1))

and establishing the following relationships:

a(rtr)=v, ra(2,0) = Y@)+ 3 9(2)

1
2a(z,0)

and
rs(z,0) = mlw—o) Y(z) - % ¢'(z).

Upon differentiating (2.3.20)-(2.3.21) along the corresponding characteris-
tics it is easily seen that the functions r;, r, and r; solve equations (2.3.8).
Subtracting the third equation (2.3.8) from the second yields one useful
relation

' (ro —7m3); =a(ra+7), +a,(ra+73),
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which, with v/a substituted for 7, + r;, reduces to
(r2=rms)y=v, =2,
Since w, = z and
ra(z,0) — ra(z,0) = ¢'(z) = w(z,0),
we might have
o — T3 =W
and, therefore, the system of equations written initially is a corollary of
(2.3.8) and can be derived from it by the inverse replacements
u=ry, v=a(r, +73), W=7ry—71y.

However, the second equation of this system represents an alternative form
of writing equation (2.3.1). Thus, the equivalence between the system
(2.3.16), (2.3.18), (2.3.19) and the inverse problem concerned is proved.

The system of equations (2.3.16), (2.3.18), (2.3.19) can be solved by
the method of successive approximations. This can be done using the space
C(Q) of all vector functions having the form a = (w, z, p), where w and
z are defined and continuous in the domain §2 and the vector p(t) of the
dimension n possesses the same smoothness on the segment [0, T]. The
norm on that space is defined by
(2.3.22) |la|| = max { max |w|, max | z|, max |p;|}.

Q 0 [O,T
1<i<n
We refer to the vector
a, = (¢'(2), ¥(z,1), H(1))

and an operator L in the space C'(£2) to be defined by the group of uniform
terms on the right-hand sides of relations (2.3.16), (2.3.18) and (2.3.19),
by means of which the system of integral equations can be recast as
(2.3.23) a=ay+ La.

In the light of the theorem premises the coefficients of equations (2.3.16),
(2.3.18) and (2.3.19) are really continuous and, therefore, bounded in the
domain Q. Taking into account the obvious inequality

|I[]—'(:c,t)] | <(B-a) mélx | F(z,t)]
one can derive the usual estimates for the Volterra equations:

NT)k
1z+al < B jay,

which can be justified by induction on k. The use of the contraction map-
ping principle implies the existence and uniqueness of the equation (2.2.3)
solution. With the equivalence established above, the same will be valid
for the inverse problem (2.3.1)—(2.3.4), thereby completing the proof of the
theorem. M
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By means of substitution (2.3.5) from Theorem 2.3.1 we derive one
useful corollary.

Corollary 2.3.1 Let 0 < a(z,t) < M, a(z,t) € C?, ¢(z) € C* and let
@(z), x;(t) € C?, 1 <i < n. One assumes, in addition, that p(z;) = x;(0)
and x;(0) = ¥(z;), 1 < i < n. Let the functions c(z,t), d(z,t), h(z,t)
and g;(z,1), 1 < i < n, be continuous along with their first z-derivatives in
the domain Q and let b(z,t) € C?, det (g,-(:cj ;1)) #0. Then there ezists a
solution of the inverse problem (2.3.1)~(2.3.4) in the class

u € C?, p;i €C, 1<i<n,

and this solution is unique in the indicated class of functions.

The results obtained permit us to give a definite answer concerning
the uniqueness of recovering other coefficients of equation (2.3.1). Two lines
of research in the study of second order hyperbolic equations are evident
in available publications in this area over recent years. Not much is known
in the case of the combined recovery of the coefficients a(t), ¢(t), d(t) and
the function u(z,t) satisfying the relations

— g2
Uy = AUy +cu, +du,

u(a:,O) = (P(x) )
(2.3.24) u(z,0) = B(z),
u(z; 1) = x;(t), 1<i<3,

where the variables # and ¢ are such that the point (z,t) should belong to
the domain Qp described at the very beginning of this section.
Let both collections

(), oD, D), gV

and
(u(2), a(2), 6(2)’ d(2))

solve the inverse problem we have posed above. Setting A() = [a(")]2 and
v = u(® — u(}) and subtracting relations (2.3.24) written for v = u(*) and
u = u(® one from another, we derive the system

vy = A@v .+ Dy, + dPy + F,

v(z,0) =0,

v,(z,0) =0,

v(z; ,t) =0, 1<i<3,

(2.3.25)
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where
F(a,t) = (d® — dD)u® 4 (@ = D)y 4 (42 — 40 ull) .

It remains to note that relations (2.3.25) constitute what is called an inverse
problem of the type (2.3.1)—(2.3.4) under the following agreements:

n(z,t) =uD(z,t), gt =u(@1), g1)=u(1),
pi(t) = dD@) — dD(2), pa(t) = B (t) - D(1), pa(t) = AD(t) - AD(),
h(z,t) =0, n=3.

Moreover,

g1(z;,t) = x;(1), 1<5<3,
g2($],t)—X;(t), 1<5<3,
gs(z; ,t) = uglz)(a:j 1), 1<5<3

The last value can be expressed by (2.3.24) in terms of the functions x; (1)
and their derivatives as follows:

Xj(6)  CDOx0  dD@)x; () ,
w250 = Fingy - Aoy T Ao 0 SIS

Due to the determinant properties we thus have

1
det (g;(z; 1)) = o) WX, X2 Xs)

where W(x1, X2, Xa) is the Wronskian of the system

{xa(1), x2(1), xa(t)} -

It is clear that the system (2.3.25) satisfying the conditions of Theorem
2.3.1 has no solutions other than a trivial solution. This is just the clear
indication that a solution of the inverse problem (2.3.24) is unique. This
profound result is established in the following assertion.
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Corollary 2.3.2 When W(x1,x2,xs) # 0, a solution of problem (2.3.24)
s unique tn the class of functions

w€C? wu,,€C, acC? a>0, ceC, deC.

A similar way of investigating can be approved in solving the inverse
problem of finding the functions u(z,t), ¢(t) and d(¢) from one more system

Uy = a®uy, +cu, +du,
(2.3.26) u(z,0) = (), u,(z,0) = ¥(z),
u(xi)t)=Xi(t)’ 1SZS2;

where (z,t) € Q.

Corollary 2.3.3 Let a(z,t) € C? and 0 < a(z,t) < M. If the Wronskian
W(x1,X2) # 0, then a solution of the inverse problem (2.3.26) is unique in
the class of functions

u e C?, ceC, de C.

It is desirable to have at own disposal some recommendations and
rules governing what can happen. The rest of the present chapter focuses
on the problem of recovering a single coefficient d = d(¢) from the following
relations over Q.

Uy = alug, ++buy, +cu, +dut F
(2.3.27) u(z,0) = ¢(z), u,(z,0) = ¥(z),

u(z1,t) = x(1).
Theorem 2.3.1 yields the uniqueness condition for the problem at hand.
Corollary 2.3.4 Let a(z,t) € C?, 0 < a(z,t) < M, b(z,t) € C? and let

c(z,t), cp(x,t) € C and x(t) #0. Then a solution of problem (2.3.27) is
unique in the class of functions

u € C?, deC.

Under the same assumptions one can prove the local solvability of
problem (2.3.27) by employing the method developed in Theorem 2.3.1
for b(z,t) = 0 (or otherwise recalling substitution (2.3.5)). The system of
equations related to the functions

w(z,t) = uy(z,t)
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and
z2(z,t) = ug(z,t)

can be derived in a similar manner. Relation (2.3.16) remains unchanged,
whereas (2.3.18) should be replaced by

(23.18)  z(e,t) = Pz, ) + 6“2’;’”

X [ / (BIw + CIz + By)

Ll(a:,t)

+ / (BIw + Elz + By)+| + a(z,1)

La(z,t)

X[ / (Bllw+C’11’z+ng+le)

Ll(:c,t)

bl

+ / (Bglw+E21z+B4w+E4z+Bzx)

La(z,t)

where

B(z,1) = GR{;(;,t) 4 6agz;,t)

/(Cx’)+ / (Ex")

Li(z,t) La(zt)

1

—}—a(x,t)[ / (Cix")+ / (E2x")

Ly(z,t) La(z,t)

R(z,t) = a(z,t) l:rz(fl(o;z,t),()) + 7'3(62(0;567t),0)

[ (5) ] (£)]

Ly(z,t) La(z,t)
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Instead of (2.3.19) we arrive at the equation

at(xl :t)
x(z,1)

(2.3.19") d(t) = do(t) —

X [ / (Blw + CIz + By)
Li(z1,1)

+ / (BIw+ Elz + By)

Lz(il,t)

a(zy,t)

0 [ | et
L,(xl,t)

+ Brw+ C7z+ Bsx)

+ / (BGIU)-}-EGIZ

Lg(l’l ,t)

+ Bsw+ Esz+ Bgx)

where

X”(t) - Et(w] ’t) _ a(a:, ’t) C(:B] st) - at(ml ’t) Xl(t>

do(t) =

e [ [ o+ [ @0
Lqi(zq,t) La(zy,t)
_a(xl)t) ' 1
™0 [ / (Csx')+ / (sz)}-
Li(z1,t) Lo(zy,t)

Evidently, relations (2.3.16), (2.3.18') and (2.3.19’) constitute a system of
the second kind nonlinear integral Volterra equations. If the coefficients
of the preceding equations are continuous, this system possesses a unique
continuous solution for all sufficiently small ¢. In concluding the chapter
we give the precise formulation of this fact.
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Corollary 2.3.5 Let a(z,t) € C?, 0 < a(z,t) < M; b(z,t) € C?; c(z,1),
c(z,1), F(z,1), Fo(z,t) € C and let p(z) € C?, ¢(z) € C* and x(t) € C2.
One assumes, in addition, that o(z,) = x(0), ¥(z1) = x'(0) and x(t) # 0.
Then, for sufficiently smallt, there exists a solution of the inverse problem
(2.3.27) in the class of functions

u(z,t) € C?, d(t) € C.

We have nothing worthwhile to add to such discussions, so will leave
it at this.






Chapter 3

Inverse Problems for Equations

of the Elliptic Type

3.1 Introduction to inverse problems in potential theory

The first section of this chapter deals with inverse problems in potential
theory and places special emphasis on questions of existence, uniqueness
and stability along with further development of efficient methods for solv-
ing them. As to the question of existence, we are unaware of any criterion
providing its global solution. There are a number of the existence theo-
rems “in the small” for inverse problems related to a body differing only
slightly from a given one as it were. And even in that case the problems
were not completely solved because of insufficient development of the the-
ory of nonlinear equations capable of describing inverse problems. That
is why, it is natural from the viewpoint of applications to preassume in
most cases the existence of global solutions beforehand and pass to deeper
study of the questions of uniqueness and stability. Quite often, solutions
of inverse problems turn out to be nonunique, thus causing difficulties. It
would be most interesting to learn about extra restrictions on solutions if
we want to ensure their uniqueness. The main difficulty involved in proving
uniqueness lies, as a rule, in the fact that the inverse problems of interest

123
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are equivalent to integral equations of the first kind with the Urysohn-type
kernel for which the usual ways of solving are unacceptable. The problem
of uniqueness is intimately connected with the problem of stability of the
inverse problem solutions. For the inverse problems in view, because they
are stated by means of first kind equations, arbitrarily small perturbations
of the right-hand side function may, generally speaking, be responded by
a finite variation of a solution. The requirement of well-posedness necessi-
tates imposing additional restrictions on the behavior of a solution.

Special attention is paid throughout to the important questions of
uniqueness and stability of solutions of inverse problems related to poten-
tials of elliptic equations of the second order.

This section is of auxiliary character and introduces the basic nota-
tions necessary in the sequel. We begin by defining the potentials which
are in common usage and list their main properties. Denote by z =
(z1,...,2,) and y = (%1,...,¥,) the points in the space R" and by Q
a bounded domain in R™ with boundary 09 of class C?, Q = QU 9.
For an arbitrary vector field w of the class C!(fQ) the following relation
ascribed to Gauss and Ostrogradsky appears very useful in the future:

(3.1.1) / divw dy = /(w ‘) ds,,
a0

Q

where ds, is an (n — 1)-dimensional surface element on 92 and v, is 2 unit
external normal to the boundary 992.

Let us consider a pair of the functions v = u(y) and v = v(y), each
being of the class C?(Q). Substituting w = v - Vu into (3.1.1) yields the
first Green formula

du
(3.1.2) /v-Audy+/VuAVvdy:/v-E—dsy,

Q Q N v

where the symbols Vu and Vv stand for the gradients of the functions u
and v, respectively.

By successively interchanging the functions u and » in (3.1.2) and
subtracting the resulting relation from (3.1.2) we derive the second Green
formula

Ou v
(3.1.3) /(v-Au—u-Av)dy:/(v'E»u-%> ds, .
Q a0

Recall that the Laplace equation Au = 0 has the radially symmetric
solution 72" for n > 2 and log% for n = 2, wht_ere r i1s the distance
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to a fixed point, say the origin of coordinates. Holding a point z € Q
fixed we introduce the normalized fundamental solution of the Laplace
equation by means of the relations

1 1

— log ——— , n=2,

2 lz -yl

(3.14) E(z,y)=E(lz-yl)=

1 1 o3
n )
wo(n=2) lz—y=2’ 7

where w,, = 27%% is the area of unit sphere of the space R™ and

+oo

NI / t* Yexp {~t} dt
0
is the Euler gamma-function.

Evidently, the function E(z, y) is harmonic whenever y # z. However,
because of the singularity at the point y = z, it is impossible to substitute
the function E into the Green formula (3.1.3) in place of the function wv.
One way of proceeding is to “move” from the domain © to the domain
Q\ B(z,¢), where B(x,¢) is a ball of a sufficiently small radius ¢ with
center z.

All this enables us to write down (3.1.3) for the domain Q\ B(z,¢) by
substituting F(z,y) for the function v(y) and regarding the point z to be
fixed. The usual manipulations may be of help in estimating the behavior
of the integrals on 9B(z,¢) as ¢ — 0. Adopting the above arguments for
the different locations of z: z € Q, z € 9Q or z & Q, we can derive the
third Green formula

(3.1.5) /(E(x,y) ag}sy) — u(y) aE(x,y)) ds,

0
sh y Yy
u(z), €,
—/ E(z,y) Au(y) dy = %u(r), z €00,
Q 0, g Q.

Having no opportunity to touch upon this topic, we address the readers
to Bitsadze (1966), (1976), Vladimirov (1971), Tikhonov and Samarskii
(1963) and others.

Let us now introduce the potentials to be involved in further consid-
erations. For any bounded and integrable in Q function u(y) we adopt the
function

u(z,y) = / E(z,) u(y) dy

Q



126 3. Inverse Problems for Equations of the Elliptic Type

as the potential of a volume mass with density p under the natural
premise that p(y) # 0 almost everywhere in Q. It is known that the volume
potential u so defined obeys the following properties:

(3.1.7) it pe C*(Q), 0<h <1, then Au(z)= { —uz), z€Q,
Oa T ¢Q

(log —-1——)~1u(2:)—>M, n=2,

(3.1.8) As Jz| — o0, |z
|z " ?u(z) - M, n>3,
where
1
oy /u(y) dy, n=2,
M= Q
1
m/#(y)dy, n>3.

Here the symbol C*(§) is used for the Holder space formed by all continu-
ous on 2 functions satisfying Holder’s condition with exponent h, 0 < h <
1. The norm on that space is defined by

(3.1.9) Hu”ch(ﬁ) =sup |u(z)|+ H"(v),
T€N
where H”(u) is Holder’s constant and, by definition,

H'uw)= sup {|u(en) = u(@)] - |as -2 [0}

z1,T2€80

In addition, C""(Q), I € N, 0 < h < 1, is a space comprising all the
functions with the first { derivatives which are Holder’s continuous with

exponent h.
The potential of a simple layer is given by the relation

(3.1.10) o) = [ B w)oty) ds,,

a0

where the integrable density p(y) # 0 almost everywhere on 9Q. The
function v(z) defined for z € R \ 99 is twice continuuosly differentiable
and satisfies the Laplace equation, that is, Av(z) = 0 for z € R™ \ 6Q.
Moreover, in the case where p € Lo, (0§2) the function v belongs to C*(R")
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for any h, 0 < h < 1. Note that if the function p is continuous on 9%, then
for the simple layer potential the jump formulae are valid:

Ov \* T OE(x,,
(3.1.11) (61/” ) (zo) = + ”(2°) +/ ;V" Y o) ds,
To 50 To
Ov \* 0v \~ - v
where <6Vz0) (2o) and (—a—l—/z—o) (zo) denote the limits of o as T — T

(zo € 0R2) taken along the external and internal normal v, with respect
to €, respectively.

3.2 Necessary and sufficient conditions for the equality of
exterior magnetic potentials

This section focuses on establishing several preliminary assertions which
will be used in the sequel.

Let finite domains Q4, @ = 1,2, be bounded by piecewise smooth
surfaces 0, Qa C Dy, where Dg is a bounded domain in the space R”
with a piecewise smooth boundary 9Q,. The potentials of volume masses
and the potentials of simple layers are defined as follows:

(21) 0@ = u@%n) = [ Ble)ul) dy

and

(322)  %(x) = v(2; 00, py) = / E(2,) pa(y) dy.
80

Let real numbers 8 and v be such that 32 + 42 # 0. By a generalized
magnetic potential we mean the function

(3.2.3) w¥(z) = w(z; Ry, 0, fgs Pa) = Bu(z) + yv¥(2).

If Ay and Ay, A, C Do, a = 1,2, are open bounded sets, each being a
union of a finite number of domains

(3.2.4) A= 9, A= U 9,
j=1

Jj=1 j=
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where m; and m, are fixed numbers, Q] and 9QJ are piecewise smooth
boundaries, 844, a = 1,2, is the boundary of A,, we will replace 2, and
0, by Ay and 0A, everywhere in (3.2.1)-(3.2.3).

Let D be an arbitrary domain (in general, multiply connected) and
let

(3.2.5) DyDD.

The symbol D; stands for a domain having a piecewise smooth boundary
such that

(3.2.6) - DD>D;, mes(0D;NBA)=0, a=12.
Let h(y) be a regular in D solution of the Laplace equation
(3.2.7) Ah(y) =0, yeED.

For the purposes of the present chapter we have occasion to use the func-
tional J(h) with the values

(3.2.8) iw=p| [ wwh)d
A1\(Do\D»)

- / 12(y) h(y) dy]
A:\(Po\D1)

. [ / pr(v) h(y) ds,
8A1\(Do\Dy)

- [ mwhw dsy] ‘
8A2\(Do\D1)

where p,, and p, are bounded integrable functions.

Lemma 3.2.1 If h(y) is any of the regular in D solutions {0 equalion
(3.2.7), then the functional J(h) specified by (3.2.8) admits the representa-

tion

(3.2.9) J(h) = — / M, [w(z); h(z)] ds,

22250



3.2. Necessary and sufficient conditions 129

with

(3.2.10) w(z) = wi(z) — w?(z),

where w*(z), o = 1, 2, are the generalized magnetic potentials defined by
(3.2.3) and the domains D and Dy satisfy conditions (3.2.5)~(3.2.6). Here

the symbol My[w;h] denotes the integrand on the right-hand side of the

second Green formula (3.1.3):

Ow(zx) Oh(z)
v, w(e) ov,

x z

M, [w; h] = h(x)

Proof If h(y) is any solution to equation (3.2.7), then formula (3.1.5) gives
in combination with relations (3.2.5)(3.2.6) the representation:

h(y), Dy,
3.211) - / M [E(z,y);h(z)] ds, = { o(y) zi Do\ Dy
8D, '

where E(z,y) is the fundamental solution (3.1.4) to the Laplace equation.
Multiplying (3.2.11) by p,(y) and integrating over A, yield

(3.2.12) / to(y) h(y) d

A\(Do\Dy) _
=/ua(y){—/ M [E(z,y); h(z)] dsx} dy.

Ao 8D,

Changing the order of integration (this operation is correct, since the in-
tegrals on the right-hand side of (3.2.12) have weak singularity; for more
detail see Hunter (1953)) and retaining notation (3.2.1), we arrive at

(3.2.13) | rawn) du= [ Mofu@)iba) s,
Aa\(Do\Dy) 9D,

If (3.2.11) is multiplied by p,(y) and subsequently integrated over §A,
with (3.2.6) involved, we thus have

(3.2.14) / Pa(y) h(y) ds, = — /pa(y){ /Mx [E(z,y); h(z)] dsx} ds,

6Aa\(Dg\D1) A, 8D,
/M [{ /pa(y E(z,y) d }h(x)} te
8D,

- /Mx [v*(z); h(z)] ds

8D,
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From (3.2.13) and (3.2.14) it follows that

G215) 5 [ wGb)dtr [ p)hw) ds,

Aa\(DD\Dl) ru\(DO\Dl)

:—/M[ (2); h(z)] ds, .

9D,

Finally, subtracting (3.2.15) with o = 1 from (3.2.15) with o = 2 we get
the assertion of the lemma. B

Of great importance is the functional
(3.2.16) J(h, Aa, ko, OAa, pg)
=p / to(y) h(y) dy+7 / Pa(y) h(y) ds
Am

8Aq
where p, and p, are bounded measurable functions.

Lemma 3.2.2 For the equality of exterior magnetic potentials

(3.2.17) w(z, A1, p1, 0A1, p1) = w(z, Aa, pta, 0 A2, pa),
T c Do\(fi1UA2),

to be valid it is necessary and sufficient that functional (3.2.16) satisfies the
relation

(3.2.18) J(h, A1, p1,0A1,p1) = J(h, Az, pa, 0A2, p2),

where h(y) is any regular solution to the equation

(3.2.19) Ah(y) =0, yeED.

Here D is an arbitrary domain for which the following inclusions occur:
(3.2.20) Do>DD>DD(AUA).

Proof First of all observe that if (3.2.18) holds, then for z € Dy \ D and

y € D with h(y) = E(z,y) the combination of relation (3.2.18) and repre-
sentation (3.2.16) gives (3.2.17).
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Granted (3.2.17), we pass to a domain D; ordered with respect to
inclusion:

(3.2.21) D> Dy DDy D (A UA,).

Any domains D and Dy, arising from (3.2.20)~(3.2.21), must satisfy (3.2.5)-
(3.2.6) and, moreover,

(3.2.22) Ae N (Do\D1) = 2.

Therefore, the properties of the potential of a volume mass and those of the
potential of a single layer along with (3.2.17) imply that in (3.2.9)—(3.2.10)

(3.2.23) Mg [w(z);Mz)] =0 for z€0dD;.

Together (3.2.8), (3.2.9) and (3.2.22) lead to (3.2.18) and the lemma is
completely proved. B

In auxiliary lemmas we agree to consider

(3.2.24) B = (Al U Az) \ Ao , Ap = A; N Ay,
(3225) J(h)AQ \Ao)ﬂa)aAaxpa) = ,B / /“a(y) h(y) dy

T / paly) h(y) ds,

A,

Lemma 3.2.3 For the equality
(3226) w(w;Al)p‘baAhpl): w(-73§A2,/J2,aA2yP2), .'CEDO\B,

to be valid il is necessary and sufficient that the relations

(3227)  m) =mly) for yedo (if B#0),
(3.2.28)  J(h, Ay \ Ao, p1,04A1,p1) = J(h, A2\ Ao, pt2, 0 A2, po)
hold, where h(y) ts any regular solution to the equation

(3.2.29) Ah(y) =0, ye D,

and D is an arbitrary domain involved in the chain of inclusions
(3.2.30) Dy>D>DDB.

Here the set B and the functional J built into (3.2.28) are given by formulae
(3.2.24)-(3.2.25).
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Proof The statement of the lemma will be proved if we succeed in showing
that (3.2.26) implies (3.2.27)—(3.2.28). The converse can be justified in just
the same way as we did in Lemma 3.2.2.

From (3.2.24), (3.2.3) and (3.2.26) it follows that
(3.2.31) wl(z) = wi(z), =z € Ao,
and thereby we might have for the Laplace operator
(3.2.32) Aw'(z) = Aw’(z), z € Ap.

On the other hand, the properties of the volume mass potential and the
simple layer potential guarantee that

(3.2.33)  Aw%(z) = FAu%(z)+7Av(z) = =L pylz), z € Ag,

where u®, v® and w® have been specified by (3.2.1)-(3.2.3). Consequently,
(3.2.32)—(3.2.33) are followed by (3.2.27) and one useful relation

6230 [ m@Ee = [ m@) By d,  aeD.
Ao Ao

Other ideas are connected with the transition to a domain D; having
a piecewise smooth boundary dD; such that

(3235) DD D1 DD D B.
Any domains D and D; involved in (3.2.30) and (3.2.35) satisfy (3.2.5)-
(3.2.6) during which

6Aa N (Do\Dl): (7

Under condition (3.2.6) associated with functional (3.2.8) representa-
tion (3.2.9)-(3.2.10) gives

(3.2.36) J(h) = 0.

With the aid of relation (3.2.34) and the properties of the domains D
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and D; that we have mentioned the functional J(k) can be rewritten as

(3.2.37) J(h)=ﬂ[ / pa (y) h(y) dy
A1\(AonDy)

- /umwwq
Az\(AoﬂD])

+7

/ p1(y) h(y) ds,

aAl

—/m@wmﬁ

0A>

under the natural premise 4, N (Do \ D1) = @. Since the right-hand side
of (3.2.36) is independent of Dy, we are led to (3.2.28) by merely choosing
a sequence of domains {D{”}:ozl satisfying (3.2.35) such that mes(Ao N
D?) — 0 as n — oco. Thus, the lemma is completely proved. W

Before giving further motivations, it will be convenient to introduce
the new notations as they help avoid purely technical difficulties. Denote
by T the boundary of the set A; UA,. In the case Q’ # QJ we thus have

I'=84,NANA,, T{=0A\T,,
(3.2.38) '
f‘;:@Azﬂf‘e, F;:@Aa\f‘g.

In what follows we accept Fg =0A, fora=1, 2if A; = A,. B
Let By be any connected component of the open set B = (A;UA3)\ A
with 8By being the boundary of By and set

(3.2.39) iy =Tinri.
Assume that the sets A; and A, are located in such a way that
(3.2.40) mes (0By NTh) = 0

for at least one of the domains Bo. Without loss of generality we may
suppose that By C (A; \ Ag). Within notation (3.2.38), the set T'j U,
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represents the boundary of A; \ Ag. A simple observation may be of help
as further developments occur: '

(3.2.41) 8By N T = (8By)°, 8By N T = (8By)'.
With these relations established, it is plain to show that
(3.2.42) 8By = (8B0)° U (8Bo)".

The following lemma is devoted to an arbitrary domain D ordered
with respect to inclusion:

(3.2.43) DyD>DD>DDB.

Lemma 3.2.4 Let (3.2.40) hold for the sets Ay, o = 1, 2. One assumes,
in addition, that the bounded functions p,(y) and p,(y) and the functions
w*(z), o = 1,2, defined by (3.2.3) coincide:

(3.2.44) w'(z) = w?(z) for z € Dy\B.

Then

(3.2.45) B /ul-(y) h(y) dy +~ / p1(y) h(y) ds,
By (8Bo)®

=y /pz(y)h(y) ds,
(8Bg)!

for any solution h(y) of the Laplace equation regular in a domain D from
inclusions (3.2.43).

Proof One thing is worth noting here. As in Lemma 3.2.3 relation (3.2.45)
can be derived with the aid of Lemma 3.2.1. But we prefer the direct way

of proving via representation (3.1.5). This amounts to deep study of D,
having a piecewise smooth boundary D, and satisfying the conditions

(3.2.46) DD Dy D D1 D By, DiN(B\Bo) = ©,0D1NdBy = 0By NIl .
Formula (3.1.5) for any regular solution h(y) to the equation

(3.2.47) Ah(y) =0, yeD,
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implies that

(3.2.48) - / M, [E(z,y), h(z)] ds, :{

oD,

hMy), ye D,
0, y€Do\D.

Let us multiply (3.2.48) by u,(z) and integrate then the resulting relation
over the set A, \ Ag. Changing the order of integration and retaining
notations (3.2.39)-(3.2.43), we arrive at

(3.2.49) —/Mx[(/ E(z,y) m(y) dy>;h(l‘)} ds,

8D, M1\ Ao
=/ h(y) 1 (y) dy
Bo
and
(3.2.50) - / M, [( / E(z,y) pa2(y) dy) ;.h(:c)] ds, =0.
8D, A2\Ao

Furthermore, let (3.2.48) be multiplied by p,(y) and integrated over
0A with regard to (3.2.39)—(3.2.43). Since By C (A; \ A1), we thus have

(3.2.51) — / Mz[(ﬁ/ E(z,y) p1(v) dsy>;h(x)

8D, Ay

ds,

= [ nwn) s,
(8Bo)e '

and

(3.252) - / M, [(H/ E(z,y) p2(y) dsy);h(z)J ds,

aD, Anp
= / p2(y) h(y) ds, .
(8Bg)!

Multiplying (3.2.49) and (3.2.51) by 8 and «, respectively, one can add the
results, whose use permits us to obtain the relation

(3.2.53) - / M [w(z, Ay \ Ao, g1, 0A1, p1); h(z)] ds,
oD,

=ﬁ/h(y)u1(y) dy +7 / p1(y) h(y) ds, .
By

(8Bo)e
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Likewise, it follows from (3.2.50) and (3.2.52) that

(3.2.54) —/ M [w(z, Az \ Ao, pa, 0Az, p;); h(z)] ds,
8D,

=7 / p2(y) h(y) ds, .

(8Bo)*

In conformity with (3.2.44) the proof of Lemma 4.2.3 serves as a basis for
(3.2.34), thereby justifying that the combination of (3.2.34) and (3.2.45)
gives

(3255) U)(.'L‘,Al \A03,u1)8A1:p1) = w(a:)A? \ A07u21 8A2;P2)
for z€Dg\B.

Therefore, the left-hand sides of (3.2.53) and (3.2.54) are equal by virtue of
(3.2.55) and the properties of the potentials of volume masses and simple
layers. Thus, the equality of the right-hand sides of (3.2.53)~(3.2.54) is
established. This proves the assertion of the lemma. W

In what follows we shall need the concept of generalized solution
to the Laplace equation in the sense of Wiener (for more detail see Keldysh
and Lavrentiev (1937), Keldysh (1940)). In preparation for this, we refer
to the boundary 99 of a domain Q (in general, multiply connected) such
that a neighborhood of any point of 02 contains the points of the set
R"\ Q. Any domain § enabling the solvability of the Dirichlet problem
for the Laplace equation with any continuous boundary data falls into the
category of standard domains.

Let a function f(z) be continuous and defined on the boundary 9Q
of a domain 2, which is multiply connected and bounded. The intention
is to use a continuous function ¢(z) defined everywhere in the space R™
and identical with f(z) on 09 (for more detail see Keldysh and Lavrentiev
(1937)). In what follows we involve a sequence of domains

Di,Ds, ..., Dp, ...

with boundaries
oDy, 8Dy, ..., 0D, ...,

containing the closed set QU 00 and converging to the domain €2, so that
from a certain number m, and on any closed subset of R™ \ © will be out
D,,,. We may assume that the components of 0D, are analytical with
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D41 C Dy, for any m. The symbol hmw indicates the solution of the
Dirichlet problem for the Laplace equation in D,, with the boundary data
®lop,, - Following the papers of Keldysh and Lavrentiev (1937), Keldysh
(1940) one succeeds in showing that the sequence of functions

Rigrhogs oo s Py - -
converges in the closed domain  and {hm(p }:no:1 converges uniformly over
a closed subdomain €' C €. The limiting function h;(z) satisfies the

Laplace equation without concern for how the domains D,, and the function
o(z) will be chosen.

Definition 3.2.1 The function h;(z) constructed is said to be a generalized
solution of the Dirichlet problem for the Laplace equation in the domain Q
with the boundary data f(z) continuous on 9Q.

Let the domain 2 and its boundary 99 be given in Definition 3.2.1
and let u(y) be a summable bounded function.

Lemma 3.2.5 Let the density p(y) be such that u(z,Q,pu) = 0 for z €
R™\ Q. Then any generalized solution h; of the Dirichlet problem in the
domain § satisfies the relation

(3.2.56) [ #whs ) dy=o.
Q

Proof The main idea behind proof is to extract a sequence of domains

Dy,Ds,...,Dp,..., Dm+1CDm,

containing £ U dQ and having the analytic boundaries D,,. As stated
above, there exists a sequence of solutions of the Dirichlet problem for the
Laplace equation, when the boundary data are prescribed by a sequence of
the continuous on 02 functions, say
o0
{hmw}mzl’ hm¢—*hf: m — 00.

Because the function Rpn 1s harmonic in the domain Dpy1, Lemma 3.2.2
implies that

(3.2.57) [ 1) by0) dy =0,
Q
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As far as the function f(z) is bounded, the extended function ¢(z) can be
so chosen as to satisfy

lel, |fI<M=const in R",
yielding
| Ao |, 1Ry | <M in Q forany m=1,2,....

This is due to the principle of maximum modulus. The function p(y) being
bounded in € provides the validity of the estimate

|/l(y) hmgp } S ¢; = const )

which is uniform in m. Therefore, by the Lebesque theorem the limit
relation

(3.2.58) i [ u@) (@) dy = [ ww)hy () dy
Q Q

takes place. From (3.2.57) it follows that the left-hand side of (3.2.58)
equals zero. Thus, (3.2.56) is true and thereby the lemma is completely
proved. W

To assist the readers in applications, we are going to show how the
assertions of Lemmas 3.2.2-3.2.4 can be extended to cover the generalized
solution h; of the Dirichlet problem for the Laplace equation by using
Lemma 3.2.4 as one possible example. True, it is to be shown for the
problem

(3.2.59) { Ah(z)=0, z€ By,

h(z) = ¢(z), =z € dBy,

where By arose from (3.2.39)—(3.2.41), that any continuous on By function
¢ can be put in correspondence with a function k. Being a generalized so-
lution of the Dirichlet problem (3.2.59) in the sense of Wiener, the function

h, is subject to the relation

(3.2.60) Ah,(z) =0, z € By,

and takes the values ¢(z) at regular points of the boundary 9By, what
means that

wllrglo h,(z) = ¢(zo), =o€ 0By (2o 1is a regular point),

irrelevant to the choice of a continuous function ¢ (see Landis (1971)).
Note that the generalized solution h,, is identical with the solution of

the Dirichlet problem (3.2.59) itself, if any.
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Lemma 3.2.6 Under the conditions of Lemma 3.2.4 any generalized solu-
tion h; of the Dirichlet problem (3.2.59) satisfies the relation

(3.2.61) ﬁ/hw(y)#l(y) dy +7 /hw(y)ﬂl(y) ds,
By

(aBo)e

— / ho(4) pa(y) ds,
(8Bo)’

The proof of Lemma 3.2.6 is omitted here, since it is similar to
Lemma 3.2.4 with minor refinements identical with those of Lemma 3.2.5.

3.3 The exterior inverse problem for the volume potential with
- variable density for bodies with a “star-shaped” intersection

We cite here a simplified version of the statement of an inverse problem of
finding the shape of a body from available values of its volume potential.
Let Dy be an arbitrary domain in the space R" enclosing the origin of
coordinates and let © be an open bounded set with boundary 02 such that
Q C Dy. In the general case the set § is representable as the union of a
finite number of domains Q7 with piecewise boundaries Q7 in conformity
with (3.2.4). Special investigations involve a pair of functions with the
following properties:

(1) the function p(z) is measurable and bounded in Dy;
(2) the function h(z) is harmonic everywhere except for the origin of
coordinates or a certain bounded domain D*, D* C Dy.

In each such case the function h(z) is assumed to behave at infinity as the
fundamental solution E(z,0) of the Laplace equation.

In dealing with the functions h and p the inverse problem for the
potential of volume masses

u(z; Q, 1) =/ E(z,y) p(y) dy = h(z)

0

consists of finding the domain 2 enclosing the origin of coordinates or,
correspondingly, the domain D*, D* C Q.

This section examines the uniqueness of solution of the aforemen-
tioned inverse problem. In other words, the main goal of our study is to
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find out the conditions under ‘which the equality of the exterior volume
potentials implies the coincidence of the emerging domains.

We now proceed to a more rigorous statement of the uniqueness prob-
lem. Let 4, o = 1, 2, be unknown open bounded sets with boundaries
004. The set 99, is the boundary of R™ \ Q4 and Q4 C Dy, where Dy is
a certain domain in the space R”. The volume mass potentials u®(z) are
defined by (3.2.1) with a common density p(y) as follows:

u(z) = u(e; Qa, p) = / E(z,y) u(y) dy.
Qo
Problem 1 It is required to formulate the conditions under which the
equality of exterior volume potentials

/ E(z,y)ply) dy = / E(z,y)pu(y) dy for z € Do\ (1 Uy)
42 Q2
implies the coincidence of €; and Q5.
Denote by s° the boundary of the set Q¢ = Q; U Qy. Under the
natural premise §2; # € one can readily show that s® = s Us; within the
notations

si:@Qlﬂ(—ZlﬂQz, sf:&Ql\si,
(3.3.1) 4

s; = 0N s°, s, =00 \ s .
When Q; = Qs we put sea = 0Qq for @ = 1, 2. It is worth noting here
two things. First, some of the sets si, sfx may be empty. Second, notation
(3.3.1) coincides with (3.2.38) in the case where Ay = Q. In the sequel it
will be always preassumed that the boundary 0Q4, o = 1, 2, is piecewise
smooth.

The symbol Ry is used for the vector directed from the origin of

coordinates O to a point y (n > 2). Let

r=lyl=|Ry|.
We might attempt the function p(y) in the form
(3.3.2) w(y) = €(y) 6(y),
where '

(a) the function é(y) (in general, of nonconstant sign) is continuously
differentiable and satisfies the condition

06
5 =0

0 [ n ~
(b) &(y) > 0 and -0—7:(7" 5) > 0 for all y € Q4.



3.3. The exterior inverse problem for the volume potential 141

Theorem 3.3.1 Let the origin of coordinaies O be enclosed in the set
Q1N Qs and

(1) the radius vector Ry obey the inequality
(3.3.3) (Ry,n,) >0 for ye st s,

where n, is a unit external normal to the boundary 0y, a=1,2,
and (Ry,n,) signifies the scalar product of the vectors Ry and n;

(2) the exterior volume potentials of the Laplace equation generated by
the domains Qq, a = 1,2, with density p of class (3.3.2) satisfy the
equality

(3.3.4) w(z; Q, p) = u(z; Qo,p) for € R\ (1 UQ).
Then Ql = QQ.

Proof We agree to consider Qp = Q; N Qs with mesQy # 0. We spoke
above about Q¢ denoting the domain bounded by the surface s°, for which
the relation Q¢ = Q; U Q; takes place.

Together condition (3.3.4) and Lemma 3.2.2 with § = 1 and vy = 0
imply the relation

(3.3.5) /u(y) h(y) dy—/u(y)h(y) dy=0

ﬂl ﬂ?

for any function h(y) harmonic in the domain D D (2; N 2).

In further reasoning the contradiction arguments may be of help in
achieving the final aim. We are first interested in the case where 6(y) =1,
which admits comparatively simple proof. To put it differently, the positive
function p(y) € C1(Q1 NQ2) must satisfy the inequality

(3.3.6) —a%(r"u)>0, r#0, YEQ UQ,, n>2.

By merely setting h = 1 in (3.3.5) it is easily verified that the masses
of the bodies ©; and Q5 are equal in that case. Therefore, due to the
positiveness of the density neither of the domains Q, will be strictly inside
another. Because of this fact, another conclusion can be drawn for the
domains ©; and Q5 with different connectedness that their mutual location
together with (3.3.3) guarantees that either of the sets s{, & = 1, 2, will
be nonempty.
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If for one reason or another it is known that a function H(y) is har-
monic in D, then so is the function

~  0H
(3.3.7) h=>"y 7— .
After that, substituting (3.3.7) into (3.3.5) yields the relation
—~ 0H
638 [ uw) [Z " -6——} dy
k=1 Yk
3
—~ OH
"/#(3;‘) [Z Yi 5—] dy=0,
k=1 Yr
N2
which can be rewritten as

(3.3.9) / [Z o )] dy

—/ [Zn: %(ﬂ(y)yk H)] dy

I k=1

_/H

M-
Q:'QJ

m (n(y) yk)- dy

2
=
.
o
1
-

+
—~—
ml
QJIQ’

Yk

(r@) )| dy=0.

-

o L k=

Other ideas are connected with transformations of the first and second
volume integrals of (3.3.9) into the surface ones. By such manipulations
we arrive at

/ H#{Zyk cos (ﬁ)} ds,

an, k=1

- / Hu{zyk COS()E)] ds,

902 k=1
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- .
*/H Zé%;(ﬂ(y)yk) dy

All this enables us to write down the equation

(3.3.10)

for

J(H) = 0

J(H) = / Hu(Ryn,) ds,
[t

~ [ Hu®yn,) s,

80,
n 5 7
~ H Z;—(uyk) dy
— YUk
£:\% k=1 A
n B T
+ H ZT(”yk) dy .
k=1 OYk )
nz\ﬂo
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Let the function f(y) be defined on the surface s* by the relations

(3.3.11)

1, ye€sy,
0, yes;,

fly) = {

under the natural premise mess; #0, a =1,2.

The function so constructed is aimed at extending relation (3.3.10) to
involve the function A being harmonic in ¢ and taking the values f(y) on
the boundary surface s° except for a set of zero surface measure, by means
of a sequence of surface patches {(sf)k}:ozl such that (%) C (5¢)x41 and
€ — 0 as k — oo, where

(3.3.12)

Putting

(3.3.13)

e, = mes [s7 \ (57)k] -

1, y € (57,
yEsy, s\ (41,
(@), ¥ € (7 )kt \ (57,
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we might select a monotonically increasing sequence of functions {f, (y)} :’:1
being continuous on s® such that

fer1(v) 2 fiy).

Here 7, (y) refers to a continuous function whose values range from 0 to 1.

For every continuous on s° function f,(y) the generalized solution
Hy, of the Dirichlet problem is introduced to carry out more a detailed
exploration. Since

fer1(¥) 2 fiy), yes’,

the principle of maximum modulus with respect to the domain Q¢ implies
that

(3‘3'14) H.fk+1(y) > ka(y), yeQIUQQ-

In so doing, | Hy, | < 1.

As a matter of fact, {Hy, }ZO:I is an increasing sequence of functions
which are bounded in ¢ and harmonic in Q¢. By Harnack’s theorem this
sequence converges to a function Hy uniformly over 2° and the limiting
function appears to be harmonic in Q¢. The convergence Hy, (y) — H(y)
occurs for all y € Q; UQ,. Using the results ascribed to Keldysh and
Lavrentiev (1937), Keldysh (1940) we see that the function Hy, takes the
values fi(y) on s° at any point of the stability boundary. Due to this
property the construction of f;(y) guarantees that the limiting function
Hy(y) takes the values f(y) on the boundary s° except for a set of zero
measure.

When £ is held fixed, the sequence {H’n‘!’k}zzw by means of which
we have defined the function Hy, in Section 1.2, converges in the closed
domain Q¢ and | Hng, | < 1form =1,2,.... Hence the Lebesque theorem
on the passage to the limit yields

Jim I (Hng,) = J(Hy)

for any fixed k.

The function Hy,, in turn, converges to H; in the closed domain ¢
and | Hy, | < 1for k=1,2,.... On the same grounds as before, we find by
the Lebesque theorem that

lim J(Hj,) = J(Hj).
k—oo

Because of (3.3.10),
J(Hmyp,) =0



3.3. The exterior inverse problem for the volume potential 145

for any fixed k and m = 1,2,.... Consequently, J(Hy, ) = 0 for any k, so
that

(3.3.15) J(H;) =0,

where the function H; is harmonic in ° and takes the boundary values
equal to f(y) from (3.3.11) almost everywhere. Moreover,

(3.3.16) 0< Hy <1.

In continuation of such an analysis we refer to the functional J(Hjy)
with the values

(3.3.17)
J(Hf) = / Hf :LL(y Ry>ny) dsy
sSUsh
/ H.f /j‘(y) (Rysny) dsy
ssUst
n 6 ]
- / Hy —(py)| dy
L k=1 6yk
Q1 \ Qo i
.9
+ Hy %(pyk) dy.
92\90 k=1 J
Since
(9 n _ .n-1 6”
(3.3.18) g(r )=r (n,u-!-r E)

= an (#yk

condition (3.3.6) assures us of the validity of the inequality

n

(3.3.19) Z@i (by) >0, when r#0 foryeQ UQ,.
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In the estimation of the quantity J(Hy) with the aid of (3.3.16), (3.3.19)
and (3.3.17) we derive in passing the inequality

s> [ Hu) Rym,) ds,

e )
s; Us,

- [ Hu) Ry, as,

sy Us,
_— -
0
- / 1. "a—(/iyk) dy
k=1 Yk J
Ql \Qo
n 9 1
+ Hy E?(ﬂ yk) dy,
— &
QQ\QO k=1 .

so that we arrive at one useful relation

> [ H ) Ry, s,
sSUs
- [ Haw®R,) b,

seUs)

- [ ) Ry m,) s,
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The preceding manipulations are based on the well-known decomposition

/ [i %(M}J} s/u(y)( ys1y) dsy

Ql \Q() k=1 e
/ (Ry’ y) d ya
5

where n, is a unit external normal to the boundary 9§, for o =1, 2.

In accordance with what has been said, the function H; takes the
boundary values f(y) almost everywhere on s = sf U si. In view of this,
substituting the data of (3.3.11) into the preceding inequality yields

(3.3.20) J(H) > / Hy u(y) (Ry,n,) ds,

i
S1

+ [ = H)ut) Ry m,) ds,
s
=\ 9
+ / Z =— (rye)| dy.
k=1 ayk
Q2\ Qo
Putting these together with relations (3.3.15) and (3.3.19) we deduce that
H; i 9 (hye)| dy>0.
Oy

Qz \ Qo k=1

Since p(y) > 0 for any y € Q; UQy, the combination of the second
condition of the theorem with (3.3.16) gives

[ s 00) (R m,) ds, 20,

5

[ =) uw Ryn,) ds, >0,

i
Sy
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meaning J(H;) > 0, which disagrees with (3.3.15). Thus, the theorem in
its first part is proved.

The situation in which the density p(y) happens to be of nonconstant
. sign and satisfies (3.3.2) with items (a) and (b) comes second. In case
(b) condition (3.3.4) written for an arbitrary function H(y) harmonic in D
implies relation (3.3.10), that is,

(3.3.21) J(H) =0,
where

= [ B Ryn,) ds,
oY

- [ HQuw) Ryomy) s,

00
r n a e
= / H(y) @(#yk) dy
Ql \Q() k=1 i
Ca
+ / H(y) 55;(#%) dy.
Qz \ Qo k=1 J

The well-established decomposition
J(H) = ‘]#+(H)'+ Ju-(H)

applies equally well to the following members: the first term J,+(H) com-
prises those parts of integrals in (3.3.21) which are taken over 89, and
Qo \ Qo, where u(y) > 0 for all y € Q; UQ,. The second term Ju-(H)
corresponds to those parts of integrals in (3.3.21) which are taken over 9Q,
and Q, \ Qo, where pu(y) < 0 for all y € Q, UQ,.

Let

0+ = {y €0, u(y) >0};  0- = {y€0Q, u(y) <0};
(3.3.22)
Qi+ ={yveq, uly) >0}; Q- ={yveq, uy) <0}.

Bearing in mind (3.3.1) and the way notation (3.3.22) has been introduced
above, it is possible to produce a number of the new symbols. In particular,
it is fairly common to use

siu+:{y€sz: ply) >0}, a=1,2.
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Within these notations, we introduce the function f(y) defined on the sur-
face s® = s U s; by the relations

1 for yes® ., s _,
(3.3.23) fly) = e
0 for ye€ 8 = Sout

Under the premises of the theorem it follows from the foregoing that f(y) #
const for y € s°. As in the first part of the proof it is necessary to extend
relation (3.3.10) in order to involve the solution Hy(y) of the Dirichlet
problem for the Laplace equation. The boundary values taken by H;(y)
on s° coincide with those from (3.2.3) almost everywhere. In this line, we
obtain

(3.3.24) J(H;)=0,

where

J(Hf) = Ju+(Hf)+Jp‘(Hf)

and

(3.3.25)  J,+(Hp) = / 1 pu(y) (Ry,n,) ds,

e
81

/ Hy(3) u(y) (Ry,m,) ds,

/ Hy(y) u(y) (Ry,my) ds,

- / Hi(w) | D 58— (L ]

L k=1 Yk

+ Hy( 2 dy;
/ 1Y) kza uyk]y
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(6326) J-(H) = [ H@)uo) Ryn,) ds,

S1pm

— / 1- u(y) (Ry,ny) ds,

2p

- [ B Ryn,) s,

S

2u~
A
- Hy(y) F—(ny) | dy
L k=1 Y
(Ql \Qo)u’
[ o
+ / Hy(y) 3—3/;(#31&) dy.
(Qz \ Qo)”, L k=1
Conditions (3.3.2) in terms of (3.3.22) imply the chain of inequalities
s
(3.3.27) l; a(,u.yk)} >0 for y € (Qu \Q)u+, a=12;
(3.3.28) - Zn: i(uyk) <0 for y€(Qa\Q)y-, a=1,2.
= Byk 12N )

In view of the bounds 0 < Hy < 1 for any y € Q°, we are led by relations
(3.3.2), (3.3.27) and (3.3.28) to the estimates

(3.3.29) - / Hf(y)[z %(M)] dy
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n

(3.3.30) / H(y) lz %}c—(uyk)] dy
(922 \ R),.- =

From (3.3.27)(3.3.30) it follows that

(3.3.31)  Ju+(Hy) > {/ Hy(y) u(y) (Ry, my) dsy]

Slu+

+ /(l—Hf(y))u(y)(Ryany) dsy}

-1
S
2ut

[ n b
+ / Hy(y) B,
192 \ QO)M+

(Lyi) dyJ :
k=

-

(3332)  Ju-(Hy) 2 [/ (H;(y) = 1) u(y) (Ry,n,) dsyJ

1pu~

+ / Hy () (Ry m,) ds ]

+(— / y)Z (L) J

- (2 \ QO)#

Taking into account (3.3.3), the properties of the function u(y) specified
by (3.3.2) and the properties of the function H;(y) revealed in estimates
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(3.3.23), we deduce that every term in square brackets on the right-hand
sides of (3.3.31)—(3.3.32) is nonnegative and, moreover, at least one of them
is strictly positive. Thus, we should have J(H;) > 0, violating (3.3.24).
The obtained contradiction proves the assertion of the theorem. W

Remark 3.3.1 Condition (3.3.3) of Theorem 3.3.1 is satisfied if Q; N Q,
is a “star-shaped” set with respect to the point O € Q; NQ,. For each such
set, R™\ (Ql ﬂQz) appears to be a one-component set. In particular, when
either of the sets Q; and Q is “star-shaped” with respect to a common
point O, we thus have (3.3.3).

3.4 Integral stability estimates for the inverse problem of
the exterior potential with constant density

As we have already mentioned in preliminaries to this chapter, the question
of uniqueness of inverse problem solutions is intimately connected with their
stability. The general topological criterion of stability ascribed to Tikhonov
(1943) and based on the corresponding uniqueness theorems implies the
qualitative stability tests.

In this section several stability estimates for the inverse problem of the
exterior potential for n > 3 will be derived in the class of “non-star-shaped”
bodies that consists of the so-called “absolutely star-ambient” and “abso-
lutely projectively-ambient” bodies including those with “star-shaped” in-
tersections and, correspondingly, with boundaries having intersections only
at two points by a straight line parallel to a known direction.

We denote by u(z; Ay) = u(z; Aq, 1) the volume potential of the body
A, with unit density. Throughout this section, we retain the notations
given by formulae (3.2.1)-(3.2.4), (3.2.38) and (3.3.1) and attempt the fun-
damental solution of the Laplace equation in the form (3.1.4). In particular,
we agree to consider

1 1
(3.4.1) E(z,y) = rrl
forn=3and r,, = [z —y]|.
As we will see a little later, it will be convenient to deal with

(3.4.2) w(z) = w(z; A1) — w(z; A2),
where
(3.4.3) w(z; Ae) =27 u(z; Ag)

i s}
- kg (r1zx + Brgr) o, u(z; Aq),
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v, and B, are real numbers, 2 4+ 82 # 0, and q = (¢4, ... , ¢, is a constant
vector. :
For A; # Aj the traditional tool for carrying out this work involves

(3.4.4) re= [1owlds, + [ 18] ds,,
fs fs

(3.45) F= [1ewids,+ [ o) ds,,
ré r

where the function

(3.4.6) ®(y) = (nRy + fiq, n, )

is adopted as the scalar product of the vectors 1R, + 6:q and n,. Here
n, denotes a unit exterior normal to the boundary 0A., @ = 1,2. In what
follows we accept Ay = 4 unless otherwise is explicitly stated, where
4 is a simply connected domain with a piecewise smooth boundary 6,,.
Also, either of the sets Qo = Q; NN, and R™\ (Q; UQ») is supposed to be
simply connected.

Theorem 3.4.1 Let U(z;Q,) be the volume mass potentials of domains
Qq, n >3, a=1,2, whose constant density is equal to 1. One assumes, in
addition, that the potentials U(x, Q) can harmonically be extended from
R"\ Q4 for 2 € R™\ D*, where D* is a simply connected domain with a
smooth boundary OD*, D* C Q°. Then, within notations (3.4.2)~(3.4.6),
the estimate

(3.4.7) F®—~ F'<¢ max w(z)

z€ID*

on,

is valid with ¢, = const > 0 depending only on the configuration of the
boundary 6D* and [

0
, w(:c)] ‘ denoting the external normal derivative
dn, 8D+

at a point = € 0D of the function w(z), which has been harmonically
extended to the boundary 6D*.

Proof Let D and D; be arbitrary domains with piecewise smooth bound-
aries 8D and 8D, such that

DDD13D1D(Q1UQQ).
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A simply connected domain D*' with a smooth boundary 8D*' is much
involved in further reasoning to avoid cumbersome calculations under the

agreements that D; O D*’ and none of the singular points of both functions
u(z;Qq), @ = 1,2, lies within the domain D*’.
One way of proceeding is to refer to the functional

(3.4.38) i = [ Bwew ds,~ [ HE)ew) ds
an 12192

where H(y) is an arbitrary harmonic in D function, ®(y) has been defined
in (3.4.6) and 094 is the boundary of Q, C R*, n > 3, @ = 1,2. Be-
fore we undertake the proof of the theorem, a preliminary lemma will be
introduced.

Lemma 3.4.1 The functional J(H) specified by (3.4.8) admits the estimate

(3.4.9) | J(H)| < ¢; max |H(y)| max I 0 w(z)',
yedD, zeap= | On,

where ¢, = const > 0 depends on the boundary dD*'.

Proof Indeed, any function H(y) harmonic in the domain D O D, can be
represented in the form

H(y) s Y € Dl )
4.10 M, |E(z,y); H ds, = _
(3 ) / x[ (z,v) (.’2)] $ {0, yeR™\ Dy,
8D,
where E(z,y) stands for the fundamental solution of the Laplace equation
for n > 3. The expression for M[u;v] is as follows:

Ou v

(3.4.11) Mlu;v] = v(x) T B u(z)

with n, denoting a unit external normal to dD; at point z. Furthermore,
we will use as a tool in achieving important results a functional and a
harmonic function which carry out the following actions:

(3.4.12) i = [ b dy- [ ) ay
o 12

and

n

(3.4.13) Z 8i [(raye + Brgx) H()] -
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Here H(y) is harmonic in D and the numbers v;, #; and g, have been
defined in (3.4.6). Via representation (3.4.10) for the function H(y) we

might have

(3.4.14) [ hiw) dy= / S L (hye + Bra) HW) dy
Do k=

Yr
na

QD

:ﬂ[ é % {(711!/; + b1q;)

X / M, [E(z,y); H(z)] dsx} dy

aD,

/ [{ / Z ——(%yk + B1qx)

oD,
E(z,y) dy}; H(x)] ds,

for @ = 1,2. Using the well-established decomposition for n > 3

i

3.4.15
(3.4.15) e

[(’hyk + B1gx) E(“’ay)]
k=1

=2 E Z(’hyk-f-ﬁlqk) 0 E(l' Y)
k=1

we rewrite the expression in curly brackets from the last formula (3.4.14)
as

(3.4.16) / Z 71yk + bigr) E(z,y) dy = w(z;Qa),

where the function w(z;4) has been defined in (3.4.3). Therefore, with
the aid of (3.4.14) and (3.4.16) we establish for any pair of the functions
h(y) and H(y) built into (3.4.13) the relation

(3.4.17) / h(y) dy = / M, [w(z;Qq); H(z)| ds,, .
Qo

aD,
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Some progress will be achieved if the function h(y) will be taken in the
form (3.4.13) with further substitution into (3.4.12). As a final result we
get the equality

(3.4.18) J(H)= J(H),

where the functional J(H) has been defined by (3.4.8). On the other hand,
(3.4.12), (3.4.17) and (3.4.18) imply that

(3.4.19) J(H) = / M, [w(z); H(z)] ds,
oD,

with w(z) being still subject to (3.4.2)—(3.4.3).

Via representation (3.4.19) one can derive an upper bound for the
absolute value of the functional J(H). In the light of the premises of the
lemma the function w(z) is harmonically extendable from R™ \ Q4 to the
domain R™ \ D*'. When solving the exterior boundary value Neymann
problem, one can find on the surface dD*’ the density w(y) of the simple
layer potential

(3.4.20) v(z) = / w(y) E(z,y) ds,,

6D‘I

for which

9 S0 ,

. = f *
(3.4.21) ':an v(m)} Fn. w(z) for ze€dD",
9 ) -
where o v(z)| denotes the limiting value of
9 v(z') as z'—a (zedD)
on,

along a unit external normal n,, to D*’. In conformity with the uniqueness
of a solution of the exterior boundary value Neymann problem (n > 3),
relation (3.4.21) yields

(3.4.22) w(z) = v(z) for ze€R™\ DY,
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showing the notation w(z) to be a sensible one. Consequently, (3.4.19),
(3.4.20) and (3.4.22) serve to motivate the representations

(3.4.23) J(H)= / Mx[ / w(y) E(z, ) dsy;H(ar)} ds,

225 oD+’

= / w(y){ / M, [E(z,y); H(z)] dsr} ds, .
8D+’ oD,

With (3.4.10) in view, the latter becomes much more simpler:

(3.4.24) J(H) = / w(y) H(y) ds,
aD‘l
Thus, the functional J(H) can be estimated as follows:
(G42) 1)< max (HG) [ 1e)]ds,
yedD*’ oper

< max [HWI [ |wly)] ds,.
y€aD,
8D+’
On the other hand, we should take into account that the function w(y)

solves the integral Fredholm equation of the second kind
(3.4.26) I-Thw=f

on the basis of (3.4.20)-(3.4.21) and the formulae for the jump of the normal
derivative of the potential of the simple layer. Here I is, as usual, the
identity operator. The operator T and the function f act in accordance
with the following rules: :

(3.4.27) Tw= [ 2 w w(y) ds, ;
aDtl z
f@y =220 cop

On the strength of the uniqueness of a solution of the exterior Neymann

problem (n > 3) the inverse operator (I — 7')~! should be bounded in the

space of all continuous functions. Thus, (3.4.26) and (3.4.27) imply the

inequality

(3.4.28) max |w(y)| <ec, max
yeaD~ zeap* | On,

Estimate (3.4.9) is an immediate implication of (3.4.26) and (3.4.28) and
this proves the assertion of the lemma. W

w(z) l, ¢y = const > 0.
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We return to proving the theorem by appeal to a function f(y) defined
on the surface s° = sy U's; by the relations

(3.4.29) = {

By means of the function f(y) one can produce a generalized solution
H(y) of the Dirichlet problem for the Laplace equation in such a way that
H¢(y) will be harmonic within Q°, | H;(y)| < 1 will occur for y € Q°
and the boundary values of H;(y) on the boundary s® will coincide almost
everywhere with f(y) involved in (3.4.29). All tricks and turns remain
unchanged as in the proof of Theorem 3.3.1. The way its result is used
here is to select a sequence of functions {Hpy, }m 1 | Hmg | £ 1, which
makes it possible to find a function Hy, with relevant properties:

—sign®(y) for ye€ s,
sign®(y) for y€s;.

|Hp | <1 and Hj convergesto H; in Q°.

Under the conditions of the theorem we are now in a position to consider
the domain D*, D* C §°, instead of the domain D*', arising from the
preceding lemma. Since D* C ¢, estimate (3.4.9) implies that

(3.4.30) J(Hmp,) < 1T (Hmp,)| < ¢ max
z€8D*

0
B, w(z) |.

Holding & fixed and passing to the limit in (3.4.30) as m — oo, we derive
the estimates '

(3.4.31) J(Hp) <|J(Hp)| < ez max
z€3D*

b

aiz w(@)
which after another passage to the limit as & — oo look as follows:

(3.4.32) JHp) <1IHp| < er max an

On the other hand, the boundary values of H; on s° have been defined
by (3.4.29), so that (3.4.8) gives

(3.4.33) /|<1> )| ds, +/ |B(y)| ds,
+/Hf(y)<1’(y) ds,

- / Hy(y) ®(y) ds, = J(H).

i
51
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Since | Hy | < 1, inequality (3.4.33) is followed by

(3.4.34) / | ®(y) | ds, +/ | ®(y) | ds, —/ | ®(y) | ds,
53 $5 s1

- / |B(y) | ds, < J(Hj).

S9

Now estimate (3.4.7) is an immediate implication of (3.4.32) and (3.4.34)
with notations (3.4.4)-(3.4.6). This completes the task of motivating the
desired estimate. W

We give below several corollaries to Theorem 3.4.1 that furnish the
justification for what we wish to do.

Corollary 3.4.1 Let Q; # Qo. If there ezist a point O, numbers v,, B
and a vector q such that

643) [ 120)]ds,+ [ 101 ds, < [ 12)] ds,+ [ o) ds,.
s% s sY 53

then the exterior potentials y(m; Q) of a constant densily cannot coincide,
that is, the set R™\ (1 UQy) encloses a point & such that

(3.4.36) u(Z; Q1) # u(;Q2).

Remark 3.4.1 In the case where 7, = 1 and 5, = 0 we might have
®(y) = (Ry,n,) and

(3.4.37) /l(Ry,ny)| dsy-'i—/ |(Ry,m,) | ds,

5 LD

< [ 1®ymy) i as,

4
51

+/ ](Ry,ny)| ds,

[
Sy
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instead of condition (3.4.35).
Note that Corollary 3.4.1 is still valid if (3.4.37) is replaced by

(3.4.38) /I(Ry,ny)| dsy+/ |(Ry,n,) | ds,

51 53

/|<Ry,n | ds, +/| R,,n,)| ds, .

sy 55
It is obvious that (3.4.37) follows from (3.4.38). We claim that (3.4.38)
holds if, in particular, the set Q; Ny is “star-shaped” with respect to a
certain point O € Q; N Qy, both sets 5o, @ = 1,2, are not empty with
mes(si Ns;) = 0. To avoid generality for which we have no real need, we
will consistently confine ourselves to a domain D C R” bounded by the
surface D. Then the volume of D can be expressed by

mesD:/dy—— _/[Z gyk} l /(Ry,ny) dsy ,
A w1 Yk n

oD
yielding
1
(3.4.39) mes D = - /(Ry,ny) ds, .
oD

In particular, if the set Q; N sz is “star-shaped” with respect to at least
one point O € Q1 N Q2, mes (s} Ns,) = 0 and mess®, # 0, « = 1,2, then
(Ry,n,) >0 on si{, a = 1,2. Because of (3.4.39), the meaning of relation
(3.4.38) is that we should have

mes(Ql UQZ) > mes(Ql DQZ) .
Remark 3.4.2 If y; = 0 and §; = 1, then ®(y) = (q,n,) and condition
(3.4.35) can be replaced by

(3.4.40) /Iq, |ds+/|q, )| ds,
31

/|(q, )| ds, +/iq, )| ds,.

The preceding inequality holds true 1f, in particular,

mes (s; Nsy) =0
and the intersection of the set s U s, by a straight line, parallel to the
vector q, contains at most two points or two whole segments.
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Remark 3.4.3 A geometric interpretation for conditions (3.4.37) and
(3.4.40) is connected with introduction of a surface piece

§=8§UsuU...usm

such that a ray originating from the point O intersects every part §¥ either
at one point or by one whole segment. Let

Vi)l = | Vi@ |+ [ V@ |+ -+ Vkeamy |

where | Vi (;5y| means the absolute value of the volume of the cone con-
structed over the piece §/ with vertex O. Within this notation, condition
(3.4.37) can be rewritten as

Likewise, let the piece § = 31 U...U&™ be such that every part §”
can uniquely be projected onto a plane N L q by straight lines parallel to
the vector q. If so, it is reasonable to try to use the quantity

(3.4.41) | Vicesiy 1+ 1 Viesiy 1| <l Viegsg) 11+ Il Viess)

(3.4.42) loniyll = Toxey |+ 1ox@n [+ - + [oxGm) |,

where | 073 7 | means the absolute value of the surface area of (37), the
projection of the dimension n — 1 of 87 onto the plane N. Therefore,
condition (3.4.40) becomes

(3.4.43) @agesy 1+ 1 Oxgosy 1| < Hlon(sg) [ + [T on(sgy Il

Under condition (3.4.41) the bodies ©; and Q5 fall within the category of
“absolutely star-ambient” domains. The bodies 2; and Q, are said to
be “absolutely projectively-outwards-ambient” provided condition
(3.4.43) holds.

If, in particular, under the initial conditions the set ; N Qs is “star-
shaped” with respect to an inner point, then the domains 2, are referred to
as “absolutely star-ambient”. Such domains Q, turn out to be “absolutely
projectively-outwards-ambient” when a straight line, parallel to the vector
q, will intersect the boundary of the set ©; N Q; at most at two points.

Remark 3.4.4 Because of (3.4.7), we might have
0< Fe—F?

for any “absolutely star-ambient” or “absolutely projectively-ambient” do-
mains.

Other stability estimates given below are asserted by Theorem 3.4.1.
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Corollary 3.4.2 Let a set P contain all singular points of the potentials
u(z; Qa), « =1,2, and let

Pc D*cD*cQe.

If
(3.4.44) lu(z; Q1) — u(z; Q)| < €, r € oD,
then
; €
(3.4.45) Fe—F'< ¢ 7

where ¢3 = ¢;(0D*) = const > 0 and | = dist (0D*, s°) denotes the dis-
tance between OD* and s°.

Indeed, the function u(z) = u(z; ;) — u(z;2) is harmonic in the
domain R” \ P and, consequently, is uniformly bounded in a domain G
ordered with respect to inclusion: R® \ D C G C G C R™\ P. Therefore,
estimate (3.4.45) follows from (3.4.7) and (3.4.44) on the basis of the well-
known estimates for the derivatives of the function u.

Assuming mes (0€2; N 0§;) = 0 and retaining notations (3.4.40) and
(3.4.42), we recast estimate (3.4.7) as

7 VGl =1 Ve I+ B8 [l ongey I = 1 orges 1]

<c¢; max [ du(z) } .

T€dD* nx

Our next step is to define for the domains Q; and 2, the distance
function by means of the relation
